/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016-2018 Glenn Ruben Bakke * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "py/nlr.h" #include "py/runtime.h" #include "py/mphal.h" #if MICROPY_PY_MACHINE_HW_PWM #include "pin.h" #include "genhdr/pins.h" #include "pwm.h" #if defined(NRF52_SERIES) // Use PWM hardware. #include "nrfx_pwm.h" #endif typedef enum { MODE_LOW_HIGH, MODE_HIGH_LOW } pwm_mode_t; typedef struct { uint8_t pwm_pin; uint8_t duty; uint16_t pulse_width; uint16_t period; nrf_pwm_clk_t freq; pwm_mode_t mode; } machine_pwm_config_t; typedef struct _machine_hard_pwm_obj_t { mp_obj_base_t base; const nrfx_pwm_t * p_pwm; machine_pwm_config_t * p_config; } machine_hard_pwm_obj_t; STATIC const nrfx_pwm_t machine_hard_pwm_instances[] = { #if defined(NRF52_SERIES) NRFX_PWM_INSTANCE(0), NRFX_PWM_INSTANCE(1), NRFX_PWM_INSTANCE(2), #if NRF52840 NRFX_PWM_INSTANCE(3), #endif #else NULL #endif }; STATIC machine_pwm_config_t hard_configs[MP_ARRAY_SIZE(machine_hard_pwm_instances)]; STATIC const machine_hard_pwm_obj_t machine_hard_pwm_obj[] = { #if defined(NRF52_SERIES) {{&machine_hard_pwm_type}, .p_pwm = &machine_hard_pwm_instances[0], .p_config = &hard_configs[0]}, {{&machine_hard_pwm_type}, .p_pwm = &machine_hard_pwm_instances[1], .p_config = &hard_configs[0]}, {{&machine_hard_pwm_type}, .p_pwm = &machine_hard_pwm_instances[2], .p_config = &hard_configs[0]}, #if NRF52840 {{&machine_hard_pwm_type}, .p_pwm = &machine_hard_pwm_instances[3], .p_config = &hard_configs[0]}, #endif #endif }; void pwm_init0(void) { } STATIC int hard_pwm_find(mp_obj_t id) { if (MP_OBJ_IS_INT(id)) { // given an integer id int pwm_id = mp_obj_get_int(id); if (pwm_id >= 0 && pwm_id <= MP_ARRAY_SIZE(machine_hard_pwm_obj)) { return pwm_id; } nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "PWM(%d) does not exist", pwm_id)); } return -1; } STATIC void machine_pwm_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { machine_hard_pwm_obj_t *self = self_in; mp_printf(print, "PWM(%u)", self->p_pwm->drv_inst_idx); } /******************************************************************************/ /* MicroPython bindings for machine API */ STATIC mp_obj_t machine_hard_pwm_make_new(mp_arg_val_t *args); STATIC void machine_hard_pwm_init(mp_obj_t self, mp_arg_val_t *args); STATIC void machine_hard_pwm_deinit(mp_obj_t self); STATIC mp_obj_t machine_hard_pwm_freq(mp_obj_t self, mp_arg_val_t *args); /* common code for both soft and hard implementations *************************/ STATIC mp_obj_t machine_pwm_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { enum { ARG_id, ARG_pin, ARG_freq, ARG_period, ARG_duty, ARG_pulse_width, ARG_mode }; static const mp_arg_t allowed_args[] = { { MP_QSTR_id, MP_ARG_OBJ, {.u_obj = MP_OBJ_NEW_SMALL_INT(-1)} }, { MP_QSTR_pin, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_period, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_duty, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_pulse_width, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, }; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if (args[ARG_id].u_obj == MP_OBJ_NEW_SMALL_INT(-1)) { // TODO: implement soft PWM // return machine_soft_pwm_make_new(args); return mp_const_none; } else { // hardware peripheral id given return machine_hard_pwm_make_new(args); } } STATIC mp_obj_t machine_pwm_init(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_INIT_pin }; static const mp_arg_t allowed_args[] = { { MP_QSTR_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} } }; // parse args mp_obj_t self = pos_args[0]; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // dispatch to specific implementation if (mp_obj_get_type(self) == &machine_hard_pwm_type) { machine_hard_pwm_init(self, args); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_pwm_init_obj, 1, machine_pwm_init); STATIC mp_obj_t machine_pwm_deinit(mp_obj_t self) { // dispatch to specific implementation if (mp_obj_get_type(self) == &machine_hard_pwm_type) { machine_hard_pwm_deinit(self); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_pwm_deinit_obj, machine_pwm_deinit); STATIC mp_obj_t machine_pwm_freq(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_FREQ_freq }; static const mp_arg_t allowed_args[] = { { MP_QSTR_freq, MP_ARG_INT, {.u_int = -1} }, }; mp_obj_t self = pos_args[0]; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if (mp_obj_get_type(self) == &machine_hard_pwm_type) { machine_hard_pwm_freq(self, args); } else { // soft pwm } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(mp_machine_pwm_freq_obj, 1, machine_pwm_freq); STATIC mp_obj_t machine_pwm_period(size_t n_args, const mp_obj_t *args) { return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_machine_pwm_period_obj, 1, 2, machine_pwm_period); STATIC mp_obj_t machine_pwm_duty(size_t n_args, const mp_obj_t *args) { return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_machine_pwm_duty_obj, 1, 2, machine_pwm_duty); STATIC const mp_rom_map_elem_t machine_pwm_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_pwm_init_obj) }, { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&machine_pwm_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR_freq), MP_ROM_PTR(&mp_machine_pwm_freq_obj) }, { MP_ROM_QSTR(MP_QSTR_period), MP_ROM_PTR(&mp_machine_pwm_period_obj) }, { MP_ROM_QSTR(MP_QSTR_duty), MP_ROM_PTR(&mp_machine_pwm_duty_obj) }, { MP_ROM_QSTR(MP_QSTR_FREQ_16MHZ), MP_ROM_INT(NRF_PWM_CLK_16MHz) }, { MP_ROM_QSTR(MP_QSTR_FREQ_8MHZ), MP_ROM_INT(NRF_PWM_CLK_8MHz) }, { MP_ROM_QSTR(MP_QSTR_FREQ_4MHZ), MP_ROM_INT(NRF_PWM_CLK_4MHz) }, { MP_ROM_QSTR(MP_QSTR_FREQ_2MHZ), MP_ROM_INT(NRF_PWM_CLK_2MHz) }, { MP_ROM_QSTR(MP_QSTR_FREQ_1MHZ), MP_ROM_INT(NRF_PWM_CLK_1MHz) }, { MP_ROM_QSTR(MP_QSTR_FREQ_500KHZ), MP_ROM_INT(NRF_PWM_CLK_500kHz) }, { MP_ROM_QSTR(MP_QSTR_FREQ_250KHZ), MP_ROM_INT(NRF_PWM_CLK_250kHz) }, { MP_ROM_QSTR(MP_QSTR_FREQ_125KHZ), MP_ROM_INT(NRF_PWM_CLK_125kHz) }, { MP_ROM_QSTR(MP_QSTR_MODE_LOW_HIGH), MP_ROM_INT(MODE_LOW_HIGH) }, { MP_ROM_QSTR(MP_QSTR_MODE_HIGH_LOW), MP_ROM_INT(MODE_HIGH_LOW) }, }; STATIC MP_DEFINE_CONST_DICT(machine_pwm_locals_dict, machine_pwm_locals_dict_table); /* code for hard implementation ***********************************************/ STATIC mp_obj_t machine_hard_pwm_make_new(mp_arg_val_t *args) { enum { ARG_id, ARG_pin, ARG_freq, ARG_period, ARG_duty, ARG_pulse_width, ARG_mode }; // get static peripheral object int pwm_id = hard_pwm_find(args[ARG_id].u_obj); const machine_hard_pwm_obj_t *self = &machine_hard_pwm_obj[pwm_id]; // check if PWM pin is set if (args[ARG_pin].u_obj != MP_OBJ_NULL) { self->p_config->pwm_pin = mp_hal_get_pin_obj(args[ARG_pin].u_obj)->pin; } else { // TODO: raise exception. } if (args[ARG_freq].u_obj != MP_OBJ_NULL) { self->p_config->freq = mp_obj_get_int(args[ARG_freq].u_obj); } else { self->p_config->freq = 50; // 50 Hz by default. } if (args[ARG_period].u_obj != MP_OBJ_NULL) { self->p_config->period = mp_obj_get_int(args[ARG_period].u_obj); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "PWM period has to be within 16000 frequence cycles", self->p_config->period)); } if (args[ARG_duty].u_obj != MP_OBJ_NULL) { self->p_config->duty = mp_obj_get_int(args[ARG_duty].u_obj); } else { self->p_config->duty = 50; // 50% by default. } if (args[ARG_pulse_width].u_obj != MP_OBJ_NULL) { self->p_config->pulse_width = mp_obj_get_int(args[ARG_pulse_width].u_obj); } else { self->p_config->pulse_width = 0; } if (args[ARG_mode].u_obj != MP_OBJ_NULL) { self->p_config->mode = mp_obj_get_int(args[ARG_mode].u_obj); } else { self->p_config->mode = MODE_HIGH_LOW; } return MP_OBJ_FROM_PTR(self); } STATIC void machine_hard_pwm_init(mp_obj_t self_in, mp_arg_val_t *args) { machine_hard_pwm_obj_t *self = self_in; nrfx_pwm_config_t config; config.output_pins[0] = self->p_config->pwm_pin; config.output_pins[1] = NRFX_PWM_PIN_NOT_USED; config.output_pins[2] = NRFX_PWM_PIN_NOT_USED; config.output_pins[3] = NRFX_PWM_PIN_NOT_USED; config.irq_priority = 6; config.base_clock = self->p_config->freq; config.count_mode = NRF_PWM_MODE_UP; config.top_value = self->p_config->period; config.load_mode = NRF_PWM_LOAD_INDIVIDUAL; config.step_mode = NRF_PWM_STEP_AUTO; nrfx_pwm_init(self->p_pwm, &config, NULL); uint16_t pulse_width = ((self->p_config->period * self->p_config->duty) / 100); // If manual period has been set, override duty-cycle. if (self->p_config->pulse_width > 0) { pulse_width = self->p_config->pulse_width; } // TODO: Move DMA buffer to global memory. volatile static uint16_t pwm_seq[4]; if (self->p_config->mode == MODE_HIGH_LOW) { pwm_seq[0] = self->p_config->period - pulse_width; pwm_seq[1] = self->p_config->period - pulse_width; } else { pwm_seq[0] = self->p_config->period - pulse_width; pwm_seq[1] = self->p_config->period - pulse_width; } pwm_seq[2] = self->p_config->period - pulse_width; pwm_seq[3] = self->p_config->period - pulse_width; const nrf_pwm_sequence_t pwm_sequence = { .values.p_raw = (const uint16_t *)&pwm_seq, .length = 4, .repeats = 0, .end_delay = 0 }; nrfx_pwm_simple_playback(self->p_pwm, &pwm_sequence, 0, // Loop disabled. 0); } STATIC void machine_hard_pwm_deinit(mp_obj_t self_in) { machine_hard_pwm_obj_t *self = self_in; (void)self; nrfx_pwm_stop(self->p_pwm, true); nrfx_pwm_uninit(self->p_pwm); } STATIC mp_obj_t machine_hard_pwm_freq(mp_obj_t self_in, mp_arg_val_t *args) { machine_hard_pwm_obj_t *self = self_in; (void)self; return mp_const_none; } const mp_obj_type_t machine_hard_pwm_type = { { &mp_type_type }, .name = MP_QSTR_PWM, .print = machine_pwm_print, .make_new = machine_pwm_make_new, .locals_dict = (mp_obj_dict_t*)&machine_pwm_locals_dict, }; #endif // MICROPY_PY_MACHINE_HW_PWM