// in principle, rt_xxx functions are called only by vm/native/viper and make assumptions about args // mp_xxx functions are safer and can be called by anyone // note that rt_assign_xxx are called only from emit*, and maybe we can rename them to reflect this #include #include #include #include #include #include "nlr.h" #include "misc.h" #include "mpconfig.h" #include "obj.h" #include "runtime0.h" #include "runtime.h" #include "map.h" #include "builtin.h" #if 0 // print debugging info #define DEBUG_PRINT (1) #define WRITE_CODE (1) #define DEBUG_printf(args...) printf(args) #define DEBUG_OP_printf(args...) printf(args) #else // don't print debugging info #define DEBUG_printf(args...) (void)0 #define DEBUG_OP_printf(args...) (void)0 #endif // TODO make these predefined so they don't take up RAM qstr rt_q_append; qstr rt_q_pop; qstr rt_q_sort; qstr rt_q_join; qstr rt_q_format; qstr rt_q___build_class__; qstr rt_q___next__; qstr rt_q_AttributeError; qstr rt_q_IndexError; qstr rt_q_KeyError; qstr rt_q_NameError; qstr rt_q_TypeError; qstr rt_q_SyntaxError; qstr rt_q_ValueError; // locals and globals need to be pointers because they can be the same in outer module scope static mp_map_t *map_locals; static mp_map_t *map_globals; static mp_map_t map_builtins; typedef enum { MP_CODE_NONE, MP_CODE_BYTE, MP_CODE_NATIVE, MP_CODE_INLINE_ASM, } mp_code_kind_t; typedef struct _mp_code_t { mp_code_kind_t kind; int n_args; int n_locals; int n_cells; int n_stack; bool is_generator; union { struct { byte *code; uint len; } u_byte; struct { mp_fun_t fun; } u_native; struct { void *fun; } u_inline_asm; }; } mp_code_t; static int next_unique_code_id; static mp_code_t *unique_codes; #ifdef WRITE_CODE FILE *fp_write_code = NULL; #endif void rt_init(void) { rt_q_append = qstr_from_str_static("append"); rt_q_pop = qstr_from_str_static("pop"); rt_q_sort = qstr_from_str_static("sort"); rt_q_join = qstr_from_str_static("join"); rt_q_format = qstr_from_str_static("format"); rt_q___build_class__ = qstr_from_str_static("__build_class__"); rt_q___next__ = qstr_from_str_static("__next__"); rt_q_AttributeError = qstr_from_str_static("AttributeError"); rt_q_IndexError = qstr_from_str_static("IndexError"); rt_q_KeyError = qstr_from_str_static("KeyError"); rt_q_NameError = qstr_from_str_static("NameError"); rt_q_TypeError = qstr_from_str_static("TypeError"); rt_q_SyntaxError = qstr_from_str_static("SyntaxError"); rt_q_ValueError = qstr_from_str_static("ValueError"); // locals = globals for outer module (see Objects/frameobject.c/PyFrame_New()) map_locals = map_globals = mp_map_new(MP_MAP_QSTR, 1); mp_qstr_map_lookup(map_globals, qstr_from_str_static("__name__"), true)->value = mp_obj_new_str(qstr_from_str_static("__main__")); mp_map_init(&map_builtins, MP_MAP_QSTR, 3); mp_qstr_map_lookup(&map_builtins, rt_q___build_class__, true)->value = rt_make_function_2(mp_builtin___build_class__); mp_qstr_map_lookup(&map_builtins, qstr_from_str_static("__repl_print__"), true)->value = rt_make_function_1(mp_builtin___repl_print__); mp_qstr_map_lookup(&map_builtins, qstr_from_str_static("abs"), true)->value = rt_make_function_1(mp_builtin_abs); mp_qstr_map_lookup(&map_builtins, qstr_from_str_static("all"), true)->value = rt_make_function_1(mp_builtin_all); mp_qstr_map_lookup(&map_builtins, qstr_from_str_static("any"), true)->value = rt_make_function_1(mp_builtin_any); mp_qstr_map_lookup(&map_builtins, qstr_from_str_static("bool"), true)->value = rt_make_function_var(0, mp_builtin_bool); mp_qstr_map_lookup(&map_builtins, qstr_from_str_static("callable"), true)->value = rt_make_function_1(mp_builtin_callable); #if MICROPY_ENABLE_FLOAT mp_qstr_map_lookup(&map_builtins, qstr_from_str_static("complex"), true)->value = rt_make_function_var(0, mp_builtin_complex); #endif mp_qstr_map_lookup(&map_builtins, qstr_from_str_static("chr"), true)->value = rt_make_function_1(mp_builtin_chr); mp_qstr_map_lookup(&map_builtins, qstr_from_str_static("dict"), true)->value = rt_make_function_0(mp_builtin_dict); mp_qstr_map_lookup(&map_builtins, qstr_from_str_static("divmod"), true)->value = rt_make_function_2(mp_builtin_divmod); mp_qstr_map_lookup(&map_builtins, qstr_from_str_static("hash"), true)->value = (mp_obj_t)&mp_builtin_hash_obj; mp_qstr_map_lookup(&map_builtins, qstr_from_str_static("iter"), true)->value = (mp_obj_t)&mp_builtin_iter_obj; mp_qstr_map_lookup(&map_builtins, qstr_from_str_static("len"), true)->value = rt_make_function_1(mp_builtin_len); mp_qstr_map_lookup(&map_builtins, qstr_from_str_static("list"), true)->value = rt_make_function_var(0, mp_builtin_list); mp_qstr_map_lookup(&map_builtins, qstr_from_str_static("max"), true)->value = rt_make_function_var(1, mp_builtin_max); mp_qstr_map_lookup(&map_builtins, qstr_from_str_static("min"), true)->value = rt_make_function_var(1, mp_builtin_min); mp_qstr_map_lookup(&map_builtins, qstr_from_str_static("next"), true)->value = (mp_obj_t)&mp_builtin_next_obj; mp_qstr_map_lookup(&map_builtins, qstr_from_str_static("ord"), true)->value = rt_make_function_1(mp_builtin_ord); mp_qstr_map_lookup(&map_builtins, qstr_from_str_static("pow"), true)->value = rt_make_function_var(2, mp_builtin_pow); mp_qstr_map_lookup(&map_builtins, qstr_from_str_static("print"), true)->value = rt_make_function_var(0, mp_builtin_print); mp_qstr_map_lookup(&map_builtins, qstr_from_str_static("range"), true)->value = rt_make_function_var(1, mp_builtin_range); mp_qstr_map_lookup(&map_builtins, qstr_from_str_static("set"), true)->value = (mp_obj_t)&mp_builtin_set_obj; mp_qstr_map_lookup(&map_builtins, qstr_from_str_static("sum"), true)->value = rt_make_function_var(1, mp_builtin_sum); next_unique_code_id = 2; // 1 is reserved for the __main__ module scope unique_codes = NULL; #ifdef WRITE_CODE fp_write_code = fopen("out-code", "wb"); #endif } void rt_deinit(void) { #ifdef WRITE_CODE if (fp_write_code != NULL) { fclose(fp_write_code); } #endif } int rt_get_unique_code_id(bool is_main_module) { if (is_main_module) { return 1; } else { return next_unique_code_id++; } } static void alloc_unique_codes(void) { if (unique_codes == NULL) { unique_codes = m_new(mp_code_t, next_unique_code_id + 10); // XXX hack until we fix the REPL allocation problem for (int i = 0; i < next_unique_code_id; i++) { unique_codes[i].kind = MP_CODE_NONE; } } } void rt_assign_byte_code(int unique_code_id, byte *code, uint len, int n_args, int n_locals, int n_cells, int n_stack, bool is_generator) { alloc_unique_codes(); assert(unique_code_id < next_unique_code_id); unique_codes[unique_code_id].kind = MP_CODE_BYTE; unique_codes[unique_code_id].n_args = n_args; unique_codes[unique_code_id].n_locals = n_locals; unique_codes[unique_code_id].n_cells = n_cells; unique_codes[unique_code_id].n_stack = n_stack; unique_codes[unique_code_id].is_generator = is_generator; unique_codes[unique_code_id].u_byte.code = code; unique_codes[unique_code_id].u_byte.len = len; //printf("byte code: %d bytes\n", len); #ifdef DEBUG_PRINT DEBUG_printf("assign byte code: id=%d code=%p len=%u n_args=%d\n", unique_code_id, code, len, n_args); for (int i = 0; i < 128 && i < len; i++) { if (i > 0 && i % 16 == 0) { DEBUG_printf("\n"); } DEBUG_printf(" %02x", code[i]); } DEBUG_printf("\n"); extern void mp_show_byte_code(const byte *code, int len); mp_show_byte_code(code, len); #ifdef WRITE_CODE if (fp_write_code != NULL) { fwrite(code, len, 1, fp_write_code); fflush(fp_write_code); } #endif #endif } void rt_assign_native_code(int unique_code_id, void *fun, uint len, int n_args) { alloc_unique_codes(); assert(1 <= unique_code_id && unique_code_id < next_unique_code_id); unique_codes[unique_code_id].kind = MP_CODE_NATIVE; unique_codes[unique_code_id].n_args = n_args; unique_codes[unique_code_id].n_locals = 0; unique_codes[unique_code_id].n_cells = 0; unique_codes[unique_code_id].n_stack = 0; unique_codes[unique_code_id].is_generator = false; unique_codes[unique_code_id].u_native.fun = fun; printf("native code: %d bytes\n", len); #ifdef DEBUG_PRINT DEBUG_printf("assign native code: id=%d fun=%p len=%u n_args=%d\n", unique_code_id, fun, len, n_args); byte *fun_data = (byte*)(((machine_uint_t)fun) & (~1)); // need to clear lower bit in case it's thumb code for (int i = 0; i < 128 && i < len; i++) { if (i > 0 && i % 16 == 0) { DEBUG_printf("\n"); } DEBUG_printf(" %02x", fun_data[i]); } DEBUG_printf("\n"); #ifdef WRITE_CODE if (fp_write_code != NULL) { fwrite(fun_data, len, 1, fp_write_code); fflush(fp_write_code); } #endif #endif } void rt_assign_inline_asm_code(int unique_code_id, void *fun, uint len, int n_args) { alloc_unique_codes(); assert(1 <= unique_code_id && unique_code_id < next_unique_code_id); unique_codes[unique_code_id].kind = MP_CODE_INLINE_ASM; unique_codes[unique_code_id].n_args = n_args; unique_codes[unique_code_id].n_locals = 0; unique_codes[unique_code_id].n_cells = 0; unique_codes[unique_code_id].n_stack = 0; unique_codes[unique_code_id].is_generator = false; unique_codes[unique_code_id].u_inline_asm.fun = fun; #ifdef DEBUG_PRINT DEBUG_printf("assign inline asm code: id=%d fun=%p len=%u n_args=%d\n", unique_code_id, fun, len, n_args); byte *fun_data = (byte*)(((machine_uint_t)fun) & (~1)); // need to clear lower bit in case it's thumb code for (int i = 0; i < 128 && i < len; i++) { if (i > 0 && i % 16 == 0) { DEBUG_printf("\n"); } DEBUG_printf(" %02x", fun_data[i]); } DEBUG_printf("\n"); #ifdef WRITE_CODE if (fp_write_code != NULL) { fwrite(fun_data, len, 1, fp_write_code); } #endif #endif } mp_map_t *rt_get_map_locals(void) { return map_locals; } void rt_set_map_locals(mp_map_t *m) { map_locals = m; } static bool fit_small_int(mp_small_int_t o) { return true; } int rt_is_true(mp_obj_t arg) { DEBUG_OP_printf("is true %p\n", arg); if (MP_OBJ_IS_SMALL_INT(arg)) { if (MP_OBJ_SMALL_INT_VALUE(arg) == 0) { return 0; } else { return 1; } } else if (arg == mp_const_none) { return 0; } else if (arg == mp_const_false) { return 0; } else if (arg == mp_const_true) { return 1; } else { assert(0); return 0; } } mp_obj_t rt_list_append(mp_obj_t self_in, mp_obj_t arg) { return mp_obj_list_append(self_in, arg); } #define PARSE_DEC_IN_INTG (1) #define PARSE_DEC_IN_FRAC (2) #define PARSE_DEC_IN_EXP (3) mp_obj_t rt_load_const_dec(qstr qstr) { #if MICROPY_ENABLE_FLOAT DEBUG_OP_printf("load '%s'\n", qstr_str(qstr)); const char *s = qstr_str(qstr); int in = PARSE_DEC_IN_INTG; mp_float_t dec_val = 0; bool exp_neg = false; int exp_val = 0; int exp_extra = 0; bool imag = false; for (; *s; s++) { int dig = *s; if ('0' <= dig && dig <= '9') { dig -= '0'; if (in == PARSE_DEC_IN_EXP) { exp_val = 10 * exp_val + dig; } else { dec_val = 10 * dec_val + dig; if (in == PARSE_DEC_IN_FRAC) { exp_extra -= 1; } } } else if (in == PARSE_DEC_IN_INTG && dig == '.') { in = PARSE_DEC_IN_FRAC; } else if (in != PARSE_DEC_IN_EXP && (dig == 'E' || dig == 'e')) { in = PARSE_DEC_IN_EXP; if (s[1] == '+') { s++; } else if (s[1] == '-') { s++; exp_neg = true; } } else if (dig == 'J' || dig == 'j') { s++; imag = true; break; } else { // unknown character break; } } if (*s != 0) { nlr_jump(mp_obj_new_exception_msg(rt_q_SyntaxError, "invalid syntax for number")); } if (exp_neg) { exp_val = -exp_val; } exp_val += exp_extra; for (; exp_val > 0; exp_val--) { dec_val *= 10; } for (; exp_val < 0; exp_val++) { dec_val *= 0.1; } if (imag) { return mp_obj_new_complex(0, dec_val); } else { return mp_obj_new_float(dec_val); } #else nlr_jump(mp_obj_new_exception_msg(rt_q_SyntaxError, "decimal numbers not supported")); #endif } mp_obj_t rt_load_const_str(qstr qstr) { DEBUG_OP_printf("load '%s'\n", qstr_str(qstr)); return mp_obj_new_str(qstr); } mp_obj_t rt_load_name(qstr qstr) { // logic: search locals, globals, builtins DEBUG_OP_printf("load name %s\n", qstr_str(qstr)); mp_map_elem_t *elem = mp_qstr_map_lookup(map_locals, qstr, false); if (elem == NULL) { elem = mp_qstr_map_lookup(map_globals, qstr, false); if (elem == NULL) { elem = mp_qstr_map_lookup(&map_builtins, qstr, false); if (elem == NULL) { nlr_jump(mp_obj_new_exception_msg_1_arg(rt_q_NameError, "name '%s' is not defined", qstr_str(qstr))); } } } return elem->value; } mp_obj_t rt_load_global(qstr qstr) { // logic: search globals, builtins DEBUG_OP_printf("load global %s\n", qstr_str(qstr)); mp_map_elem_t *elem = mp_qstr_map_lookup(map_globals, qstr, false); if (elem == NULL) { elem = mp_qstr_map_lookup(&map_builtins, qstr, false); if (elem == NULL) { nlr_jump(mp_obj_new_exception_msg_1_arg(rt_q_NameError, "name '%s' is not defined", qstr_str(qstr))); } } return elem->value; } mp_obj_t rt_load_build_class(void) { DEBUG_OP_printf("load_build_class\n"); mp_map_elem_t *elem = mp_qstr_map_lookup(&map_builtins, rt_q___build_class__, false); if (elem == NULL) { printf("name doesn't exist: __build_class__\n"); assert(0); } return elem->value; } mp_obj_t rt_get_cell(mp_obj_t cell) { return mp_obj_cell_get(cell); } void rt_set_cell(mp_obj_t cell, mp_obj_t val) { mp_obj_cell_set(cell, val); } void rt_store_name(qstr qstr, mp_obj_t obj) { DEBUG_OP_printf("store name %s <- %p\n", qstr_str(qstr), obj); mp_qstr_map_lookup(map_locals, qstr, true)->value = obj; } void rt_store_global(qstr qstr, mp_obj_t obj) { DEBUG_OP_printf("store global %s <- %p\n", qstr_str(qstr), obj); mp_qstr_map_lookup(map_globals, qstr, true)->value = obj; } mp_obj_t rt_unary_op(int op, mp_obj_t arg) { DEBUG_OP_printf("unary %d %p\n", op, arg); if (MP_OBJ_IS_SMALL_INT(arg)) { mp_small_int_t val = MP_OBJ_SMALL_INT_VALUE(arg); switch (op) { case RT_UNARY_OP_NOT: if (val != 0) { return mp_const_true;} else { return mp_const_false; } case RT_UNARY_OP_POSITIVE: break; case RT_UNARY_OP_NEGATIVE: val = -val; break; case RT_UNARY_OP_INVERT: val = ~val; break; default: assert(0); val = 0; } if (fit_small_int(val)) { return MP_OBJ_NEW_SMALL_INT(val); } else { // TODO make a bignum assert(0); return mp_const_none; } } else { // will be an object (small ints are caught in previous if) mp_obj_base_t *o = arg; if (o->type->unary_op != NULL) { mp_obj_t result = o->type->unary_op(op, arg); if (result != NULL) { return result; } } // TODO specify in error message what the operator is nlr_jump(mp_obj_new_exception_msg_1_arg(rt_q_TypeError, "bad operand type for unary operator: '%s'", o->type->name)); } } mp_obj_t rt_binary_op(int op, mp_obj_t lhs, mp_obj_t rhs) { DEBUG_OP_printf("binary %d %p %p\n", op, lhs, rhs); if (MP_OBJ_IS_SMALL_INT(lhs) && MP_OBJ_IS_SMALL_INT(rhs)) { mp_small_int_t lhs_val = MP_OBJ_SMALL_INT_VALUE(lhs); mp_small_int_t rhs_val = MP_OBJ_SMALL_INT_VALUE(rhs); switch (op) { case RT_BINARY_OP_OR: case RT_BINARY_OP_INPLACE_OR: lhs_val |= rhs_val; break; case RT_BINARY_OP_XOR: case RT_BINARY_OP_INPLACE_XOR: lhs_val ^= rhs_val; break; case RT_BINARY_OP_AND: case RT_BINARY_OP_INPLACE_AND: lhs_val &= rhs_val; break; case RT_BINARY_OP_LSHIFT: case RT_BINARY_OP_INPLACE_LSHIFT: lhs_val <<= rhs_val; break; case RT_BINARY_OP_RSHIFT: case RT_BINARY_OP_INPLACE_RSHIFT: lhs_val >>= rhs_val; break; case RT_BINARY_OP_ADD: case RT_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break; case RT_BINARY_OP_SUBTRACT: case RT_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break; case RT_BINARY_OP_MULTIPLY: case RT_BINARY_OP_INPLACE_MULTIPLY: lhs_val *= rhs_val; break; case RT_BINARY_OP_FLOOR_DIVIDE: case RT_BINARY_OP_INPLACE_FLOOR_DIVIDE: lhs_val /= rhs_val; break; #if MICROPY_ENABLE_FLOAT case RT_BINARY_OP_TRUE_DIVIDE: case RT_BINARY_OP_INPLACE_TRUE_DIVIDE: return mp_obj_new_float((mp_float_t)lhs_val / (mp_float_t)rhs_val); #endif // TODO implement modulo as specified by Python case RT_BINARY_OP_MODULO: case RT_BINARY_OP_INPLACE_MODULO: lhs_val %= rhs_val; break; // TODO check for negative power, and overflow case RT_BINARY_OP_POWER: case RT_BINARY_OP_INPLACE_POWER: { int ans = 1; while (rhs_val > 0) { if (rhs_val & 1) { ans *= lhs_val; } lhs_val *= lhs_val; rhs_val /= 2; } lhs_val = ans; break; } default: printf("%d\n", op); assert(0); } if (fit_small_int(lhs_val)) { return MP_OBJ_NEW_SMALL_INT(lhs_val); } } else if (MP_OBJ_IS_OBJ(lhs)) { mp_obj_base_t *o = lhs; if (o->type->binary_op != NULL) { mp_obj_t result = o->type->binary_op(op, lhs, rhs); if (result != NULL) { return result; } } } // TODO specify in error message what the operator is nlr_jump(mp_obj_new_exception_msg_1_arg(rt_q_TypeError, "unsupported operand type for binary operator: '%s'", mp_obj_get_type_str(lhs))); } mp_obj_t rt_compare_op(int op, mp_obj_t lhs, mp_obj_t rhs) { DEBUG_OP_printf("compare %d %p %p\n", op, lhs, rhs); // deal with == and != if (op == RT_COMPARE_OP_EQUAL || op == RT_COMPARE_OP_NOT_EQUAL) { if (mp_obj_equal(lhs, rhs)) { if (op == RT_COMPARE_OP_EQUAL) { return mp_const_true; } else { return mp_const_false; } } else { if (op == RT_COMPARE_OP_EQUAL) { return mp_const_false; } else { return mp_const_true; } } } // deal with small ints if (MP_OBJ_IS_SMALL_INT(lhs) && MP_OBJ_IS_SMALL_INT(rhs)) { mp_small_int_t lhs_val = MP_OBJ_SMALL_INT_VALUE(lhs); mp_small_int_t rhs_val = MP_OBJ_SMALL_INT_VALUE(rhs); int cmp; switch (op) { case RT_COMPARE_OP_LESS: cmp = lhs_val < rhs_val; break; case RT_COMPARE_OP_MORE: cmp = lhs_val > rhs_val; break; case RT_COMPARE_OP_LESS_EQUAL: cmp = lhs_val <= rhs_val; break; case RT_COMPARE_OP_MORE_EQUAL: cmp = lhs_val >= rhs_val; break; default: assert(0); cmp = 0; } if (cmp) { return mp_const_true; } else { return mp_const_false; } } #if MICROPY_ENABLE_FLOAT // deal with floats if (MP_OBJ_IS_TYPE(lhs, &float_type) || MP_OBJ_IS_TYPE(rhs, &float_type)) { mp_float_t lhs_val = mp_obj_get_float(lhs); mp_float_t rhs_val = mp_obj_get_float(rhs); int cmp; switch (op) { case RT_COMPARE_OP_LESS: cmp = lhs_val < rhs_val; break; case RT_COMPARE_OP_MORE: cmp = lhs_val > rhs_val; break; case RT_COMPARE_OP_LESS_EQUAL: cmp = lhs_val <= rhs_val; break; case RT_COMPARE_OP_MORE_EQUAL: cmp = lhs_val >= rhs_val; break; default: assert(0); cmp = 0; } if (cmp) { return mp_const_true; } else { return mp_const_false; } } #endif // not implemented assert(0); return mp_const_none; } mp_obj_t rt_make_function_from_id(int unique_code_id) { DEBUG_OP_printf("make_function_from_id %d\n", unique_code_id); if (unique_code_id < 1 || unique_code_id >= next_unique_code_id) { // illegal code id return mp_const_none; } // make the function, depending on the code kind mp_code_t *c = &unique_codes[unique_code_id]; mp_obj_t fun; switch (c->kind) { case MP_CODE_BYTE: fun = mp_obj_new_fun_bc(c->n_args, c->n_locals + c->n_cells + c->n_stack, c->u_byte.code); break; case MP_CODE_NATIVE: switch (c->n_args) { case 0: fun = rt_make_function_0(c->u_native.fun); break; case 1: fun = rt_make_function_1((mp_fun_1_t)c->u_native.fun); break; case 2: fun = rt_make_function_2((mp_fun_2_t)c->u_native.fun); break; default: assert(0); fun = mp_const_none; } break; case MP_CODE_INLINE_ASM: fun = mp_obj_new_fun_asm(c->n_args, c->u_inline_asm.fun); break; default: assert(0); fun = mp_const_none; } // check for generator functions and if so wrap in generator object if (c->is_generator) { fun = mp_obj_new_gen_wrap(c->n_locals, c->n_cells, c->n_stack, fun); } return fun; } mp_obj_t rt_make_closure_from_id(int unique_code_id, mp_obj_t closure_tuple) { // make function object mp_obj_t ffun = rt_make_function_from_id(unique_code_id); // wrap function in closure object return mp_obj_new_closure(ffun, closure_tuple); } mp_obj_t rt_call_function_0(mp_obj_t fun) { return rt_call_function_n(fun, 0, NULL); } mp_obj_t rt_call_function_1(mp_obj_t fun, mp_obj_t arg) { return rt_call_function_n(fun, 1, &arg); } mp_obj_t rt_call_function_2(mp_obj_t fun, mp_obj_t arg1, mp_obj_t arg2) { mp_obj_t args[2]; args[1] = arg1; args[0] = arg2; return rt_call_function_n(fun, 2, args); } // args are in reverse order in the array mp_obj_t rt_call_function_n(mp_obj_t fun_in, int n_args, const mp_obj_t *args) { // TODO improve this: fun object can specify its type and we parse here the arguments, // passing to the function arrays of fixed and keyword arguments DEBUG_OP_printf("calling function %p(n_args=%d, args=%p)\n", fun_in, n_args, args); if (MP_OBJ_IS_SMALL_INT(fun_in)) { nlr_jump(mp_obj_new_exception_msg(rt_q_TypeError, "'int' object is not callable")); } else { mp_obj_base_t *fun = fun_in; if (fun->type->call_n != NULL) { return fun->type->call_n(fun_in, n_args, args); } else { nlr_jump(mp_obj_new_exception_msg_1_arg(rt_q_TypeError, "'%s' object is not callable", fun->type->name)); } } } // args are in reverse order in the array; keyword arguments come first, value then key // eg: (value1, key1, value0, key0, arg1, arg0) mp_obj_t rt_call_function_n_kw(mp_obj_t fun, uint n_args, uint n_kw, const mp_obj_t *args) { // TODO assert(0); return mp_const_none; } // args contains: arg(n_args-1) arg(n_args-2) ... arg(0) self/NULL fun // if n_args==0 then there are only self/NULL and fun mp_obj_t rt_call_method_n(uint n_args, const mp_obj_t *args) { DEBUG_OP_printf("call method %p(self=%p, n_args=%u)\n", args[n_args + 1], args[n_args], n_args); return rt_call_function_n(args[n_args + 1], n_args + ((args[n_args] == NULL) ? 0 : 1), args); } // args contains: kw_val(n_kw-1) kw_key(n_kw-1) ... kw_val(0) kw_key(0) arg(n_args-1) arg(n_args-2) ... arg(0) self/NULL fun mp_obj_t rt_call_method_n_kw(uint n_args, uint n_kw, const mp_obj_t *args) { uint n = n_args + 2 * n_kw; DEBUG_OP_printf("call method %p(self=%p, n_args=%u, n_kw=%u)\n", args[n + 1], args[n], n_args, n_kw); return rt_call_function_n_kw(args[n + 1], n_args + ((args[n] == NULL) ? 0 : 1), n_kw, args); } // items are in reverse order mp_obj_t rt_build_tuple(int n_args, mp_obj_t *items) { return mp_obj_new_tuple_reverse(n_args, items); } // items are in reverse order mp_obj_t rt_build_list(int n_args, mp_obj_t *items) { return mp_obj_new_list_reverse(n_args, items); } mp_obj_t rt_build_set(int n_args, mp_obj_t *items) { return mp_obj_new_set(n_args, items); } mp_obj_t rt_store_set(mp_obj_t set, mp_obj_t item) { mp_set_lookup(set, item, true); return set; } // unpacked items are stored in order into the array pointed to by items void rt_unpack_sequence(mp_obj_t seq_in, uint num, mp_obj_t *items) { if (MP_OBJ_IS_TYPE(seq_in, &tuple_type) || MP_OBJ_IS_TYPE(seq_in, &list_type)) { uint seq_len; mp_obj_t *seq_items; if (MP_OBJ_IS_TYPE(seq_in, &tuple_type)) { mp_obj_tuple_get(seq_in, &seq_len, &seq_items); } else { mp_obj_list_get(seq_in, &seq_len, &seq_items); } if (seq_len < num) { nlr_jump(mp_obj_new_exception_msg_1_arg(rt_q_ValueError, "need more than %d values to unpack", (void*)(machine_uint_t)seq_len)); } else if (seq_len > num) { nlr_jump(mp_obj_new_exception_msg_1_arg(rt_q_ValueError, "too many values to unpack (expected %d)", (void*)(machine_uint_t)num)); } memcpy(items, seq_items, num * sizeof(mp_obj_t)); } else { // TODO call rt_getiter and extract via rt_iternext nlr_jump(mp_obj_new_exception_msg_1_arg(rt_q_TypeError, "'%s' object is not iterable", mp_obj_get_type_str(seq_in))); } } mp_obj_t rt_build_map(int n_args) { return mp_obj_new_dict(n_args); } mp_obj_t rt_store_map(mp_obj_t map, mp_obj_t key, mp_obj_t value) { // map should always be a dict return mp_obj_dict_store(map, key, value); } mp_obj_t rt_load_attr(mp_obj_t base, qstr attr) { DEBUG_OP_printf("load attr %s\n", qstr_str(attr)); if (MP_OBJ_IS_TYPE(base, &class_type)) { mp_map_elem_t *elem = mp_qstr_map_lookup(mp_obj_class_get_locals(base), attr, false); if (elem == NULL) { nlr_jump(mp_obj_new_exception_msg_2_args(rt_q_AttributeError, "'%s' object has no attribute '%s'", mp_obj_get_type_str(base), qstr_str(attr))); } return elem->value; } else if (MP_OBJ_IS_TYPE(base, &instance_type)) { return mp_obj_instance_load_attr(base, attr); } else if (MP_OBJ_IS_OBJ(base)) { // generic method lookup mp_obj_base_t *o = base; const mp_method_t *meth = &o->type->methods[0]; for (; meth->name != NULL; meth++) { if (strcmp(meth->name, qstr_str(attr)) == 0) { return mp_obj_new_bound_meth(base, (mp_obj_t)meth->fun); } } } nlr_jump(mp_obj_new_exception_msg_2_args(rt_q_AttributeError, "'%s' object has no attribute '%s'", mp_obj_get_type_str(base), qstr_str(attr))); } void rt_load_method(mp_obj_t base, qstr attr, mp_obj_t *dest) { DEBUG_OP_printf("load method %s\n", qstr_str(attr)); if (MP_OBJ_IS_TYPE(base, &gen_instance_type) && attr == rt_q___next__) { dest[1] = (mp_obj_t)&mp_builtin_next_obj; dest[0] = base; return; } else if (MP_OBJ_IS_TYPE(base, &instance_type)) { mp_obj_instance_load_method(base, attr, dest); return; } else if (MP_OBJ_IS_OBJ(base)) { // generic method lookup mp_obj_base_t *o = base; const mp_method_t *meth = &o->type->methods[0]; for (; meth->name != NULL; meth++) { if (strcmp(meth->name, qstr_str(attr)) == 0) { dest[1] = (mp_obj_t)meth->fun; dest[0] = base; return; } } } // no method; fallback to load_attr dest[1] = rt_load_attr(base, attr); dest[0] = NULL; } void rt_store_attr(mp_obj_t base, qstr attr, mp_obj_t value) { DEBUG_OP_printf("store attr %p.%s <- %p\n", base, qstr_str(attr), value); if (MP_OBJ_IS_TYPE(base, &class_type)) { // TODO CPython allows STORE_ATTR to a class, but is this the correct implementation? mp_map_t *locals = mp_obj_class_get_locals(base); mp_qstr_map_lookup(locals, attr, true)->value = value; } else if (MP_OBJ_IS_TYPE(base, &instance_type)) { mp_obj_instance_store_attr(base, attr, value); } else { printf("?AttributeError: '%s' object has no attribute '%s'\n", mp_obj_get_type_str(base), qstr_str(attr)); assert(0); } } void rt_store_subscr(mp_obj_t base, mp_obj_t index, mp_obj_t value) { DEBUG_OP_printf("store subscr %p[%p] <- %p\n", base, index, value); if (MP_OBJ_IS_TYPE(base, &list_type)) { // list store mp_obj_list_store(base, index, value); } else if (MP_OBJ_IS_TYPE(base, &dict_type)) { // dict store mp_obj_dict_store(base, index, value); } else { assert(0); } } mp_obj_t rt_getiter(mp_obj_t o_in) { if (MP_OBJ_IS_SMALL_INT(o_in)) { nlr_jump(mp_obj_new_exception_msg(rt_q_TypeError, "'int' object is not iterable")); } else { mp_obj_base_t *o = o_in; if (o->type->getiter != NULL) { return o->type->getiter(o_in); } else { nlr_jump(mp_obj_new_exception_msg_1_arg(rt_q_TypeError, "'%s' object is not iterable", o->type->name)); } } } mp_obj_t rt_iternext(mp_obj_t o_in) { if (MP_OBJ_IS_SMALL_INT(o_in)) { nlr_jump(mp_obj_new_exception_msg(rt_q_TypeError, "? 'int' object is not iterable")); } else { mp_obj_base_t *o = o_in; if (o->type->iternext != NULL) { return o->type->iternext(o_in); } else { nlr_jump(mp_obj_new_exception_msg_1_arg(rt_q_TypeError, "? '%s' object is not iterable", o->type->name)); } } } mp_obj_t rt_import_name(qstr name, mp_obj_t fromlist, mp_obj_t level) { // build args array mp_obj_t args[5]; args[0] = mp_obj_new_str(name); args[1] = mp_const_none; // TODO should be globals args[2] = mp_const_none; // TODO should be locals args[3] = fromlist; args[4] = level; // must be 0; we don't yet support other values // TODO lookup __import__ and call that instead of going straight to builtin implementation return mp_builtin___import__(5, args); } mp_obj_t rt_import_from(mp_obj_t module, qstr name) { mp_obj_t x = rt_load_attr(module, name); /* TODO convert AttributeError to ImportError if (fail) { (ImportError, "cannot import name %s", qstr_str(name), NULL) } */ return x; } // these must correspond to the respective enum void *const rt_fun_table[RT_F_NUMBER_OF] = { rt_load_const_dec, rt_load_const_str, rt_load_name, rt_load_global, rt_load_build_class, rt_load_attr, rt_load_method, rt_store_name, rt_store_attr, rt_store_subscr, rt_is_true, rt_unary_op, rt_build_tuple, rt_build_list, rt_list_append, rt_build_map, rt_store_map, rt_build_set, rt_store_set, rt_make_function_from_id, rt_call_function_n, rt_call_method_n, rt_binary_op, rt_compare_op, rt_getiter, rt_iternext, }; /* void rt_f_vector(rt_fun_kind_t fun_kind) { (rt_f_table[fun_kind])(); } */