/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // A Micro Python object is a machine word having the following form: // - xxxx...xxx1 : a small int, bits 1 and above are the value // - xxxx...xx10 : a qstr, bits 2 and above are the value // - xxxx...xx00 : a pointer to an mp_obj_base_t (unless a fake object) // All Micro Python objects are at least this type // It must be of pointer size typedef machine_ptr_t mp_obj_t; typedef machine_const_ptr_t mp_const_obj_t; // Integers that fit in a pointer have this type // (do we need to expose this in the public API?) typedef machine_int_t mp_small_int_t; // Anything that wants to be a Micro Python object must have // mp_obj_base_t as its first member (except small ints and qstrs) struct _mp_obj_type_t; struct _mp_obj_base_t { const struct _mp_obj_type_t *type; }; typedef struct _mp_obj_base_t mp_obj_base_t; // These fake objects are used to indicate certain things in arguments or return // values, and should only be used when explicitly allowed. // // - MP_OBJ_NULL : used to indicate the absence of an object, or unsupported operation. // - MP_OBJ_STOP_ITERATION : used instead of throwing a StopIteration, for efficiency. // - MP_OBJ_SENTINEL : used for various internal purposes where one needs // an object which is unique from all other objects, including MP_OBJ_NULL. // // For debugging purposes they are all different. For non-debug mode, we alias // as many as we can to MP_OBJ_NULL because it's cheaper to load/compare 0. #if NDEBUG #define MP_OBJ_NULL ((mp_obj_t)0) #define MP_OBJ_STOP_ITERATION ((mp_obj_t)0) #define MP_OBJ_SENTINEL ((mp_obj_t)4) #else #define MP_OBJ_NULL ((mp_obj_t)0) #define MP_OBJ_STOP_ITERATION ((mp_obj_t)4) #define MP_OBJ_SENTINEL ((mp_obj_t)8) #endif // These macros check for small int, qstr or object, and access small int and qstr values // these macros have now become inline functions; see below //#define MP_OBJ_IS_SMALL_INT(o) ((((mp_small_int_t)(o)) & 1) != 0) //#define MP_OBJ_IS_QSTR(o) ((((mp_small_int_t)(o)) & 3) == 2) //#define MP_OBJ_IS_OBJ(o) ((((mp_small_int_t)(o)) & 3) == 0) #define MP_OBJ_IS_TYPE(o, t) (MP_OBJ_IS_OBJ(o) && (((mp_obj_base_t*)(o))->type == (t))) // this does not work for checking a string, use below macro for that #define MP_OBJ_IS_INT(o) (MP_OBJ_IS_SMALL_INT(o) || MP_OBJ_IS_TYPE(o, &mp_type_int)) #define MP_OBJ_IS_STR(o) (MP_OBJ_IS_QSTR(o) || MP_OBJ_IS_TYPE(o, &mp_type_str)) #define MP_OBJ_SMALL_INT_VALUE(o) (((mp_small_int_t)(o)) >> 1) #define MP_OBJ_NEW_SMALL_INT(small_int) ((mp_obj_t)(((small_int) << 1) | 1)) #define MP_OBJ_QSTR_VALUE(o) (((mp_small_int_t)(o)) >> 2) #define MP_OBJ_NEW_QSTR(qstr) ((mp_obj_t)((((machine_uint_t)qstr) << 2) | 2)) // These macros are used to declare and define constant function objects // You can put "static" in front of the definitions to make them local #define MP_DECLARE_CONST_FUN_OBJ(obj_name) extern const mp_obj_fun_native_t obj_name #define MP_DEFINE_CONST_FUN_OBJ_VOID_PTR(obj_name, is_kw, n_args_min, n_args_max, fun_name) const mp_obj_fun_native_t obj_name = {{&mp_type_fun_native}, is_kw, n_args_min, n_args_max, (void *)fun_name} #define MP_DEFINE_CONST_FUN_OBJ_0(obj_name, fun_name) MP_DEFINE_CONST_FUN_OBJ_VOID_PTR(obj_name, false, 0, 0, (mp_fun_0_t)fun_name) #define MP_DEFINE_CONST_FUN_OBJ_1(obj_name, fun_name) MP_DEFINE_CONST_FUN_OBJ_VOID_PTR(obj_name, false, 1, 1, (mp_fun_1_t)fun_name) #define MP_DEFINE_CONST_FUN_OBJ_2(obj_name, fun_name) MP_DEFINE_CONST_FUN_OBJ_VOID_PTR(obj_name, false, 2, 2, (mp_fun_2_t)fun_name) #define MP_DEFINE_CONST_FUN_OBJ_3(obj_name, fun_name) MP_DEFINE_CONST_FUN_OBJ_VOID_PTR(obj_name, false, 3, 3, (mp_fun_3_t)fun_name) #define MP_DEFINE_CONST_FUN_OBJ_VAR(obj_name, n_args_min, fun_name) MP_DEFINE_CONST_FUN_OBJ_VOID_PTR(obj_name, false, n_args_min, MP_OBJ_FUN_ARGS_MAX, (mp_fun_var_t)fun_name) #define MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(obj_name, n_args_min, n_args_max, fun_name) MP_DEFINE_CONST_FUN_OBJ_VOID_PTR(obj_name, false, n_args_min, n_args_max, (mp_fun_var_t)fun_name) #define MP_DEFINE_CONST_FUN_OBJ_KW(obj_name, n_args_min, fun_name) MP_DEFINE_CONST_FUN_OBJ_VOID_PTR(obj_name, true, n_args_min, MP_OBJ_FUN_ARGS_MAX, (mp_fun_kw_t)fun_name) // This macro is used to define constant dict objects // You can put "static" in front of the definition to make it local #define MP_DEFINE_CONST_DICT(dict_name, table_name) \ const mp_obj_dict_t dict_name = { \ .base = {&mp_type_dict}, \ .map = { \ .all_keys_are_qstrs = 1, \ .table_is_fixed_array = 1, \ .used = sizeof(table_name) / sizeof(mp_map_elem_t), \ .alloc = sizeof(table_name) / sizeof(mp_map_elem_t), \ .table = (mp_map_elem_t*)table_name, \ }, \ } // These macros are used to declare and define constant staticmethond and classmethod objects // You can put "static" in front of the definitions to make them local #define MP_DECLARE_CONST_STATICMETHOD_OBJ(obj_name) extern const mp_obj_static_class_method_t obj_name #define MP_DECLARE_CONST_CLASSMETHOD_OBJ(obj_name) extern const mp_obj_static_class_method_t obj_name #define MP_DEFINE_CONST_STATICMETHOD_OBJ(obj_name, fun_name) const mp_obj_static_class_method_t obj_name = {{&mp_type_staticmethod}, fun_name} #define MP_DEFINE_CONST_CLASSMETHOD_OBJ(obj_name, fun_name) const mp_obj_static_class_method_t obj_name = {{&mp_type_classmethod}, fun_name} // Underlying map/hash table implementation (not dict object or map function) typedef struct _mp_map_elem_t { mp_obj_t key; mp_obj_t value; } mp_map_elem_t; // TODO maybe have a truncated mp_map_t for fixed tables, since alloc=used // put alloc last in the structure, so the truncated version does not need it // this would save 1 ROM word for all ROM objects that have a locals_dict // would also need a trucated dict structure typedef struct _mp_map_t { machine_uint_t all_keys_are_qstrs : 1; machine_uint_t table_is_fixed_array : 1; machine_uint_t used : (8 * sizeof(machine_uint_t) - 2); machine_uint_t alloc; mp_map_elem_t *table; } mp_map_t; // These can be or'd together typedef enum _mp_map_lookup_kind_t { MP_MAP_LOOKUP, // 0 MP_MAP_LOOKUP_ADD_IF_NOT_FOUND, // 1 MP_MAP_LOOKUP_REMOVE_IF_FOUND, // 2 } mp_map_lookup_kind_t; static inline bool MP_MAP_SLOT_IS_FILLED(const mp_map_t *map, machine_uint_t pos) { return ((map)->table[pos].key != MP_OBJ_NULL && (map)->table[pos].key != MP_OBJ_SENTINEL); } void mp_map_init(mp_map_t *map, int n); void mp_map_init_fixed_table(mp_map_t *map, int n, const mp_obj_t *table); mp_map_t *mp_map_new(int n); void mp_map_deinit(mp_map_t *map); void mp_map_free(mp_map_t *map); mp_map_elem_t* mp_map_lookup(mp_map_t *map, mp_obj_t index, mp_map_lookup_kind_t lookup_kind); void mp_map_clear(mp_map_t *map); void mp_map_dump(mp_map_t *map); // Underlying set implementation (not set object) typedef struct _mp_set_t { machine_uint_t alloc; machine_uint_t used; mp_obj_t *table; } mp_set_t; static inline bool MP_SET_SLOT_IS_FILLED(const mp_set_t *set, machine_uint_t pos) { return ((set)->table[pos] != MP_OBJ_NULL && (set)->table[pos] != MP_OBJ_SENTINEL); } void mp_set_init(mp_set_t *set, int n); mp_obj_t mp_set_lookup(mp_set_t *set, mp_obj_t index, mp_map_lookup_kind_t lookup_kind); mp_obj_t mp_set_remove_first(mp_set_t *set); void mp_set_clear(mp_set_t *set); // Type definitions for methods typedef mp_obj_t (*mp_fun_0_t)(void); typedef mp_obj_t (*mp_fun_1_t)(mp_obj_t); typedef mp_obj_t (*mp_fun_2_t)(mp_obj_t, mp_obj_t); typedef mp_obj_t (*mp_fun_3_t)(mp_obj_t, mp_obj_t, mp_obj_t); typedef mp_obj_t (*mp_fun_t)(void); typedef mp_obj_t (*mp_fun_var_t)(uint n, const mp_obj_t *); typedef mp_obj_t (*mp_fun_kw_t)(uint n, const mp_obj_t *, mp_map_t *); typedef enum { PRINT_STR = 0, PRINT_REPR = 1, PRINT_EXC = 2, // Special format for printing exception in unhandled exception message PRINT_EXC_SUBCLASS = 4, // Internal flag for printing exception subclasses } mp_print_kind_t; typedef void (*mp_print_fun_t)(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t o, mp_print_kind_t kind); typedef mp_obj_t (*mp_make_new_fun_t)(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args); typedef mp_obj_t (*mp_call_fun_t)(mp_obj_t fun, uint n_args, uint n_kw, const mp_obj_t *args); typedef mp_obj_t (*mp_unary_op_fun_t)(int op, mp_obj_t); typedef mp_obj_t (*mp_binary_op_fun_t)(int op, mp_obj_t, mp_obj_t); typedef void (*mp_load_attr_fun_t)(mp_obj_t self_in, qstr attr, mp_obj_t *dest); // for fail, do nothing; for attr, dest[0] = value; for method, dest[0] = method, dest[1] = self typedef bool (*mp_store_attr_fun_t)(mp_obj_t self_in, qstr attr, mp_obj_t value); // return true if store succeeded; if value==MP_OBJ_NULL then delete typedef mp_obj_t (*mp_subscr_fun_t)(mp_obj_t self_in, mp_obj_t index, mp_obj_t value); typedef struct _mp_method_t { qstr name; mp_const_obj_t fun; } mp_method_t; // Buffer protocol typedef struct _mp_buffer_info_t { // if we'd bother to support various versions of structure // (with different number of fields), we can distinguish // them with ver = sizeof(struct). Cons: overkill for *micro*? //int ver; // ? void *buf; machine_int_t len; // in bytes int typecode; // as per binary.h // Rationale: to load arbitrary-sized sprites directly to LCD // Cons: a bit adhoc usecase // int stride; } mp_buffer_info_t; #define MP_BUFFER_READ (1) #define MP_BUFFER_WRITE (2) #define MP_BUFFER_RW (MP_BUFFER_READ | MP_BUFFER_WRITE) typedef struct _mp_buffer_p_t { machine_int_t (*get_buffer)(mp_obj_t obj, mp_buffer_info_t *bufinfo, int flags); } mp_buffer_p_t; bool mp_get_buffer(mp_obj_t obj, mp_buffer_info_t *bufinfo, int flags); void mp_get_buffer_raise(mp_obj_t obj, mp_buffer_info_t *bufinfo, int flags); // Stream protocol typedef struct _mp_stream_p_t { // On error, functions should return -1 and fill in *errcode (values are // implementation-dependent, but will be exposed to user, e.g. via exception). machine_int_t (*read)(mp_obj_t obj, void *buf, machine_uint_t size, int *errcode); machine_int_t (*write)(mp_obj_t obj, const void *buf, machine_uint_t size, int *errcode); // add seek() ? int is_bytes : 1; } mp_stream_p_t; struct _mp_obj_type_t { mp_obj_base_t base; qstr name; mp_print_fun_t print; mp_make_new_fun_t make_new; // to make an instance of the type mp_call_fun_t call; mp_unary_op_fun_t unary_op; // can return MP_OBJ_NULL if op not supported mp_binary_op_fun_t binary_op; // can return MP_OBJ_NULL if op not supported mp_load_attr_fun_t load_attr; mp_store_attr_fun_t store_attr; // if value is MP_OBJ_NULL, then delete that attribute mp_subscr_fun_t subscr; // implements load, store, delete subscripting // value=MP_OBJ_NULL means delete, value=MP_OBJ_SENTINEL means load, else store // can return MP_OBJ_NULL if op not supported mp_fun_1_t getiter; mp_fun_1_t iternext; // may return MP_OBJ_STOP_ITERATION as an optimisation instead of raising StopIteration() (with no args) mp_buffer_p_t buffer_p; const mp_stream_p_t *stream_p; // these are for dynamically created types (classes) mp_obj_t bases_tuple; mp_obj_t locals_dict; /* What we might need to add here: len str tuple list map abs float complex hash bool int none str equal int str unpack seq list tuple */ }; typedef struct _mp_obj_type_t mp_obj_type_t; // Constant types, globally accessible extern const mp_obj_type_t mp_type_type; extern const mp_obj_type_t mp_type_object; extern const mp_obj_type_t mp_type_NoneType; extern const mp_obj_type_t mp_type_bool; extern const mp_obj_type_t mp_type_int; extern const mp_obj_type_t mp_type_str; extern const mp_obj_type_t mp_type_bytes; extern const mp_obj_type_t mp_type_bytearray; extern const mp_obj_type_t mp_type_float; extern const mp_obj_type_t mp_type_complex; extern const mp_obj_type_t mp_type_tuple; extern const mp_obj_type_t mp_type_list; extern const mp_obj_type_t mp_type_map; // map (the python builtin, not the dict implementation detail) extern const mp_obj_type_t mp_type_enumerate; extern const mp_obj_type_t mp_type_filter; extern const mp_obj_type_t mp_type_dict; extern const mp_obj_type_t mp_type_range; extern const mp_obj_type_t mp_type_set; extern const mp_obj_type_t mp_type_frozenset; extern const mp_obj_type_t mp_type_slice; extern const mp_obj_type_t mp_type_zip; extern const mp_obj_type_t mp_type_array; extern const mp_obj_type_t mp_type_super; extern const mp_obj_type_t mp_type_gen_instance; extern const mp_obj_type_t mp_type_fun_native; extern const mp_obj_type_t mp_type_fun_bc; extern const mp_obj_type_t mp_type_module; extern const mp_obj_type_t mp_type_staticmethod; extern const mp_obj_type_t mp_type_classmethod; extern const mp_obj_type_t mp_type_property; extern const mp_obj_type_t mp_type_stringio; extern const mp_obj_type_t mp_type_bytesio; // Exceptions extern const mp_obj_type_t mp_type_BaseException; extern const mp_obj_type_t mp_type_ArithmeticError; extern const mp_obj_type_t mp_type_AssertionError; extern const mp_obj_type_t mp_type_AttributeError; extern const mp_obj_type_t mp_type_EOFError; extern const mp_obj_type_t mp_type_Exception; extern const mp_obj_type_t mp_type_GeneratorExit; extern const mp_obj_type_t mp_type_IOError; extern const mp_obj_type_t mp_type_ImportError; extern const mp_obj_type_t mp_type_IndentationError; extern const mp_obj_type_t mp_type_IndexError; extern const mp_obj_type_t mp_type_KeyError; extern const mp_obj_type_t mp_type_LookupError; extern const mp_obj_type_t mp_type_MemoryError; extern const mp_obj_type_t mp_type_NameError; extern const mp_obj_type_t mp_type_NotImplementedError; extern const mp_obj_type_t mp_type_OSError; extern const mp_obj_type_t mp_type_OverflowError; extern const mp_obj_type_t mp_type_RuntimeError; extern const mp_obj_type_t mp_type_StopIteration; extern const mp_obj_type_t mp_type_SyntaxError; extern const mp_obj_type_t mp_type_SystemError; extern const mp_obj_type_t mp_type_SystemExit; extern const mp_obj_type_t mp_type_TypeError; extern const mp_obj_type_t mp_type_ValueError; extern const mp_obj_type_t mp_type_ZeroDivisionError; // Constant objects, globally accessible // The macros are for convenience only #define mp_const_none ((mp_obj_t)&mp_const_none_obj) #define mp_const_false ((mp_obj_t)&mp_const_false_obj) #define mp_const_true ((mp_obj_t)&mp_const_true_obj) #define mp_const_empty_tuple ((mp_obj_t)&mp_const_empty_tuple_obj) extern const struct _mp_obj_none_t mp_const_none_obj; extern const struct _mp_obj_bool_t mp_const_false_obj; extern const struct _mp_obj_bool_t mp_const_true_obj; extern const struct _mp_obj_tuple_t mp_const_empty_tuple_obj; extern const struct _mp_obj_ellipsis_t mp_const_ellipsis_obj; extern const struct _mp_obj_exception_t mp_const_MemoryError_obj; extern const struct _mp_obj_exception_t mp_const_GeneratorExit_obj; // General API for objects mp_obj_t mp_obj_new_type(qstr name, mp_obj_t bases_tuple, mp_obj_t locals_dict); mp_obj_t mp_obj_new_none(void); mp_obj_t mp_obj_new_bool(bool value); mp_obj_t mp_obj_new_cell(mp_obj_t obj); mp_obj_t mp_obj_new_int(machine_int_t value); mp_obj_t mp_obj_new_int_from_uint(machine_uint_t value); mp_obj_t mp_obj_new_int_from_str_len(const char **str, uint len, bool neg, uint base); mp_obj_t mp_obj_new_int_from_ll(long long val); // this must return a multi-precision integer object (or raise an overflow exception) mp_obj_t mp_obj_new_str(const char* data, uint len, bool make_qstr_if_not_already); mp_obj_t mp_obj_new_bytes(const byte* data, uint len); #if MICROPY_PY_BUILTINS_FLOAT mp_obj_t mp_obj_new_float(mp_float_t val); mp_obj_t mp_obj_new_complex(mp_float_t real, mp_float_t imag); #endif mp_obj_t mp_obj_new_exception(const mp_obj_type_t *exc_type); mp_obj_t mp_obj_new_exception_arg1(const mp_obj_type_t *exc_type, mp_obj_t arg); mp_obj_t mp_obj_new_exception_args(const mp_obj_type_t *exc_type, uint n_args, const mp_obj_t *args); mp_obj_t mp_obj_new_exception_msg(const mp_obj_type_t *exc_type, const char *msg); mp_obj_t mp_obj_new_exception_msg_varg(const mp_obj_type_t *exc_type, const char *fmt, ...); // counts args by number of % symbols in fmt, excluding %%; can only handle void* sizes (ie no float/double!) mp_obj_t mp_obj_new_fun_bc(uint scope_flags, qstr *args, uint n_pos_args, uint n_kwonly_args, mp_obj_t def_args, mp_obj_t def_kw_args, const byte *code); mp_obj_t mp_obj_new_fun_asm(uint n_args, void *fun); mp_obj_t mp_obj_new_gen_wrap(mp_obj_t fun); mp_obj_t mp_obj_new_closure(mp_obj_t fun, uint n_closed, const mp_obj_t *closed); mp_obj_t mp_obj_new_tuple(uint n, const mp_obj_t *items); mp_obj_t mp_obj_new_list(uint n, mp_obj_t *items); mp_obj_t mp_obj_new_dict(int n_args); mp_obj_t mp_obj_new_set(int n_args, mp_obj_t *items); mp_obj_t mp_obj_new_slice(mp_obj_t start, mp_obj_t stop, mp_obj_t step); mp_obj_t mp_obj_new_super(mp_obj_t type, mp_obj_t obj); mp_obj_t mp_obj_new_bound_meth(mp_obj_t meth, mp_obj_t self); mp_obj_t mp_obj_new_getitem_iter(mp_obj_t *args); mp_obj_t mp_obj_new_module(qstr module_name); mp_obj_type_t *mp_obj_get_type(mp_const_obj_t o_in); const char *mp_obj_get_type_str(mp_const_obj_t o_in); bool mp_obj_is_subclass_fast(mp_const_obj_t object, mp_const_obj_t classinfo); // arguments should be type objects mp_obj_t mp_instance_cast_to_native_base(mp_const_obj_t self_in, mp_const_obj_t native_type); void mp_obj_print_helper(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t o_in, mp_print_kind_t kind); void mp_obj_print(mp_obj_t o, mp_print_kind_t kind); void mp_obj_print_exception(mp_obj_t exc); int mp_obj_is_true(mp_obj_t arg); // TODO make these all lower case when they have proven themselves static inline bool MP_OBJ_IS_OBJ(mp_const_obj_t o) { return ((((mp_small_int_t)(o)) & 3) == 0); } static inline bool MP_OBJ_IS_SMALL_INT(mp_const_obj_t o) { return ((((mp_small_int_t)(o)) & 1) != 0); } //static inline bool MP_OBJ_IS_TYPE(mp_const_obj_t o, const mp_obj_type_t *t) { return (MP_OBJ_IS_OBJ(o) && (((mp_obj_base_t*)(o))->type == (t))); } // this does not work for checking a string, use below macro for that //static inline bool MP_OBJ_IS_INT(mp_const_obj_t o) { return (MP_OBJ_IS_SMALL_INT(o) || MP_OBJ_IS_TYPE(o, &mp_type_int)); } // returns true if o is a small int or long int static inline bool mp_obj_is_integer(mp_const_obj_t o) { return MP_OBJ_IS_INT(o) || MP_OBJ_IS_TYPE(o, &mp_type_bool); } // returns true if o is bool, small int or long int static inline bool MP_OBJ_IS_QSTR(mp_const_obj_t o) { return ((((mp_small_int_t)(o)) & 3) == 2); } //static inline bool MP_OBJ_IS_STR(mp_const_obj_t o) { return (MP_OBJ_IS_QSTR(o) || MP_OBJ_IS_TYPE(o, &mp_type_str)); } bool mp_obj_is_callable(mp_obj_t o_in); machine_int_t mp_obj_hash(mp_obj_t o_in); bool mp_obj_equal(mp_obj_t o1, mp_obj_t o2); machine_int_t mp_obj_get_int(mp_const_obj_t arg); bool mp_obj_get_int_maybe(mp_const_obj_t arg, machine_int_t *value); #if MICROPY_PY_BUILTINS_FLOAT mp_float_t mp_obj_get_float(mp_obj_t self_in); void mp_obj_get_complex(mp_obj_t self_in, mp_float_t *real, mp_float_t *imag); #endif //qstr mp_obj_get_qstr(mp_obj_t arg); void mp_obj_get_array(mp_obj_t o, uint *len, mp_obj_t **items); void mp_obj_get_array_fixed_n(mp_obj_t o, uint len, mp_obj_t **items); uint mp_get_index(const mp_obj_type_t *type, machine_uint_t len, mp_obj_t index, bool is_slice); mp_obj_t mp_obj_len_maybe(mp_obj_t o_in); /* may return MP_OBJ_NULL */ mp_obj_t mp_obj_subscr(mp_obj_t base, mp_obj_t index, mp_obj_t val); // bool // TODO make lower case when it has proven itself static inline mp_obj_t MP_BOOL(machine_int_t x) { return x ? mp_const_true : mp_const_false; } // cell mp_obj_t mp_obj_cell_get(mp_obj_t self_in); void mp_obj_cell_set(mp_obj_t self_in, mp_obj_t obj); // int // For long int, returns value truncated to machine_int_t machine_int_t mp_obj_int_get(mp_const_obj_t self_in); #if MICROPY_PY_BUILTINS_FLOAT mp_float_t mp_obj_int_as_float(mp_obj_t self_in); #endif // Will raise exception if value doesn't fit into machine_int_t machine_int_t mp_obj_int_get_checked(mp_const_obj_t self_in); // exception #define mp_obj_is_native_exception_instance(o) (mp_obj_get_type(o)->make_new == mp_obj_exception_make_new) bool mp_obj_is_exception_type(mp_obj_t self_in); bool mp_obj_is_exception_instance(mp_obj_t self_in); bool mp_obj_exception_match(mp_obj_t exc, const mp_obj_type_t *exc_type); void mp_obj_exception_clear_traceback(mp_obj_t self_in); void mp_obj_exception_add_traceback(mp_obj_t self_in, qstr file, machine_uint_t line, qstr block); void mp_obj_exception_get_traceback(mp_obj_t self_in, machine_uint_t *n, machine_uint_t **values); mp_obj_t mp_obj_exception_get_value(mp_obj_t self_in); mp_obj_t mp_obj_exception_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args); // str mp_obj_t mp_obj_str_builder_start(const mp_obj_type_t *type, uint len, byte **data); mp_obj_t mp_obj_str_builder_end(mp_obj_t o_in); bool mp_obj_str_equal(mp_obj_t s1, mp_obj_t s2); uint mp_obj_str_get_hash(mp_obj_t self_in); uint mp_obj_str_get_len(mp_obj_t self_in); qstr mp_obj_str_get_qstr(mp_obj_t self_in); // use this if you will anyway convert the string to a qstr const char *mp_obj_str_get_str(mp_obj_t self_in); // use this only if you need the string to be null terminated const char *mp_obj_str_get_data(mp_obj_t self_in, uint *len); mp_obj_t mp_obj_str_intern(mp_obj_t str); void mp_str_print_quoted(void (*print)(void *env, const char *fmt, ...), void *env, const byte *str_data, uint str_len); #if MICROPY_PY_BUILTINS_FLOAT // float typedef struct _mp_obj_float_t { mp_obj_base_t base; mp_float_t value; } mp_obj_float_t; mp_float_t mp_obj_float_get(mp_obj_t self_in); mp_obj_t mp_obj_float_binary_op(int op, mp_float_t lhs_val, mp_obj_t rhs); // can return MP_OBJ_NULL if op not supported // complex void mp_obj_complex_get(mp_obj_t self_in, mp_float_t *real, mp_float_t *imag); mp_obj_t mp_obj_complex_binary_op(int op, mp_float_t lhs_real, mp_float_t lhs_imag, mp_obj_t rhs_in); // can return MP_OBJ_NULL if op not supported #endif // tuple void mp_obj_tuple_get(mp_obj_t self_in, uint *len, mp_obj_t **items); void mp_obj_tuple_del(mp_obj_t self_in); machine_int_t mp_obj_tuple_hash(mp_obj_t self_in); // list struct _mp_obj_list_t; void mp_obj_list_init(struct _mp_obj_list_t *o, uint n); mp_obj_t mp_obj_list_append(mp_obj_t self_in, mp_obj_t arg); void mp_obj_list_get(mp_obj_t self_in, uint *len, mp_obj_t **items); void mp_obj_list_set_len(mp_obj_t self_in, uint len); void mp_obj_list_store(mp_obj_t self_in, mp_obj_t index, mp_obj_t value); mp_obj_t mp_obj_list_sort(uint n_args, const mp_obj_t *args, mp_map_t *kwargs); // dict typedef struct _mp_obj_dict_t { mp_obj_base_t base; mp_map_t map; } mp_obj_dict_t; void mp_obj_dict_init(mp_obj_dict_t *dict, int n_args); uint mp_obj_dict_len(mp_obj_t self_in); mp_obj_t mp_obj_dict_get(mp_obj_t self_in, mp_obj_t index); mp_obj_t mp_obj_dict_store(mp_obj_t self_in, mp_obj_t key, mp_obj_t value); mp_obj_t mp_obj_dict_delete(mp_obj_t self_in, mp_obj_t key); mp_map_t *mp_obj_dict_get_map(mp_obj_t self_in); // set void mp_obj_set_store(mp_obj_t self_in, mp_obj_t item); // slice void mp_obj_slice_get(mp_obj_t self_in, mp_obj_t *start, mp_obj_t *stop, mp_obj_t *step); // array uint mp_obj_array_len(mp_obj_t self_in); mp_obj_t mp_obj_new_bytearray_by_ref(uint n, void *items); // functions #define MP_OBJ_FUN_ARGS_MAX (0xffff) // to set maximum value in n_args_max below typedef struct _mp_obj_fun_native_t { // need this so we can define const objects (to go in ROM) mp_obj_base_t base; bool is_kw : 1; uint n_args_min : 15; // inclusive uint n_args_max : 16; // inclusive void *fun; // TODO add mp_map_t *globals // for const function objects, make an empty, const map // such functions won't be able to access the global scope, but that's probably okay } mp_obj_fun_native_t; bool mp_obj_fun_prepare_simple_args(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args, uint *out_args1_len, const mp_obj_t **out_args1, uint *out_args2_len, const mp_obj_t **out_args2); const char *mp_obj_fun_get_name(mp_const_obj_t fun); const char *mp_obj_code_get_name(const byte *code_info); mp_obj_t mp_identity(mp_obj_t self); MP_DECLARE_CONST_FUN_OBJ(mp_identity_obj); // module typedef struct _mp_obj_module_t { mp_obj_base_t base; qstr name; mp_obj_dict_t *globals; } mp_obj_module_t; mp_obj_dict_t *mp_obj_module_get_globals(mp_obj_t self_in); // staticmethod and classmethod types; defined here so we can make const versions // this structure is used for instances of both staticmethod and classmethod typedef struct _mp_obj_static_class_method_t { mp_obj_base_t base; mp_obj_t fun; } mp_obj_static_class_method_t; // property const mp_obj_t *mp_obj_property_get(mp_obj_t self_in); // sequence helpers // slice indexes resolved to particular sequence typedef struct { machine_uint_t start; machine_uint_t stop; machine_int_t step; } mp_bound_slice_t; void mp_seq_multiply(const void *items, uint item_sz, uint len, uint times, void *dest); #if MICROPY_PY_BUILTINS_SLICE bool mp_seq_get_fast_slice_indexes(machine_uint_t len, mp_obj_t slice, mp_bound_slice_t *indexes); #endif #define mp_seq_copy(dest, src, len, item_t) memcpy(dest, src, len * sizeof(item_t)) #define mp_seq_cat(dest, src1, len1, src2, len2, item_t) { memcpy(dest, src1, (len1) * sizeof(item_t)); memcpy(dest + (len1), src2, (len2) * sizeof(item_t)); } bool mp_seq_cmp_bytes(int op, const byte *data1, uint len1, const byte *data2, uint len2); bool mp_seq_cmp_objs(int op, const mp_obj_t *items1, uint len1, const mp_obj_t *items2, uint len2); mp_obj_t mp_seq_index_obj(const mp_obj_t *items, uint len, uint n_args, const mp_obj_t *args); mp_obj_t mp_seq_count_obj(const mp_obj_t *items, uint len, mp_obj_t value); mp_obj_t mp_seq_extract_slice(uint len, const mp_obj_t *seq, mp_bound_slice_t *indexes); // Helper to clear stale pointers from allocated, but unused memory, to preclude GC problems #define mp_seq_clear(start, len, alloc_len, item_sz) memset((byte*)(start) + (len) * (item_sz), 0, ((alloc_len) - (len)) * (item_sz)) #define mp_seq_replace_slice_no_grow(dest, dest_len, beg, end, slice, slice_len, item_t) \ /*printf("memcpy(%p, %p, %d)\n", dest + beg, slice, slice_len * sizeof(item_t));*/ \ memcpy(dest + beg, slice, slice_len * sizeof(item_t)); \ /*printf("memcpy(%p, %p, %d)\n", dest + (beg + slice_len), dest + end, (dest_len - end) * sizeof(item_t));*/ \ memcpy(dest + (beg + slice_len), dest + end, (dest_len - end) * sizeof(item_t)); #define mp_seq_replace_slice_grow_inplace(dest, dest_len, beg, end, slice, slice_len, len_adj, item_t) \ /*printf("memmove(%p, %p, %d)\n", dest + beg + len_adj, dest + beg, (dest_len - beg) * sizeof(item_t));*/ \ memmove(dest + beg + len_adj, dest + beg, (dest_len - beg) * sizeof(item_t)); \ memcpy(dest + beg, slice, slice_len * sizeof(item_t));