/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "ets_sys.h" #include "etshal.h" #include "ets_alt_task.h" #include "py/runtime.h" #include "py/stream.h" #include "py/mphal.h" #include "hspi.h" typedef struct _pyb_hspi_obj_t { mp_obj_base_t base; uint32_t baudrate; uint8_t polarity; uint8_t phase; } pyb_hspi_obj_t; /******************************************************************************/ // MicroPython bindings for HSPI STATIC void pyb_hspi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { pyb_hspi_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_printf(print, "HSPI(baudrate=%u, polarity=%u, phase=%u)", self->baudrate, self->polarity, self->phase); } STATIC void pyb_hspi_init_helper(pyb_hspi_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_baudrate, ARG_polarity, ARG_phase }; static const mp_arg_t allowed_args[] = { { MP_QSTR_baudrate, MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_polarity, MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_phase, MP_ARG_INT, {.u_int = -1} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if (args[ARG_baudrate].u_int != -1) { self->baudrate = args[ARG_baudrate].u_int; } if (args[ARG_polarity].u_int != -1) { self->polarity = args[ARG_polarity].u_int; } if (args[ARG_phase].u_int != -1) { self->phase = args[ARG_phase].u_int; } if (self->baudrate == 80000000L) { // Special case for full speed. spi_init_gpio(HSPI, SPI_CLK_80MHZ_NODIV); spi_clock(HSPI, 0, 0); } else if (self->baudrate > 40000000L) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "impossible baudrate")); } else { uint32_t divider = 40000000L / self->baudrate; uint16_t prediv = MIN(divider, SPI_CLKDIV_PRE + 1); uint16_t cntdiv = (divider / prediv) * 2; // cntdiv has to be even if (cntdiv > SPI_CLKCNT_N + 1 || cntdiv == 0 || prediv == 0) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "impossible baudrate")); } self->baudrate = 80000000L / (prediv * cntdiv); spi_init_gpio(HSPI, SPI_CLK_USE_DIV); spi_clock(HSPI, prediv, cntdiv); } // TODO: Make the byte order configurable too (discuss param names) spi_tx_byte_order(HSPI, SPI_BYTE_ORDER_HIGH_TO_LOW); spi_rx_byte_order(HSPI, SPI_BYTE_ORDER_HIGH_TO_LOW); CLEAR_PERI_REG_MASK(SPI_USER(HSPI), SPI_FLASH_MODE | SPI_USR_MISO | SPI_USR_ADDR | SPI_USR_COMMAND | SPI_USR_DUMMY); // Clear Dual or Quad lines transmission mode CLEAR_PERI_REG_MASK(SPI_CTRL(HSPI), SPI_QIO_MODE | SPI_DIO_MODE | SPI_DOUT_MODE | SPI_QOUT_MODE); spi_mode(HSPI, self->phase, self->polarity); } STATIC mp_obj_t pyb_hspi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 0, MP_OBJ_FUN_ARGS_MAX, true); pyb_hspi_obj_t *self = m_new_obj(pyb_hspi_obj_t); self->base.type = &pyb_hspi_type; // set defaults self->baudrate = 80000000L; self->polarity = 0; self->phase = 0; mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); pyb_hspi_init_helper(self, n_args, args, &kw_args); return MP_OBJ_FROM_PTR(self); } STATIC mp_obj_t pyb_hspi_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { pyb_hspi_init_helper(args[0], n_args - 1, args + 1, kw_args); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_KW(pyb_hspi_init_obj, 1, pyb_hspi_init); STATIC mp_obj_t pyb_hspi_read(size_t n_args, const mp_obj_t *args) { vstr_t dest_buf; vstr_init_len(&dest_buf, mp_obj_get_int(args[1])); uint8_t write_byte = 0; if (n_args == 3) { write_byte = mp_obj_get_int(args[2]); } // Process data in chunks, let the pending tasks run in between size_t chunk_size = 1024; // TODO this should depend on baudrate size_t count = dest_buf.len / chunk_size; size_t i = 0; for (size_t j = 0; j < count; ++j) { for (size_t k = 0; k < chunk_size; ++k) { ((uint8_t*)dest_buf.buf)[i] = spi_transaction(HSPI, 0, 0, 0, 0, 8, (uint32_t)write_byte, 8, 0); ++i; } ets_loop_iter(); } while (i < dest_buf.len) { ((uint8_t*)dest_buf.buf)[i] = spi_transaction(HSPI, 0, 0, 0, 0, 8, (uint32_t)write_byte, 8, 0); ++i; } return mp_obj_new_str_from_vstr(&mp_type_bytes, &dest_buf); } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_hspi_read_obj, 2, 3, pyb_hspi_read); STATIC mp_obj_t pyb_hspi_readinto(size_t n_args, const mp_obj_t *args) { mp_buffer_info_t dest_buf; mp_get_buffer_raise(args[1], &dest_buf, MP_BUFFER_WRITE); uint8_t write_byte = 0; if (n_args == 3) { write_byte = mp_obj_get_int(args[2]); } size_t chunk_size = 1024; size_t count = dest_buf.len / chunk_size; size_t i = 0; for (size_t j = 0; j < count; ++j) { for (size_t k = 0; k < chunk_size; ++k) { ((uint8_t*)dest_buf.buf)[i] = spi_transaction(HSPI, 0, 0, 0, 0, 8, (uint32_t)write_byte, 8, 0); ++i; } ets_loop_iter(); } while (i < dest_buf.len) { ((uint8_t*)dest_buf.buf)[i] = spi_transaction(HSPI, 0, 0, 0, 0, 8, (uint32_t)write_byte, 8, 0); ++i; } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_hspi_readinto_obj, 2, 3, pyb_hspi_readinto); STATIC mp_obj_t pyb_hspi_write(mp_obj_t self_in, mp_obj_t wr_buf_in) { mp_buffer_info_t src_buf; mp_get_buffer_raise(wr_buf_in, &src_buf, MP_BUFFER_READ); size_t chunk_size = 1024; size_t count = src_buf.len / chunk_size; size_t i = 0; for (size_t j = 0; j < count; ++j) { for (size_t k = 0; k < chunk_size; ++k) { spi_tx8fast(HSPI, ((const uint8_t*)src_buf.buf)[i]); ++i; } ets_loop_iter(); } while (i < src_buf.len) { spi_tx8fast(HSPI, ((const uint8_t*)src_buf.buf)[i]); ++i; } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_2(pyb_hspi_write_obj, pyb_hspi_write); STATIC mp_obj_t pyb_hspi_write_readinto(mp_obj_t self_in, mp_obj_t wr_buf_in, mp_obj_t rd_buf_in) { mp_buffer_info_t src_buf; mp_get_buffer_raise(wr_buf_in, &src_buf, MP_BUFFER_READ); mp_buffer_info_t dest_buf; mp_get_buffer_raise(rd_buf_in, &dest_buf, MP_BUFFER_WRITE); if (src_buf.len != dest_buf.len) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "buffers must be the same length")); } size_t chunk_size = 1024; size_t count = src_buf.len / chunk_size; size_t i = 0; for (size_t j = 0; j < count; ++j) { for (size_t k = 0; k < chunk_size; ++k) { ((uint8_t*)dest_buf.buf)[i] = spi_transaction(HSPI, 0, 0, 0, 0, 8, (uint32_t)(((const uint8_t*)src_buf.buf)[i]), 8, 0); ++i; } ets_loop_iter(); } while (i < src_buf.len) { ((uint8_t*)dest_buf.buf)[i] = spi_transaction(HSPI, 0, 0, 0, 0, 8, (uint32_t)(((const uint8_t*)src_buf.buf)[i]), 8, 0); ++i; } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_3(pyb_hspi_write_readinto_obj, pyb_hspi_write_readinto); STATIC const mp_rom_map_elem_t pyb_hspi_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_hspi_init_obj) }, { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&pyb_hspi_read_obj) }, { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&pyb_hspi_readinto_obj) }, { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&pyb_hspi_write_obj) }, { MP_ROM_QSTR(MP_QSTR_write_readinto), MP_ROM_PTR(&pyb_hspi_write_readinto_obj) }, }; STATIC MP_DEFINE_CONST_DICT(pyb_hspi_locals_dict, pyb_hspi_locals_dict_table); const mp_obj_type_t pyb_hspi_type = { { &mp_type_type }, .name = MP_QSTR_HSPI, .print = pyb_hspi_print, .make_new = pyb_hspi_make_new, .locals_dict = (mp_obj_dict_t*)&pyb_hspi_locals_dict, };