/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * Copyright (c) 2015 Daniel Campora * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "py/mpstate.h" #include MICROPY_HAL_H #include "irq.h" #include "inc/hw_types.h" #include "inc/hw_gpio.h" #include "inc/hw_ints.h" #include "inc/hw_memmap.h" #include "inc/hw_uart.h" #include "prcm.h" #include "pyexec.h" #include "pybuart.h" #include "pybpin.h" #include "pybrtc.h" #include "pybsystick.h" #include "simplelink.h" #include "modwlan.h" #include "telnet.h" #include "ff.h" #include "diskio.h" #include "sflash_diskio.h" #include "FreeRTOS.h" #include "portable.h" #include "task.h" #include "mpexception.h" #include "random.h" #include "pybextint.h" #include "pybadc.h" #include "pybi2c.h" #include "pybsd.h" #include "pybwdt.h" #include "utils.h" #include "gccollect.h" #ifdef DEBUG extern OsiTaskHandle mpTaskHandle; extern OsiTaskHandle svTaskHandle; extern OsiTaskHandle xSimpleLinkSpawnTaskHndl; #endif /// \module pyb - functions related to the pyboard /// /// The `pyb` module contains specific functions related to the pyboard. /// \function hard_reset() /// Resets the pyboard in a manner similar to pushing the external RESET /// button. STATIC mp_obj_t pyb_hard_reset(void) { #if (MICROPY_PORT_HAS_TELNET || MICROPY_PORT_HAS_FTP) // disable wlan services wlan_stop_servers(); #endif wlan_stop(); // perform a SoC reset PRCMSOCReset(); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_hard_reset_obj, pyb_hard_reset); #ifdef DEBUG /// \function info([dump_alloc_table]) /// Print out some run time info which is helpful duirng development. STATIC mp_obj_t pyb_info(uint n_args, const mp_obj_t *args) { // FreeRTOS info { printf("---------------------------------------------\n"); printf("FreeRTOS\n"); printf("---------------------------------------------\n"); printf("Total heap: %u\n", configTOTAL_HEAP_SIZE); printf("Free heap: %u\n", xPortGetFreeHeapSize()); printf("MpTask min free stack: %u\n", (unsigned int)uxTaskGetStackHighWaterMark((TaskHandle_t)mpTaskHandle)); printf("ServersTask min free stack: %u\n", (unsigned int)uxTaskGetStackHighWaterMark((TaskHandle_t)svTaskHandle)); printf("SlTask min free stack: %u\n", (unsigned int)uxTaskGetStackHighWaterMark(xSimpleLinkSpawnTaskHndl)); printf("IdleTask min free stack: %u\n", (unsigned int)uxTaskGetStackHighWaterMark(xTaskGetIdleTaskHandle())); uint32_t *pstack = (uint32_t *)&_stack; while (*pstack == 0x55555555) { pstack++; } printf("MAIN min free stack: %u\n", pstack - ((uint32_t *)&_stack)); printf("---------------------------------------------\n"); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_info_obj, 0, 1, pyb_info); #endif /// \function unique_id() /// Returns a string of 6 bytes (48 bits), which is the unique MAC address of the SoC STATIC mp_obj_t pyb_mac(void) { uint8_t mac[6]; wlan_get_mac (mac); return mp_obj_new_bytes(mac, 6); } STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_mac_obj, pyb_mac); /// \function freq() /// Returns the CPU frequency: (F_CPU). STATIC mp_obj_t pyb_freq(void) { return mp_obj_new_int(HAL_FCPU_HZ); } STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_freq_obj, pyb_freq); /// \function sync() /// Sync all file systems. STATIC mp_obj_t pyb_sync(void) { sflash_disk_flush(); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_sync_obj, pyb_sync); /// \function millis() /// Returns the number of milliseconds since the board was last reset. /// /// The result is always a micropython smallint (31-bit signed number), so /// after 2^30 milliseconds (about 12.4 days) this will start to return /// negative numbers. STATIC mp_obj_t pyb_millis(void) { // We want to "cast" the 32 bit unsigned into a small-int. This means // copying the MSB down 1 bit (extending the sign down), which is // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro. return MP_OBJ_NEW_SMALL_INT(HAL_GetTick()); } STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_millis_obj, pyb_millis); /// \function elapsed_millis(start) /// Returns the number of milliseconds which have elapsed since `start`. /// /// This function takes care of counter wrap, and always returns a positive /// number. This means it can be used to measure periods upto about 12.4 days. /// /// Example: /// start = pyb.millis() /// while pyb.elapsed_millis(start) < 1000: /// # Perform some operation STATIC mp_obj_t pyb_elapsed_millis(mp_obj_t start) { uint32_t startMillis = mp_obj_get_int(start); uint32_t currMillis = HAL_GetTick(); return MP_OBJ_NEW_SMALL_INT((currMillis - startMillis) & 0x3fffffff); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_millis_obj, pyb_elapsed_millis); /// \function micros() /// Returns the number of microseconds since the board was last reset. /// /// The result is always a micropython smallint (31-bit signed number), so /// after 2^30 microseconds (about 17.8 minutes) this will start to return /// negative numbers. STATIC mp_obj_t pyb_micros(void) { // We want to "cast" the 32 bit unsigned into a small-int. This means // copying the MSB down 1 bit (extending the sign down), which is // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro. return MP_OBJ_NEW_SMALL_INT(sys_tick_get_microseconds()); } STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_micros_obj, pyb_micros); /// \function elapsed_micros(start) /// Returns the number of microseconds which have elapsed since `start`. /// /// This function takes care of counter wrap, and always returns a positive /// number. This means it can be used to measure periods upto about 17.8 minutes. /// /// Example: /// start = pyb.micros() /// while pyb.elapsed_micros(start) < 1000: /// # Perform some operation STATIC mp_obj_t pyb_elapsed_micros(mp_obj_t start) { uint32_t startMicros = mp_obj_get_int(start); uint32_t currMicros = sys_tick_get_microseconds(); return MP_OBJ_NEW_SMALL_INT((currMicros - startMicros) & 0x3fffffff); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_micros_obj, pyb_elapsed_micros); /// \function delay(ms) /// Delay for the given number of milliseconds. STATIC mp_obj_t pyb_delay(mp_obj_t ms_in) { mp_int_t ms = mp_obj_get_int(ms_in); if (ms > 0) { HAL_Delay(ms); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_delay_obj, pyb_delay); /// \function udelay(us) /// Delay for the given number of microseconds. STATIC mp_obj_t pyb_udelay(mp_obj_t usec_in) { mp_int_t usec = mp_obj_get_int(usec_in); if (usec > 0) { UtilsDelay(UTILS_DELAY_US_TO_COUNT(usec)); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_udelay_obj, pyb_udelay); STATIC mp_obj_t pyb_stop(void) { return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_0(pyb_stop_obj, pyb_stop); STATIC mp_obj_t pyb_standby(void) { return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_0(pyb_standby_obj, pyb_standby); /// \function repl_uart(uart) /// Get or set the UART object that the REPL is repeated on. STATIC mp_obj_t pyb_repl_uart(uint n_args, const mp_obj_t *args) { if (n_args == 0) { if (pyb_stdio_uart == NULL) { return mp_const_none; } else { return pyb_stdio_uart; } } else { if (args[0] == mp_const_none) { pyb_stdio_uart = NULL; } else if (mp_obj_get_type(args[0]) == &pyb_uart_type) { pyb_stdio_uart = args[0]; } else { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, mpexception_num_type_invalid_arguments)); } return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_repl_uart_obj, 0, 1, pyb_repl_uart); /// \function mkdisk('path') /// Formats the selected drive, useful when the filesystem has been damaged beyond repair STATIC mp_obj_t pyb_mkdisk(mp_obj_t path_o) { const char *path = mp_obj_str_get_str(path_o); if (FR_OK != f_mkfs(path, 1, 0)) { nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, mpexception_os_operation_failed)); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_mkdisk_obj, pyb_mkdisk); /// \function wdt_enable('msec') /// Enabled the watchdog timer with msec timeout value STATIC mp_obj_t pyb_enable_wdt(mp_obj_t msec_in) { mp_int_t msec = mp_obj_get_int(msec_in); pybwdt_ret_code_t ret; ret = pybwdt_enable (msec); if (ret == E_PYBWDT_IS_RUNNING) { nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, mpexception_os_request_not_possible)); } else if (ret == E_PYBWDT_INVALID_TIMEOUT) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments)); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_enable_wdt_obj, pyb_enable_wdt); /// \function wdt_kick() /// Kicks the watchdog timer STATIC mp_obj_t pyb_kick_wdt(void) { pybwdt_kick (); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_kick_wdt_obj, pyb_kick_wdt); MP_DECLARE_CONST_FUN_OBJ(pyb_main_obj); // defined in main.c STATIC const mp_map_elem_t pyb_module_globals_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_pyb) }, { MP_OBJ_NEW_QSTR(MP_QSTR_hard_reset), (mp_obj_t)&pyb_hard_reset_obj }, #ifdef DEBUG { MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&pyb_info_obj }, #endif { MP_OBJ_NEW_QSTR(MP_QSTR_mac), (mp_obj_t)&pyb_mac_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_freq_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_repl_info), (mp_obj_t)&pyb_set_repl_info_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_wfi), (mp_obj_t)&pyb_wfi_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_disable_irq), (mp_obj_t)&pyb_disable_irq_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_enable_irq), (mp_obj_t)&pyb_enable_irq_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_stop), (mp_obj_t)&pyb_stop_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_standby), (mp_obj_t)&pyb_standby_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_main), (mp_obj_t)&pyb_main_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_repl_uart), (mp_obj_t)&pyb_repl_uart_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_millis), (mp_obj_t)&pyb_millis_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_millis), (mp_obj_t)&pyb_elapsed_millis_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_micros), (mp_obj_t)&pyb_micros_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_micros), (mp_obj_t)&pyb_elapsed_micros_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_delay), (mp_obj_t)&pyb_delay_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_udelay), (mp_obj_t)&pyb_udelay_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_sync), (mp_obj_t)&pyb_sync_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_mkdisk), (mp_obj_t)&pyb_mkdisk_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_enable_wdt), (mp_obj_t)&pyb_enable_wdt_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_kick_wdt), (mp_obj_t)&pyb_kick_wdt_obj }, #if MICROPY_HW_ENABLE_RNG { MP_OBJ_NEW_QSTR(MP_QSTR_rng), (mp_obj_t)&pyb_rng_get_obj }, #endif #if MICROPY_HW_ENABLE_RTC { MP_OBJ_NEW_QSTR(MP_QSTR_RTC), (mp_obj_t)&pyb_rtc_type }, #endif { MP_OBJ_NEW_QSTR(MP_QSTR_Pin), (mp_obj_t)&pin_type }, { MP_OBJ_NEW_QSTR(MP_QSTR_ExtInt), (mp_obj_t)&extint_type }, { MP_OBJ_NEW_QSTR(MP_QSTR_ADC), (mp_obj_t)&pyb_adc_type }, { MP_OBJ_NEW_QSTR(MP_QSTR_I2C), (mp_obj_t)&pyb_i2c_type }, { MP_OBJ_NEW_QSTR(MP_QSTR_UART), (mp_obj_t)&pyb_uart_type }, #if MICROPY_HW_HAS_SDCARD { MP_OBJ_NEW_QSTR(MP_QSTR_SD), (mp_obj_t)&pyb_sd_type }, #endif }; STATIC MP_DEFINE_CONST_DICT(pyb_module_globals, pyb_module_globals_table); const mp_obj_module_t pyb_module = { .base = { &mp_type_module }, .name = MP_QSTR_pyb, .globals = (mp_obj_dict_t*)&pyb_module_globals, };