/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "stm32f4xx_hal.h" #include "mpconfig.h" #include "misc.h" #include "systick.h" #include "pendsv.h" #include "qstr.h" #include "misc.h" #include "nlr.h" #include "lexer.h" #include "parse.h" #include "obj.h" #include "runtime.h" #include "stackctrl.h" #include "gc.h" #include "gccollect.h" #include "readline.h" #include "pyexec.h" #include "i2c.h" #include "spi.h" #include "uart.h" #include "timer.h" #include "led.h" #include "pin.h" #include "extint.h" #include "usrsw.h" #include "usb.h" #include "rtc.h" #include "storage.h" #include "sdcard.h" #include "ff.h" #include "rng.h" #include "accel.h" #include "servo.h" #include "dac.h" #include "pybwlan.h" #include "pybstdio.h" void SystemClock_Config(void); int errno; static FATFS fatfs0; #if MICROPY_HW_HAS_SDCARD static FATFS fatfs1; #endif void flash_error(int n) { for (int i = 0; i < n; i++) { led_state(PYB_LED_R1, 1); led_state(PYB_LED_R2, 0); HAL_Delay(250); led_state(PYB_LED_R1, 0); led_state(PYB_LED_R2, 1); HAL_Delay(250); } led_state(PYB_LED_R2, 0); } void NORETURN __fatal_error(const char *msg) { for (volatile uint delay = 0; delay < 10000000; delay++) { } led_state(1, 1); led_state(2, 1); led_state(3, 1); led_state(4, 1); stdout_tx_strn("\nFATAL ERROR:\n", 14); stdout_tx_strn(msg, strlen(msg)); for (uint i = 0;;) { led_toggle(((i++) & 3) + 1); for (volatile uint delay = 0; delay < 10000000; delay++) { } if (i >= 16) { // to conserve power __WFI(); } } } void nlr_jump_fail(void *val) { printf("FATAL: uncaught exception %p\n", val); __fatal_error(""); } #ifndef NDEBUG void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) { (void)func; printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line); __fatal_error(""); } #endif void enable_irq(void) { __enable_irq(); } void disable_irq(void) { __disable_irq(); } STATIC mp_obj_t pyb_config_source_dir = MP_OBJ_NULL; STATIC mp_obj_t pyb_config_main = MP_OBJ_NULL; STATIC mp_obj_t pyb_config_usb_mode = MP_OBJ_NULL; STATIC mp_obj_t pyb_source_dir(mp_obj_t source_dir) { if (MP_OBJ_IS_STR(source_dir)) { pyb_config_source_dir = source_dir; } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(pyb_source_dir_obj, pyb_source_dir); STATIC mp_obj_t pyb_main(mp_obj_t main) { if (MP_OBJ_IS_STR(main)) { pyb_config_main = main; } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(pyb_main_obj, pyb_main); STATIC mp_obj_t pyb_usb_mode(mp_obj_t usb_mode) { if (MP_OBJ_IS_STR(usb_mode)) { pyb_config_usb_mode = usb_mode; } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(pyb_usb_mode_obj, pyb_usb_mode); static const char fresh_boot_py[] = "# boot.py -- run on boot-up\n" "# can run arbitrary Python, but best to keep it minimal\n" "\n" "import pyb\n" "#pyb.main('main.py') # main script to run after this one\n" "#pyb.usb_mode('CDC+MSC') # act as a serial and a storage device\n" "#pyb.usb_mode('CDC+HID') # act as a serial device and a mouse\n" ; static const char fresh_main_py[] = "# main.py -- put your code here!\n" ; static const char fresh_pybcdc_inf[] = #include "genhdr/pybcdc_inf.h" ; static const char fresh_readme_txt[] = "This is a Micro Python board\r\n" "\r\n" "You can get started right away by writing your Python code in 'main.py'.\r\n" "\r\n" "For a serial prompt:\r\n" " - Windows: you need to go to 'Device manager', right click on the unknown device,\r\n" " then update the driver software, using the 'pybcdc.inf' file found on this drive.\r\n" " Then use a terminal program like Hyperterminal or putty.\r\n" " - Mac OS X: use the command: screen /dev/tty.usbmodem*\r\n" " - Linux: use the command: screen /dev/ttyACM0\r\n" "\r\n" "Please visit http://micropython.org/help/ for further help.\r\n" ; int main(void) { // TODO disable JTAG // Stack limit should be less than real stack size, so we // had chance to recover from limit hit. mp_stack_set_limit(&_ram_end - &_heap_end - 512); /* STM32F4xx HAL library initialization: - Configure the Flash prefetch, instruction and Data caches - Configure the Systick to generate an interrupt each 1 msec - Set NVIC Group Priority to 4 - Global MSP (MCU Support Package) initialization */ HAL_Init(); // set the system clock to be HSE SystemClock_Config(); // enable GPIO clocks __GPIOA_CLK_ENABLE(); __GPIOB_CLK_ENABLE(); __GPIOC_CLK_ENABLE(); __GPIOD_CLK_ENABLE(); // enable the CCM RAM __CCMDATARAMEN_CLK_ENABLE(); #if 0 #if defined(NETDUINO_PLUS_2) { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; #if MICROPY_HW_HAS_SDCARD // Turn on the power enable for the sdcard (PB1) GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1; GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_SET); #endif // Turn on the power for the 5V on the expansion header (PB2) GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_WriteBit(GPIOB, GPIO_Pin_2, Bit_SET); } #endif #endif // basic sub-system init pendsv_init(); timer_tim3_init(); led_init(); #if MICROPY_HW_HAS_SWITCH switch_init0(); #endif int first_soft_reset = true; soft_reset: // check if user switch held to select the reset mode led_state(1, 0); led_state(2, 1); led_state(3, 0); led_state(4, 0); uint reset_mode = 1; #if MICROPY_HW_HAS_SWITCH if (switch_get()) { for (uint i = 0; i < 3000; i++) { if (!switch_get()) { break; } HAL_Delay(20); if (i % 30 == 29) { if (++reset_mode > 3) { reset_mode = 1; } led_state(2, reset_mode & 1); led_state(3, reset_mode & 2); led_state(4, reset_mode & 4); } } // flash the selected reset mode for (uint i = 0; i < 6; i++) { led_state(2, 0); led_state(3, 0); led_state(4, 0); HAL_Delay(50); led_state(2, reset_mode & 1); led_state(3, reset_mode & 2); led_state(4, reset_mode & 4); HAL_Delay(50); } HAL_Delay(400); } #endif #if MICROPY_HW_ENABLE_RTC if (first_soft_reset) { rtc_init(); } #endif // more sub-system init #if MICROPY_HW_HAS_SDCARD if (first_soft_reset) { sdcard_init(); } #endif if (first_soft_reset) { storage_init(); } // GC init gc_init(&_heap_start, &_heap_end); #if MICROPY_ENABLE_EMERGENCY_EXCEPTION_BUF mp_init_emergency_exception_buf(); #endif // Change #if 0 to #if 1 if you want REPL on UART_6 (or another uart) // as well as on USB VCP #if 0 { mp_obj_t args[2] = { MP_OBJ_NEW_SMALL_INT(PYB_UART_6), MP_OBJ_NEW_SMALL_INT(115200), }; pyb_stdio_uart = pyb_uart_type.make_new((mp_obj_t)&pyb_uart_type, MP_ARRAY_SIZE(args), 0, args); } #else pyb_stdio_uart = NULL; #endif // Micro Python init qstr_init(); mp_init(); mp_obj_list_init(mp_sys_path, 0); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script) mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash)); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash_slash_lib)); mp_obj_list_init(mp_sys_argv, 0); readline_init(); pin_init(); extint_init(); // local filesystem init { // try to mount the flash FRESULT res = f_mount(&fatfs0, "/flash", 1); if (reset_mode == 3 || res == FR_NO_FILESYSTEM) { // no filesystem, or asked to reset it, so create a fresh one // LED on to indicate creation of LFS led_state(PYB_LED_R2, 1); uint32_t start_tick = HAL_GetTick(); res = f_mkfs("/flash", 0, 0); if (res == FR_OK) { // success creating fresh LFS } else { __fatal_error("could not create LFS"); } // create empty main.py FIL fp; f_open(&fp, "/flash/main.py", FA_WRITE | FA_CREATE_ALWAYS); UINT n; f_write(&fp, fresh_main_py, sizeof(fresh_main_py) - 1 /* don't count null terminator */, &n); // TODO check we could write n bytes f_close(&fp); // create .inf driver file f_open(&fp, "/flash/pybcdc.inf", FA_WRITE | FA_CREATE_ALWAYS); f_write(&fp, fresh_pybcdc_inf, sizeof(fresh_pybcdc_inf) - 1 /* don't count null terminator */, &n); f_close(&fp); // create readme file f_open(&fp, "/flash/README.txt", FA_WRITE | FA_CREATE_ALWAYS); f_write(&fp, fresh_readme_txt, sizeof(fresh_readme_txt) - 1 /* don't count null terminator */, &n); f_close(&fp); // keep LED on for at least 200ms sys_tick_wait_at_least(start_tick, 200); led_state(PYB_LED_R2, 0); } else if (res == FR_OK) { // mount sucessful } else { __fatal_error("could not access LFS"); } } // make sure we have a /flash/boot.py { FILINFO fno; #if _USE_LFN fno.lfname = NULL; fno.lfsize = 0; #endif FRESULT res = f_stat("/flash/boot.py", &fno); if (res == FR_OK) { if (fno.fattrib & AM_DIR) { // exists as a directory // TODO handle this case // see http://elm-chan.org/fsw/ff/img/app2.c for a "rm -rf" implementation } else { // exists as a file, good! } } else { // doesn't exist, create fresh file // LED on to indicate creation of boot.py led_state(PYB_LED_R2, 1); uint32_t start_tick = HAL_GetTick(); FIL fp; f_open(&fp, "/flash/boot.py", FA_WRITE | FA_CREATE_ALWAYS); UINT n; f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n); // TODO check we could write n bytes f_close(&fp); // keep LED on for at least 200ms sys_tick_wait_at_least(start_tick, 200); led_state(PYB_LED_R2, 0); } } // root device defaults to internal flash filesystem f_chdrive("/flash"); #if defined(USE_DEVICE_MODE) usb_storage_medium_t usb_medium = USB_STORAGE_MEDIUM_FLASH; #endif #if MICROPY_HW_HAS_SDCARD // if an SD card is present then mount it on /sd/ if (reset_mode == 1 && sdcard_is_present()) { FRESULT res = f_mount(&fatfs1, "/sd", 1); if (res != FR_OK) { printf("[SD] could not mount SD card\n"); } else { // use SD card as root device f_chdrive("/sd"); // TODO these should go before the /flash entries in the path mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_sd)); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_sd_slash_lib)); if (first_soft_reset) { // use SD card as medium for the USB MSD #if defined(USE_DEVICE_MODE) usb_medium = USB_STORAGE_MEDIUM_SDCARD; #endif } } } #else // Get rid of compiler warning if no SDCARD is configured. (void)first_soft_reset; #endif // run boot.py, if it exists if (reset_mode == 1) { const char *boot_py = "boot.py"; FRESULT res = f_stat(boot_py, NULL); if (res == FR_OK) { if (!pyexec_file(boot_py)) { flash_error(4); } } } // turn boot-up LEDs off led_state(2, 0); led_state(3, 0); led_state(4, 0); #if defined(USE_HOST_MODE) // USB host pyb_usb_host_init(); #elif defined(USE_DEVICE_MODE) // USB device if (reset_mode == 1) { usb_device_mode_t usb_mode = USB_DEVICE_MODE_CDC_MSC; if (pyb_config_usb_mode != MP_OBJ_NULL) { if (strcmp(mp_obj_str_get_str(pyb_config_usb_mode), "CDC+HID") == 0) { usb_mode = USB_DEVICE_MODE_CDC_HID; } } pyb_usb_dev_init(usb_mode, usb_medium); } else { pyb_usb_dev_init(USB_DEVICE_MODE_CDC_MSC, usb_medium); } #endif timer_init0(); #if MICROPY_HW_ENABLE_RNG rng_init0(); #endif i2c_init0(); spi_init0(); #if MICROPY_HW_HAS_MMA7660 // MMA accel: init and reset accel_init(); #endif #if MICROPY_HW_ENABLE_SERVO // servo servo_init(); #endif #if MICROPY_HW_ENABLE_DAC // DAC dac_init(); #endif // now that everything is initialised, run main script if (reset_mode == 1 && pyexec_mode_kind == PYEXEC_MODE_FRIENDLY_REPL) { const char *main_py; if (pyb_config_main == MP_OBJ_NULL) { main_py = "main.py"; } else { main_py = mp_obj_str_get_str(pyb_config_main); } FRESULT res = f_stat(main_py, NULL); if (res == FR_OK) { if (!pyexec_file(main_py)) { flash_error(3); } } } #if MICROPY_HW_ENABLE_CC3K // wifi using the CC3000 driver pyb_wlan_init(); pyb_wlan_start(); #endif // enter REPL // REPL mode can change, or it can request a soft reset for (;;) { if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) { if (pyexec_raw_repl() != 0) { break; } } else { if (pyexec_friendly_repl() != 0) { break; } } } printf("PYB: sync filesystems\n"); storage_flush(); printf("PYB: soft reboot\n"); timer_deinit(); first_soft_reset = false; goto soft_reset; } STATIC NORETURN mp_obj_t mp_sys_exit(uint n_args, const mp_obj_t *args) { int rc = 0; if (n_args > 0) { rc = mp_obj_get_int(args[0]); } nlr_raise(mp_obj_new_exception_arg1(&mp_type_SystemExit, mp_obj_new_int(rc))); } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_sys_exit_obj, 0, 1, mp_sys_exit);