/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2014 Fabian Vogt * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "mpconfig.h" #include "misc.h" #include "asmarm.h" // wrapper around everything in this file #if MICROPY_EMIT_ARM #define SIGNED_FIT24(x) (((x) & 0xff800000) == 0) || (((x) & 0xff000000) == 0xff000000) struct _asm_arm_t { uint pass; mp_uint_t code_offset; mp_uint_t code_size; byte *code_base; byte dummy_data[4]; mp_uint_t max_num_labels; mp_uint_t *label_offsets; uint push_reglist; uint stack_adjust; }; asm_arm_t *asm_arm_new(uint max_num_labels) { asm_arm_t *as; as = m_new0(asm_arm_t, 1); as->max_num_labels = max_num_labels; as->label_offsets = m_new(mp_uint_t, max_num_labels); return as; } void asm_arm_free(asm_arm_t *as, bool free_code) { if (free_code) { MP_PLAT_FREE_EXEC(as->code_base, as->code_size); } m_del(mp_uint_t, as->label_offsets, as->max_num_labels); m_del_obj(asm_arm_t, as); } void asm_arm_start_pass(asm_arm_t *as, uint pass) { as->pass = pass; as->code_offset = 0; if (pass == ASM_ARM_PASS_COMPUTE) { memset(as->label_offsets, -1, as->max_num_labels * sizeof(mp_uint_t)); } } void asm_arm_end_pass(asm_arm_t *as) { if (as->pass == ASM_ARM_PASS_COMPUTE) { MP_PLAT_ALLOC_EXEC(as->code_offset, (void**) &as->code_base, &as->code_size); if(as->code_base == NULL) { assert(0); } } else if(as->pass == ASM_ARM_PASS_EMIT) { #ifdef __arm__ // flush I- and D-cache asm volatile( "0:" "mrc p15, 0, r15, c7, c10, 3\n" "bne 0b\n" "mov r0, #0\n" "mcr p15, 0, r0, c7, c7, 0\n" : : : "r0", "cc"); #endif } } // all functions must go through this one to emit bytes // if as->pass < ASM_ARM_PASS_EMIT, then this function only returns a buffer of 4 bytes length STATIC byte *asm_arm_get_cur_to_write_bytes(asm_arm_t *as, int num_bytes_to_write) { if (as->pass < ASM_ARM_PASS_EMIT) { as->code_offset += num_bytes_to_write; return as->dummy_data; } else { assert(as->code_offset + num_bytes_to_write <= as->code_size); byte *c = as->code_base + as->code_offset; as->code_offset += num_bytes_to_write; return c; } } uint asm_arm_get_code_size(asm_arm_t *as) { return as->code_size; } void *asm_arm_get_code(asm_arm_t *as) { return as->code_base; } // Insert word into instruction flow STATIC void emit(asm_arm_t *as, uint op) { *(uint*)asm_arm_get_cur_to_write_bytes(as, 4) = op; } // Insert word into instruction flow, add "ALWAYS" condition code STATIC void emit_al(asm_arm_t *as, uint op) { emit(as, op | ASM_ARM_CC_AL); } // Basic instructions without condition code STATIC uint asm_arm_op_push(uint reglist) { // stmfd sp!, {reglist} return 0x92d0000 | (reglist & 0xFFFF); } STATIC uint asm_arm_op_pop(uint reglist) { // ldmfd sp!, {reglist} return 0x8bd0000 | (reglist & 0xFFFF); } STATIC uint asm_arm_op_mov_reg(uint rd, uint rn) { // mov rd, rn return 0x1a00000 | (rd << 12) | rn; } STATIC uint asm_arm_op_mov_imm(uint rd, uint imm) { // mov rd, #imm return 0x3a00000 | (rd << 12) | imm; } STATIC uint asm_arm_op_mvn_imm(uint rd, uint imm) { // mvn rd, #imm return 0x3e00000 | (rd << 12) | imm; } STATIC uint asm_arm_op_add_imm(uint rd, uint rn, uint imm) { // add rd, rn, #imm return 0x2800000 | (rn << 16) | (rd << 12) | (imm & 0xFF); } STATIC uint asm_arm_op_add_reg(uint rd, uint rn, uint rm) { // add rd, rn, rm return 0x0800000 | (rn << 16) | (rd << 12) | rm; } STATIC uint asm_arm_op_sub_imm(uint rd, uint rn, uint imm) { // sub rd, rn, #imm return 0x2400000 | (rn << 16) | (rd << 12) | (imm & 0xFF); } void asm_arm_bkpt(asm_arm_t *as) { // bkpt #0 emit_al(as, 0x1200070); } // locals: // - stored on the stack in ascending order // - numbered 0 through num_locals-1 // - SP points to first local // // | SP // v // l0 l1 l2 ... l(n-1) // ^ ^ // | low address | high address in RAM void asm_arm_entry(asm_arm_t *as, int num_locals) { if (num_locals < 0) { num_locals = 0; } as->stack_adjust = 0; as->push_reglist = 1 << ASM_ARM_REG_R1 | 1 << ASM_ARM_REG_R2 | 1 << ASM_ARM_REG_R3 | 1 << ASM_ARM_REG_R4 | 1 << ASM_ARM_REG_R5 | 1 << ASM_ARM_REG_R6 | 1 << ASM_ARM_REG_R7 | 1 << ASM_ARM_REG_R8; // Only adjust the stack if there are more locals than usable registers if(num_locals > 3) { as->stack_adjust = num_locals * 4; // Align stack to 8 bytes if (num_locals & 1) { as->stack_adjust += 4; } } emit_al(as, asm_arm_op_push(as->push_reglist | 1 << ASM_ARM_REG_LR)); if (as->stack_adjust > 0) { emit_al(as, asm_arm_op_sub_imm(ASM_ARM_REG_SP, ASM_ARM_REG_SP, as->stack_adjust)); } } void asm_arm_exit(asm_arm_t *as) { if (as->stack_adjust > 0) { emit_al(as, asm_arm_op_add_imm(ASM_ARM_REG_SP, ASM_ARM_REG_SP, as->stack_adjust)); } emit_al(as, asm_arm_op_pop(as->push_reglist | (1 << ASM_ARM_REG_PC))); } void asm_arm_label_assign(asm_arm_t *as, uint label) { assert(label < as->max_num_labels); if (as->pass < ASM_ARM_PASS_EMIT) { // assign label offset assert(as->label_offsets[label] == -1); as->label_offsets[label] = as->code_offset; } else { // ensure label offset has not changed from PASS_COMPUTE to PASS_EMIT assert(as->label_offsets[label] == as->code_offset); } } void asm_arm_align(asm_arm_t* as, uint align) { // TODO fill unused data with NOPs? as->code_offset = (as->code_offset + align - 1) & (~(align - 1)); } void asm_arm_data(asm_arm_t* as, uint bytesize, uint val) { byte *c = asm_arm_get_cur_to_write_bytes(as, bytesize); // only write to the buffer in the emit pass (otherwise we overflow dummy_data) if (as->pass == ASM_ARM_PASS_EMIT) { // little endian for (uint i = 0; i < bytesize; i++) { *c++ = val; val >>= 8; } } } void asm_arm_mov_reg_reg(asm_arm_t *as, uint reg_dest, uint reg_src) { emit_al(as, asm_arm_op_mov_reg(reg_dest, reg_src)); } void asm_arm_mov_reg_i32(asm_arm_t *as, uint rd, int imm) { // TODO: There are more variants of immediate values if ((imm & 0xFF) == imm) { emit_al(as, asm_arm_op_mov_imm(rd, imm)); } else if (imm < 0 && ((-imm) & 0xFF) == -imm) { emit_al(as, asm_arm_op_mvn_imm(rd, -imm)); } else { //Insert immediate into code and jump over it emit_al(as, 0x59f0000 | (rd << 12)); // ldr rd, [pc] emit_al(as, 0xa000000); // b pc emit(as, imm); } } void asm_arm_mov_local_reg(asm_arm_t *as, int local_num, uint rd) { // str rd, [sp, #local_num*4] emit_al(as, 0x58d0000 | (rd << 12) | (local_num << 2)); } void asm_arm_mov_reg_local(asm_arm_t *as, uint rd, int local_num) { // ldr rd, [sp, #local_num*4] emit_al(as, 0x59d0000 | (rd << 12) | (local_num << 2)); } void asm_arm_cmp_reg_i8(asm_arm_t *as, uint rd, int imm) { // cmp rd, #imm emit_al(as, 0x3500000 | (rd << 16) | (imm & 0xFF)); } void asm_arm_cmp_reg_reg(asm_arm_t *as, uint rd, uint rn) { // cmp rd, rn emit_al(as, 0x1500000 | (rd << 16) | rn); } void asm_arm_less_op(asm_arm_t *as, uint rd, uint rn, uint rm) { asm_arm_cmp_reg_reg(as, rn, rm); // cmp rn, rm emit(as, asm_arm_op_mov_imm(rd, 1) | ASM_ARM_CC_LT); // movlt rd, #1 emit(as, asm_arm_op_mov_imm(rd, 0) | ASM_ARM_CC_GE); // movge rd, #0 } void asm_arm_add_reg(asm_arm_t *as, uint rd, uint rn, uint rm) { // add rd, rn, rm emit_al(as, asm_arm_op_add_reg(rd, rn, rm)); } void asm_arm_mov_reg_local_addr(asm_arm_t *as, uint rd, int local_num) { // add rd, sp, #local_num*4 emit_al(as, asm_arm_op_add_imm(rd, ASM_ARM_REG_SP, local_num << 2)); } void asm_arm_bcc_label(asm_arm_t *as, int cond, uint label) { assert(label < as->max_num_labels); mp_uint_t dest = as->label_offsets[label]; mp_int_t rel = dest - as->code_offset; rel -= 8; // account for instruction prefetch, PC is 8 bytes ahead of this instruction rel >>= 2; // in ARM mode the branch target is 32-bit aligned, so the 2 LSB are omitted if (SIGNED_FIT24(rel)) { emit(as, cond | 0xa000000 | (rel & 0xffffff)); } else { printf("asm_arm_bcc: branch does not fit in 24 bits\n"); } } void asm_arm_b_label(asm_arm_t *as, uint label) { asm_arm_bcc_label(as, ASM_ARM_CC_AL, label); } void asm_arm_bl_ind(asm_arm_t *as, void *fun_ptr, uint fun_id, uint reg_temp) { // If the table offset fits into the ldr instruction if(fun_id < (0x1000 / 4)) { emit_al(as, asm_arm_op_mov_reg(ASM_ARM_REG_LR, ASM_ARM_REG_PC)); // mov lr, pc emit_al(as, 0x597f000 | (fun_id << 2)); // ldr pc, [r7, #fun_id*4] return; } emit_al(as, 0x59f0004 | (reg_temp << 12)); // ldr rd, [pc, #4] // Set lr after fun_ptr emit_al(as, asm_arm_op_add_imm(ASM_ARM_REG_LR, ASM_ARM_REG_PC, 4)); // add lr, pc, #4 emit_al(as, asm_arm_op_mov_reg(ASM_ARM_REG_PC, reg_temp)); // mov pc, reg_temp emit(as, (uint) fun_ptr); } #endif // MICROPY_EMIT_ARM