/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/nlr.h" #include "py/parsenumbase.h" #include "py/smallint.h" #include "py/objint.h" #include "py/runtime0.h" #include "py/runtime.h" #if MICROPY_PY_BUILTINS_FLOAT #include #endif #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_MPZ #if MICROPY_PY_SYS_MAXSIZE // Export value for sys.maxsize #define DIG_MASK ((MPZ_LONG_1 << MPZ_DIG_SIZE) - 1) STATIC const mpz_dig_t maxsize_dig[] = { #define NUM_DIG 1 (MP_SSIZE_MAX >> MPZ_DIG_SIZE * 0) & DIG_MASK, #if (MP_SSIZE_MAX >> MPZ_DIG_SIZE * 0) > DIG_MASK #undef NUM_DIG #define NUM_DIG 2 (MP_SSIZE_MAX >> MPZ_DIG_SIZE * 1) & DIG_MASK, #if (MP_SSIZE_MAX >> MPZ_DIG_SIZE * 1) > DIG_MASK #undef NUM_DIG #define NUM_DIG 3 (MP_SSIZE_MAX >> MPZ_DIG_SIZE * 2) & DIG_MASK, #if (MP_SSIZE_MAX >> MPZ_DIG_SIZE * 2) > DIG_MASK #undef NUM_DIG #define NUM_DIG 4 (MP_SSIZE_MAX >> MPZ_DIG_SIZE * 3) & DIG_MASK, #if (MP_SSIZE_MAX >> MPZ_DIG_SIZE * 3) > DIG_MASK #error cannot encode MP_SSIZE_MAX as mpz #endif #endif #endif #endif }; const mp_obj_int_t mp_maxsize_obj = { {&mp_type_int}, {.fixed_dig = 1, .len = NUM_DIG, .alloc = NUM_DIG, .dig = (mpz_dig_t*)maxsize_dig} }; #undef DIG_MASK #undef NUM_DIG #endif STATIC mp_obj_int_t *mp_obj_int_new_mpz(void) { mp_obj_int_t *o = m_new_obj(mp_obj_int_t); o->base.type = &mp_type_int; mpz_init_zero(&o->mpz); return o; } // This routine expects you to pass in a buffer and size (in *buf and buf_size). // If, for some reason, this buffer is too small, then it will allocate a // buffer and return the allocated buffer and size in *buf and *buf_size. It // is the callers responsibility to free this allocated buffer. // // The resulting formatted string will be returned from this function and the // formatted size will be in *fmt_size. // // This particular routine should only be called for the mpz representation of the int. char *mp_obj_int_formatted_impl(char **buf, size_t *buf_size, size_t *fmt_size, mp_const_obj_t self_in, int base, const char *prefix, char base_char, char comma) { assert(MP_OBJ_IS_TYPE(self_in, &mp_type_int)); const mp_obj_int_t *self = MP_OBJ_TO_PTR(self_in); size_t needed_size = mp_int_format_size(mpz_max_num_bits(&self->mpz), base, prefix, comma); if (needed_size > *buf_size) { *buf = m_new(char, needed_size); *buf_size = needed_size; } char *str = *buf; *fmt_size = mpz_as_str_inpl(&self->mpz, base, prefix, base_char, comma, str); return str; } void mp_obj_int_to_bytes_impl(mp_obj_t self_in, bool big_endian, size_t len, byte *buf) { assert(MP_OBJ_IS_TYPE(self_in, &mp_type_int)); mp_obj_int_t *self = MP_OBJ_TO_PTR(self_in); mpz_as_bytes(&self->mpz, big_endian, len, buf); } int mp_obj_int_sign(mp_obj_t self_in) { if (MP_OBJ_IS_SMALL_INT(self_in)) { mp_int_t val = MP_OBJ_SMALL_INT_VALUE(self_in); if (val < 0) { return -1; } else if (val > 0) { return 1; } else { return 0; } } mp_obj_int_t *self = MP_OBJ_TO_PTR(self_in); if (self->mpz.len == 0) { return 0; } else if (self->mpz.neg == 0) { return 1; } else { return -1; } } // This must handle int and bool types, and must raise a // TypeError if the argument is not integral mp_obj_t mp_obj_int_abs(mp_obj_t self_in) { if (MP_OBJ_IS_TYPE(self_in, &mp_type_int)) { mp_obj_int_t *self = MP_OBJ_TO_PTR(self_in); mp_obj_int_t *self2 = mp_obj_int_new_mpz(); mpz_abs_inpl(&self2->mpz, &self->mpz); return MP_OBJ_FROM_PTR(self2); } else { mp_int_t val = mp_obj_get_int(self_in); if (val == MP_SMALL_INT_MIN) { return mp_obj_new_int_from_ll(-val); } else { if (val < 0) { val = -val; } return MP_OBJ_NEW_SMALL_INT(val); } } } mp_obj_t mp_obj_int_unary_op(mp_uint_t op, mp_obj_t o_in) { mp_obj_int_t *o = MP_OBJ_TO_PTR(o_in); switch (op) { case MP_UNARY_OP_BOOL: return mp_obj_new_bool(!mpz_is_zero(&o->mpz)); case MP_UNARY_OP_HASH: return MP_OBJ_NEW_SMALL_INT(mpz_hash(&o->mpz)); case MP_UNARY_OP_POSITIVE: return o_in; case MP_UNARY_OP_NEGATIVE: { mp_obj_int_t *o2 = mp_obj_int_new_mpz(); mpz_neg_inpl(&o2->mpz, &o->mpz); return MP_OBJ_FROM_PTR(o2); } case MP_UNARY_OP_INVERT: { mp_obj_int_t *o2 = mp_obj_int_new_mpz(); mpz_not_inpl(&o2->mpz, &o->mpz); return MP_OBJ_FROM_PTR(o2); } default: return MP_OBJ_NULL; // op not supported } } mp_obj_t mp_obj_int_binary_op(mp_uint_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) { const mpz_t *zlhs; const mpz_t *zrhs; mpz_t z_int; mpz_dig_t z_int_dig[MPZ_NUM_DIG_FOR_INT]; // lhs could be a small int (eg small-int + mpz) if (MP_OBJ_IS_SMALL_INT(lhs_in)) { mpz_init_fixed_from_int(&z_int, z_int_dig, MPZ_NUM_DIG_FOR_INT, MP_OBJ_SMALL_INT_VALUE(lhs_in)); zlhs = &z_int; } else if (MP_OBJ_IS_TYPE(lhs_in, &mp_type_int)) { zlhs = &((mp_obj_int_t*)MP_OBJ_TO_PTR(lhs_in))->mpz; } else { // unsupported type return MP_OBJ_NULL; } // if rhs is small int, then lhs was not (otherwise mp_binary_op handles it) if (MP_OBJ_IS_SMALL_INT(rhs_in)) { mpz_init_fixed_from_int(&z_int, z_int_dig, MPZ_NUM_DIG_FOR_INT, MP_OBJ_SMALL_INT_VALUE(rhs_in)); zrhs = &z_int; } else if (MP_OBJ_IS_TYPE(rhs_in, &mp_type_int)) { zrhs = &((mp_obj_int_t*)MP_OBJ_TO_PTR(rhs_in))->mpz; #if MICROPY_PY_BUILTINS_FLOAT } else if (mp_obj_is_float(rhs_in)) { return mp_obj_float_binary_op(op, mpz_as_float(zlhs), rhs_in); #if MICROPY_PY_BUILTINS_COMPLEX } else if (MP_OBJ_IS_TYPE(rhs_in, &mp_type_complex)) { return mp_obj_complex_binary_op(op, mpz_as_float(zlhs), 0, rhs_in); #endif #endif } else { // delegate to generic function to check for extra cases return mp_obj_int_binary_op_extra_cases(op, lhs_in, rhs_in); } if (0) { #if MICROPY_PY_BUILTINS_FLOAT } else if (op == MP_BINARY_OP_TRUE_DIVIDE || op == MP_BINARY_OP_INPLACE_TRUE_DIVIDE) { if (mpz_is_zero(zrhs)) { goto zero_division_error; } mp_float_t flhs = mpz_as_float(zlhs); mp_float_t frhs = mpz_as_float(zrhs); return mp_obj_new_float(flhs / frhs); #endif } else if (op <= MP_BINARY_OP_INPLACE_POWER) { mp_obj_int_t *res = mp_obj_int_new_mpz(); switch (op) { case MP_BINARY_OP_ADD: case MP_BINARY_OP_INPLACE_ADD: mpz_add_inpl(&res->mpz, zlhs, zrhs); break; case MP_BINARY_OP_SUBTRACT: case MP_BINARY_OP_INPLACE_SUBTRACT: mpz_sub_inpl(&res->mpz, zlhs, zrhs); break; case MP_BINARY_OP_MULTIPLY: case MP_BINARY_OP_INPLACE_MULTIPLY: mpz_mul_inpl(&res->mpz, zlhs, zrhs); break; case MP_BINARY_OP_FLOOR_DIVIDE: case MP_BINARY_OP_INPLACE_FLOOR_DIVIDE: { if (mpz_is_zero(zrhs)) { zero_division_error: mp_raise_msg(&mp_type_ZeroDivisionError, "division by zero"); } mpz_t rem; mpz_init_zero(&rem); mpz_divmod_inpl(&res->mpz, &rem, zlhs, zrhs); mpz_deinit(&rem); break; } case MP_BINARY_OP_MODULO: case MP_BINARY_OP_INPLACE_MODULO: { if (mpz_is_zero(zrhs)) { goto zero_division_error; } mpz_t quo; mpz_init_zero(&quo); mpz_divmod_inpl(&quo, &res->mpz, zlhs, zrhs); mpz_deinit(&quo); break; } case MP_BINARY_OP_AND: case MP_BINARY_OP_INPLACE_AND: mpz_and_inpl(&res->mpz, zlhs, zrhs); break; case MP_BINARY_OP_OR: case MP_BINARY_OP_INPLACE_OR: mpz_or_inpl(&res->mpz, zlhs, zrhs); break; case MP_BINARY_OP_XOR: case MP_BINARY_OP_INPLACE_XOR: mpz_xor_inpl(&res->mpz, zlhs, zrhs); break; case MP_BINARY_OP_LSHIFT: case MP_BINARY_OP_INPLACE_LSHIFT: case MP_BINARY_OP_RSHIFT: case MP_BINARY_OP_INPLACE_RSHIFT: { mp_int_t irhs = mp_obj_int_get_checked(rhs_in); if (irhs < 0) { mp_raise_msg(&mp_type_ValueError, "negative shift count"); } if (op == MP_BINARY_OP_LSHIFT || op == MP_BINARY_OP_INPLACE_LSHIFT) { mpz_shl_inpl(&res->mpz, zlhs, irhs); } else { mpz_shr_inpl(&res->mpz, zlhs, irhs); } break; } case MP_BINARY_OP_POWER: case MP_BINARY_OP_INPLACE_POWER: mpz_pow_inpl(&res->mpz, zlhs, zrhs); break; default: { assert(op == MP_BINARY_OP_DIVMOD); if (mpz_is_zero(zrhs)) { goto zero_division_error; } mp_obj_int_t *quo = mp_obj_int_new_mpz(); mpz_divmod_inpl(&quo->mpz, &res->mpz, zlhs, zrhs); mp_obj_t tuple[2] = {MP_OBJ_FROM_PTR(quo), MP_OBJ_FROM_PTR(res)}; return mp_obj_new_tuple(2, tuple); } } return MP_OBJ_FROM_PTR(res); } else { int cmp = mpz_cmp(zlhs, zrhs); switch (op) { case MP_BINARY_OP_LESS: return mp_obj_new_bool(cmp < 0); case MP_BINARY_OP_MORE: return mp_obj_new_bool(cmp > 0); case MP_BINARY_OP_LESS_EQUAL: return mp_obj_new_bool(cmp <= 0); case MP_BINARY_OP_MORE_EQUAL: return mp_obj_new_bool(cmp >= 0); case MP_BINARY_OP_EQUAL: return mp_obj_new_bool(cmp == 0); default: return MP_OBJ_NULL; // op not supported } } } mp_obj_t mp_obj_new_int(mp_int_t value) { if (MP_SMALL_INT_FITS(value)) { return MP_OBJ_NEW_SMALL_INT(value); } return mp_obj_new_int_from_ll(value); } mp_obj_t mp_obj_new_int_from_ll(long long val) { mp_obj_int_t *o = mp_obj_int_new_mpz(); mpz_set_from_ll(&o->mpz, val, true); return MP_OBJ_FROM_PTR(o); } mp_obj_t mp_obj_new_int_from_ull(unsigned long long val) { mp_obj_int_t *o = mp_obj_int_new_mpz(); mpz_set_from_ll(&o->mpz, val, false); return MP_OBJ_FROM_PTR(o); } mp_obj_t mp_obj_new_int_from_uint(mp_uint_t value) { // SMALL_INT accepts only signed numbers, so make sure the input // value fits completely in the small-int positive range. if ((value & ~MP_SMALL_INT_POSITIVE_MASK) == 0) { return MP_OBJ_NEW_SMALL_INT(value); } return mp_obj_new_int_from_ull(value); } #if MICROPY_PY_BUILTINS_FLOAT mp_obj_t mp_obj_new_int_from_float(mp_float_t val) { int cl = fpclassify(val); if (cl == FP_INFINITE) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_OverflowError, "can't convert inf to int")); } else if (cl == FP_NAN) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "can't convert NaN to int")); } else { mp_fp_as_int_class_t icl = mp_classify_fp_as_int(val); if (icl == MP_FP_CLASS_FIT_SMALLINT) { return MP_OBJ_NEW_SMALL_INT((mp_int_t)val); } else { mp_obj_int_t *o = mp_obj_int_new_mpz(); mpz_set_from_float(&o->mpz, val); return MP_OBJ_FROM_PTR(o); } } } #endif mp_obj_t mp_obj_new_int_from_str_len(const char **str, mp_uint_t len, bool neg, mp_uint_t base) { mp_obj_int_t *o = mp_obj_int_new_mpz(); mp_uint_t n = mpz_set_from_str(&o->mpz, *str, len, neg, base); *str += n; return MP_OBJ_FROM_PTR(o); } mp_int_t mp_obj_int_get_truncated(mp_const_obj_t self_in) { if (MP_OBJ_IS_SMALL_INT(self_in)) { return MP_OBJ_SMALL_INT_VALUE(self_in); } else { const mp_obj_int_t *self = MP_OBJ_TO_PTR(self_in); // hash returns actual int value if it fits in mp_int_t return mpz_hash(&self->mpz); } } mp_int_t mp_obj_int_get_checked(mp_const_obj_t self_in) { if (MP_OBJ_IS_SMALL_INT(self_in)) { return MP_OBJ_SMALL_INT_VALUE(self_in); } else { const mp_obj_int_t *self = MP_OBJ_TO_PTR(self_in); mp_int_t value; if (mpz_as_int_checked(&self->mpz, &value)) { return value; } else { // overflow mp_raise_msg(&mp_type_OverflowError, "overflow converting long int to machine word"); } } } #if MICROPY_PY_BUILTINS_FLOAT mp_float_t mp_obj_int_as_float_impl(mp_obj_t self_in) { assert(MP_OBJ_IS_TYPE(self_in, &mp_type_int)); mp_obj_int_t *self = MP_OBJ_TO_PTR(self_in); return mpz_as_float(&self->mpz); } #endif #endif