/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/runtime.h" #include "py/gc.h" #include "py/mphal.h" #include "pendsv.h" #include "pin.h" #include "extint.h" #include "irq.h" /// \moduleref pyb /// \class ExtInt - configure I/O pins to interrupt on external events /// /// There are a total of 22 interrupt lines. 16 of these can come from GPIO pins /// and the remaining 6 are from internal sources. /// /// For lines 0 thru 15, a given line can map to the corresponding line from an /// arbitrary port. So line 0 can map to Px0 where x is A, B, C, ... and /// line 1 can map to Px1 where x is A, B, C, ... /// /// def callback(line): /// print("line =", line) /// /// Note: ExtInt will automatically configure the gpio line as an input. /// /// extint = pyb.ExtInt(pin, pyb.ExtInt.IRQ_FALLING, pyb.Pin.PULL_UP, callback) /// /// Now every time a falling edge is seen on the X1 pin, the callback will be /// called. Caution: mechanical pushbuttons have "bounce" and pushing or /// releasing a switch will often generate multiple edges. /// See: http://www.eng.utah.edu/~cs5780/debouncing.pdf for a detailed /// explanation, along with various techniques for debouncing. /// /// Trying to register 2 callbacks onto the same pin will throw an exception. /// /// If pin is passed as an integer, then it is assumed to map to one of the /// internal interrupt sources, and must be in the range 16 thru 22. /// /// All other pin objects go through the pin mapper to come up with one of the /// gpio pins. /// /// extint = pyb.ExtInt(pin, mode, pull, callback) /// /// Valid modes are pyb.ExtInt.IRQ_RISING, pyb.ExtInt.IRQ_FALLING, /// pyb.ExtInt.IRQ_RISING_FALLING, pyb.ExtInt.EVT_RISING, /// pyb.ExtInt.EVT_FALLING, and pyb.ExtInt.EVT_RISING_FALLING. /// /// Only the IRQ_xxx modes have been tested. The EVT_xxx modes have /// something to do with sleep mode and the WFE instruction. /// /// Valid pull values are pyb.Pin.PULL_UP, pyb.Pin.PULL_DOWN, pyb.Pin.PULL_NONE. /// /// There is also a C API, so that drivers which require EXTI interrupt lines /// can also use this code. See extint.h for the available functions and /// usrsw.h for an example of using this. // TODO Add python method to change callback object. #if defined(STM32F4) || defined(STM32L4) // These MCUs have bitband support so define macros to atomically set/clear bits in IMR/EMR and SWIER #define EXTI_OFFSET (EXTI_BASE - PERIPH_BASE) #define EXTI_MODE_BB(mode, line) (*(__IO uint32_t *)(PERIPH_BB_BASE + ((EXTI_OFFSET + (mode)) * 32) + ((line) * 4))) #define EXTI_SWIER_BB(line) (*(__IO uint32_t *)(PERIPH_BB_BASE + ((EXTI_OFFSET + offsetof(EXTI_TypeDef, SWIER)) * 32) + ((line) * 4))) #endif #if defined(STM32G4) || defined(STM32L4) || defined(STM32WB) // The L4 MCU supports 40 Events/IRQs lines of the type configurable and direct. // Here we only support configurable line types. Details, see page 330 of RM0351, Rev 1. // The USB_FS_WAKUP event is a direct type and there is no support for it. #define EXTI_Mode_Interrupt offsetof(EXTI_TypeDef, IMR1) #define EXTI_Mode_Event offsetof(EXTI_TypeDef, EMR1) #define EXTI_Trigger_Rising offsetof(EXTI_TypeDef, RTSR1) #define EXTI_Trigger_Falling offsetof(EXTI_TypeDef, FTSR1) #define EXTI_RTSR EXTI->RTSR1 #define EXTI_FTSR EXTI->FTSR1 #elif defined(STM32H7) #define EXTI_Mode_Interrupt offsetof(EXTI_Core_TypeDef, IMR1) #define EXTI_Mode_Event offsetof(EXTI_Core_TypeDef, EMR1) #define EXTI_Trigger_Rising offsetof(EXTI_Core_TypeDef, RTSR1) #define EXTI_Trigger_Falling offsetof(EXTI_Core_TypeDef, FTSR1) #define EXTI_RTSR EXTI->RTSR1 #define EXTI_FTSR EXTI->FTSR1 #else #define EXTI_Mode_Interrupt offsetof(EXTI_TypeDef, IMR) #define EXTI_Mode_Event offsetof(EXTI_TypeDef, EMR) #define EXTI_Trigger_Rising offsetof(EXTI_TypeDef, RTSR) #define EXTI_Trigger_Falling offsetof(EXTI_TypeDef, FTSR) #define EXTI_RTSR EXTI->RTSR #define EXTI_FTSR EXTI->FTSR #endif typedef struct { mp_obj_base_t base; mp_int_t line; } extint_obj_t; STATIC uint8_t pyb_extint_mode[EXTI_NUM_VECTORS]; STATIC bool pyb_extint_hard_irq[EXTI_NUM_VECTORS]; // The callback arg is a small-int or a ROM Pin object, so no need to scan by GC STATIC mp_obj_t pyb_extint_callback_arg[EXTI_NUM_VECTORS]; #if !defined(ETH) #define ETH_WKUP_IRQn 62 // Some MCUs don't have ETH, but we want a value to put in our table #endif #if !defined(OTG_HS_WKUP_IRQn) #define OTG_HS_WKUP_IRQn 76 // Some MCUs don't have HS, but we want a value to put in our table #endif #if !defined(OTG_FS_WKUP_IRQn) #define OTG_FS_WKUP_IRQn 42 // Some MCUs don't have FS IRQ, but we want a value to put in our table #endif #if defined(STM32G4) #define TAMP_STAMP_IRQn RTC_TAMP_LSECSS_IRQn #endif STATIC const uint8_t nvic_irq_channel[EXTI_NUM_VECTORS] = { #if defined(STM32F0) || defined(STM32L0) EXTI0_1_IRQn, EXTI0_1_IRQn, EXTI2_3_IRQn, EXTI2_3_IRQn, EXTI4_15_IRQn, EXTI4_15_IRQn, EXTI4_15_IRQn, EXTI4_15_IRQn, EXTI4_15_IRQn, EXTI4_15_IRQn, EXTI4_15_IRQn, EXTI4_15_IRQn, EXTI4_15_IRQn, EXTI4_15_IRQn, EXTI4_15_IRQn, EXTI4_15_IRQn, #if defined(STM32L0) PVD_IRQn, #else PVD_VDDIO2_IRQn, #endif RTC_IRQn, 0, // internal USB wakeup event RTC_IRQn, RTC_IRQn, ADC1_COMP_IRQn, ADC1_COMP_IRQn, #else EXTI0_IRQn, EXTI1_IRQn, EXTI2_IRQn, EXTI3_IRQn, EXTI4_IRQn, EXTI9_5_IRQn, EXTI9_5_IRQn, EXTI9_5_IRQn, EXTI9_5_IRQn, EXTI9_5_IRQn, EXTI15_10_IRQn, EXTI15_10_IRQn, EXTI15_10_IRQn, EXTI15_10_IRQn, EXTI15_10_IRQn, EXTI15_10_IRQn, #if defined(STM32H7) PVD_AVD_IRQn, RTC_Alarm_IRQn, #if defined(STM32H7A3xx) || defined(STM32H7A3xxQ) || defined(STM32H7B3xx) || defined(STM32H7B3xxQ) RTC_TAMP_STAMP_CSS_LSE_IRQn, #else TAMP_STAMP_IRQn, #endif RTC_WKUP_IRQn, #elif defined(STM32WB) PVD_PVM_IRQn, RTC_Alarm_IRQn, TAMP_STAMP_LSECSS_IRQn, RTC_WKUP_IRQn, #else #if defined(STM32G4) || defined(STM32L4) PVD_PVM_IRQn, #else PVD_IRQn, #endif #if defined(STM32L4) OTG_FS_WKUP_IRQn, RTC_Alarm_IRQn, #else RTC_Alarm_IRQn, OTG_FS_WKUP_IRQn, #endif ETH_WKUP_IRQn, OTG_HS_WKUP_IRQn, TAMP_STAMP_IRQn, RTC_WKUP_IRQn, #endif #endif }; // Set override_callback_obj to true if you want to unconditionally set the // callback function. uint extint_register(mp_obj_t pin_obj, uint32_t mode, uint32_t pull, mp_obj_t callback_obj, bool override_callback_obj) { const pin_obj_t *pin = NULL; uint v_line; if (mp_obj_is_int(pin_obj)) { // If an integer is passed in, then use it to identify lines 16 thru 22 // We expect lines 0 thru 15 to be passed in as a pin, so that we can // get both the port number and line number. v_line = mp_obj_get_int(pin_obj); if (v_line < 16) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("ExtInt vector %d < 16, use a Pin object"), v_line); } if (v_line >= EXTI_NUM_VECTORS) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("ExtInt vector %d >= max of %d"), v_line, EXTI_NUM_VECTORS); } } else { pin = pin_find(pin_obj); v_line = pin->pin; } if (mode != GPIO_MODE_IT_RISING && mode != GPIO_MODE_IT_FALLING && mode != GPIO_MODE_IT_RISING_FALLING && mode != GPIO_MODE_EVT_RISING && mode != GPIO_MODE_EVT_FALLING && mode != GPIO_MODE_EVT_RISING_FALLING) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("invalid ExtInt Mode: %d"), mode); } if (pull != GPIO_NOPULL && pull != GPIO_PULLUP && pull != GPIO_PULLDOWN) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("invalid ExtInt Pull: %d"), pull); } mp_obj_t *cb = &MP_STATE_PORT(pyb_extint_callback)[v_line]; if (!override_callback_obj && *cb != mp_const_none && callback_obj != mp_const_none) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("ExtInt vector %d is already in use"), v_line); } // We need to update callback atomically, so we disable the line // before we update anything. extint_disable(v_line); *cb = callback_obj; pyb_extint_mode[v_line] = (mode & 0x00010000) ? // GPIO_MODE_IT == 0x00010000 EXTI_Mode_Interrupt : EXTI_Mode_Event; if (*cb != mp_const_none) { pyb_extint_hard_irq[v_line] = true; pyb_extint_callback_arg[v_line] = MP_OBJ_NEW_SMALL_INT(v_line); if (pin == NULL) { // pin will be NULL for non GPIO EXTI lines extint_trigger_mode(v_line, mode); extint_enable(v_line); } else { mp_hal_gpio_clock_enable(pin->gpio); GPIO_InitTypeDef exti; exti.Pin = pin->pin_mask; exti.Mode = mode; exti.Pull = pull; exti.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(pin->gpio, &exti); // Calling HAL_GPIO_Init does an implicit extint_enable } /* Enable and set NVIC Interrupt to the lowest priority */ NVIC_SetPriority(IRQn_NONNEG(nvic_irq_channel[v_line]), IRQ_PRI_EXTINT); HAL_NVIC_EnableIRQ(nvic_irq_channel[v_line]); } return v_line; } // This function is intended to be used by the Pin.irq() method void extint_register_pin(const pin_obj_t *pin, uint32_t mode, bool hard_irq, mp_obj_t callback_obj) { uint32_t line = pin->pin; // Check if the ExtInt line is already in use by another Pin/ExtInt mp_obj_t *cb = &MP_STATE_PORT(pyb_extint_callback)[line]; if (*cb != mp_const_none && MP_OBJ_FROM_PTR(pin) != pyb_extint_callback_arg[line]) { if (mp_obj_is_small_int(pyb_extint_callback_arg[line])) { mp_raise_msg_varg(&mp_type_OSError, MP_ERROR_TEXT("ExtInt vector %d is already in use"), line); } else { const pin_obj_t *other_pin = MP_OBJ_TO_PTR(pyb_extint_callback_arg[line]); mp_raise_msg_varg(&mp_type_OSError, MP_ERROR_TEXT("IRQ resource already taken by Pin('%q')"), other_pin->name); } } extint_disable(line); *cb = callback_obj; pyb_extint_mode[line] = (mode & 0x00010000) ? // GPIO_MODE_IT == 0x00010000 EXTI_Mode_Interrupt : EXTI_Mode_Event; if (*cb != mp_const_none) { // Configure and enable the callback pyb_extint_hard_irq[line] = hard_irq; pyb_extint_callback_arg[line] = MP_OBJ_FROM_PTR(pin); // Route the GPIO to EXTI #if !defined(STM32WB) __HAL_RCC_SYSCFG_CLK_ENABLE(); #endif SYSCFG->EXTICR[line >> 2] = (SYSCFG->EXTICR[line >> 2] & ~(0x0f << (4 * (line & 0x03)))) | ((uint32_t)(GPIO_GET_INDEX(pin->gpio)) << (4 * (line & 0x03))); extint_trigger_mode(line, mode); // Configure the NVIC NVIC_SetPriority(IRQn_NONNEG(nvic_irq_channel[line]), IRQ_PRI_EXTINT); HAL_NVIC_EnableIRQ(nvic_irq_channel[line]); // Enable the interrupt extint_enable(line); } } void extint_set(const pin_obj_t *pin, uint32_t mode) { uint32_t line = pin->pin; mp_obj_t *cb = &MP_STATE_PORT(pyb_extint_callback)[line]; extint_disable(line); *cb = MP_OBJ_SENTINEL; pyb_extint_mode[line] = (mode & 0x00010000) ? // GPIO_MODE_IT == 0x00010000 EXTI_Mode_Interrupt : EXTI_Mode_Event; { // Configure and enable the callback pyb_extint_hard_irq[line] = 1; pyb_extint_callback_arg[line] = MP_OBJ_FROM_PTR(pin); // Route the GPIO to EXTI #if !defined(STM32WB) __HAL_RCC_SYSCFG_CLK_ENABLE(); #endif SYSCFG->EXTICR[line >> 2] = (SYSCFG->EXTICR[line >> 2] & ~(0x0f << (4 * (line & 0x03)))) | ((uint32_t)(GPIO_GET_INDEX(pin->gpio)) << (4 * (line & 0x03))); // Enable or disable the rising detector if ((mode & GPIO_MODE_IT_RISING) == GPIO_MODE_IT_RISING) { EXTI_RTSR |= 1 << line; } else { EXTI_RTSR &= ~(1 << line); } // Enable or disable the falling detector if ((mode & GPIO_MODE_IT_FALLING) == GPIO_MODE_IT_FALLING) { EXTI_FTSR |= 1 << line; } else { EXTI_FTSR &= ~(1 << line); } // Configure the NVIC NVIC_SetPriority(IRQn_NONNEG(nvic_irq_channel[line]), IRQ_PRI_EXTINT); HAL_NVIC_EnableIRQ(nvic_irq_channel[line]); // Enable the interrupt extint_enable(line); } } void extint_enable(uint line) { if (line >= EXTI_NUM_VECTORS) { return; } #if !defined(EXTI_MODE_BB) // This MCU doesn't have bitband support. mp_uint_t irq_state = disable_irq(); if (pyb_extint_mode[line] == EXTI_Mode_Interrupt) { #if defined(STM32H7) EXTI_D1->IMR1 |= (1 << line); #elif defined(STM32G4) || defined(STM32WB) EXTI->IMR1 |= (1 << line); #else EXTI->IMR |= (1 << line); #endif } else { #if defined(STM32H7) EXTI_D1->EMR1 |= (1 << line); #elif defined(STM32G4) || defined(STM32WB) EXTI->EMR1 |= (1 << line); #else EXTI->EMR |= (1 << line); #endif } enable_irq(irq_state); #else // Since manipulating IMR/EMR is a read-modify-write, and we want this to // be atomic, we use the bit-band area to just affect the bit we're // interested in. EXTI_MODE_BB(pyb_extint_mode[line], line) = 1; #endif } void extint_disable(uint line) { if (line >= EXTI_NUM_VECTORS) { return; } #if !defined(EXTI_MODE_BB) // This MCU doesn't have bitband support. mp_uint_t irq_state = disable_irq(); #if defined(STM32H7) EXTI_D1->IMR1 &= ~(1 << line); EXTI_D1->EMR1 &= ~(1 << line); #elif defined(STM32G4) || defined(STM32WB) EXTI->IMR1 &= ~(1 << line); EXTI->EMR1 &= ~(1 << line); #else EXTI->IMR &= ~(1 << line); EXTI->EMR &= ~(1 << line); #endif enable_irq(irq_state); #else // Since manipulating IMR/EMR is a read-modify-write, and we want this to // be atomic, we use the bit-band area to just affect the bit we're // interested in. EXTI_MODE_BB(EXTI_Mode_Interrupt, line) = 0; EXTI_MODE_BB(EXTI_Mode_Event, line) = 0; #endif } void extint_swint(uint line) { if (line >= EXTI_NUM_VECTORS) { return; } // we need 0 to 1 transition to trigger the interrupt #if defined(STM32G4) || defined(STM32H7) || defined(STM32L4) || defined(STM32WB) EXTI->SWIER1 &= ~(1 << line); EXTI->SWIER1 |= (1 << line); #else EXTI->SWIER &= ~(1 << line); EXTI->SWIER |= (1 << line); #endif } void extint_trigger_mode(uint line, uint32_t mode) { if (line >= EXTI_NUM_VECTORS) { return; } #if !defined(EXTI_MODE_BB) // This MCU doesn't have bitband support. mp_uint_t irq_state = disable_irq(); // Enable or disable the rising detector if ((mode & GPIO_MODE_IT_RISING) == GPIO_MODE_IT_RISING) { EXTI_RTSR |= (1 << line); } else { EXTI_RTSR &= ~(1 << line); } // Enable or disable the falling detector if ((mode & GPIO_MODE_IT_FALLING) == GPIO_MODE_IT_FALLING) { EXTI_FTSR |= 1 << line; } else { EXTI_FTSR &= ~(1 << line); } enable_irq(irq_state); #else // Since manipulating FTSR/RTSR is a read-modify-write, and we want this to // be atomic, we use the bit-band area to just affect the bit we're // interested in. EXTI_MODE_BB(EXTI_Trigger_Rising, line) = (mode & GPIO_MODE_IT_RISING) == GPIO_MODE_IT_RISING; EXTI_MODE_BB(EXTI_Trigger_Falling, line) = (mode & GPIO_MODE_IT_FALLING) == GPIO_MODE_IT_FALLING; #endif } /// \method line() /// Return the line number that the pin is mapped to. STATIC mp_obj_t extint_obj_line(mp_obj_t self_in) { extint_obj_t *self = MP_OBJ_TO_PTR(self_in); return MP_OBJ_NEW_SMALL_INT(self->line); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(extint_obj_line_obj, extint_obj_line); /// \method enable() /// Enable a disabled interrupt. STATIC mp_obj_t extint_obj_enable(mp_obj_t self_in) { extint_obj_t *self = MP_OBJ_TO_PTR(self_in); extint_enable(self->line); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(extint_obj_enable_obj, extint_obj_enable); /// \method disable() /// Disable the interrupt associated with the ExtInt object. /// This could be useful for debouncing. STATIC mp_obj_t extint_obj_disable(mp_obj_t self_in) { extint_obj_t *self = MP_OBJ_TO_PTR(self_in); extint_disable(self->line); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(extint_obj_disable_obj, extint_obj_disable); /// \method swint() /// Trigger the callback from software. STATIC mp_obj_t extint_obj_swint(mp_obj_t self_in) { extint_obj_t *self = MP_OBJ_TO_PTR(self_in); extint_swint(self->line); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(extint_obj_swint_obj, extint_obj_swint); // TODO document as a staticmethod /// \classmethod regs() /// Dump the values of the EXTI registers. STATIC mp_obj_t extint_regs(void) { #if defined(STM32G4) || defined(STM32L4) || defined(STM32WB) printf("EXTI_IMR1 %08x\n", (unsigned int)EXTI->IMR1); printf("EXTI_IMR2 %08x\n", (unsigned int)EXTI->IMR2); printf("EXTI_EMR1 %08x\n", (unsigned int)EXTI->EMR1); printf("EXTI_EMR2 %08x\n", (unsigned int)EXTI->EMR2); printf("EXTI_RTSR1 %08x\n", (unsigned int)EXTI->RTSR1); printf("EXTI_RTSR2 %08x\n", (unsigned int)EXTI->RTSR2); printf("EXTI_FTSR1 %08x\n", (unsigned int)EXTI->FTSR1); printf("EXTI_FTSR2 %08x\n", (unsigned int)EXTI->FTSR2); printf("EXTI_SWIER1 %08x\n", (unsigned int)EXTI->SWIER1); printf("EXTI_SWIER2 %08x\n", (unsigned int)EXTI->SWIER2); printf("EXTI_PR1 %08x\n", (unsigned int)EXTI->PR1); printf("EXTI_PR2 %08x\n", (unsigned int)EXTI->PR2); #elif defined(STM32H7) printf("EXTI_IMR1 %08x\n", (unsigned int)EXTI_D1->IMR1); printf("EXTI_IMR2 %08x\n", (unsigned int)EXTI_D1->IMR2); printf("EXTI_IMR3 %08x\n", (unsigned int)EXTI_D1->IMR3); printf("EXTI_EMR1 %08x\n", (unsigned int)EXTI_D1->EMR1); printf("EXTI_EMR2 %08x\n", (unsigned int)EXTI_D1->EMR2); printf("EXTI_EMR3 %08x\n", (unsigned int)EXTI_D1->EMR3); printf("EXTI_RTSR1 %08x\n", (unsigned int)EXTI->RTSR1); printf("EXTI_RTSR2 %08x\n", (unsigned int)EXTI->RTSR2); printf("EXTI_RTSR3 %08x\n", (unsigned int)EXTI->RTSR3); printf("EXTI_FTSR1 %08x\n", (unsigned int)EXTI->FTSR1); printf("EXTI_FTSR2 %08x\n", (unsigned int)EXTI->FTSR2); printf("EXTI_FTSR3 %08x\n", (unsigned int)EXTI->FTSR3); printf("EXTI_SWIER1 %08x\n", (unsigned int)EXTI->SWIER1); printf("EXTI_SWIER2 %08x\n", (unsigned int)EXTI->SWIER2); printf("EXTI_SWIER3 %08x\n", (unsigned int)EXTI->SWIER3); printf("EXTI_PR1 %08x\n", (unsigned int)EXTI_D1->PR1); printf("EXTI_PR2 %08x\n", (unsigned int)EXTI_D1->PR2); printf("EXTI_PR3 %08x\n", (unsigned int)EXTI_D1->PR3); #else printf("EXTI_IMR %08x\n", (unsigned int)EXTI->IMR); printf("EXTI_EMR %08x\n", (unsigned int)EXTI->EMR); printf("EXTI_RTSR %08x\n", (unsigned int)EXTI->RTSR); printf("EXTI_FTSR %08x\n", (unsigned int)EXTI->FTSR); printf("EXTI_SWIER %08x\n", (unsigned int)EXTI->SWIER); printf("EXTI_PR %08x\n", (unsigned int)EXTI->PR); #endif return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_0(extint_regs_fun_obj, extint_regs); STATIC MP_DEFINE_CONST_STATICMETHOD_OBJ(extint_regs_obj, MP_ROM_PTR(&extint_regs_fun_obj)); /// \classmethod \constructor(pin, mode, pull, callback) /// Create an ExtInt object: /// /// - `pin` is the pin on which to enable the interrupt (can be a pin object or any valid pin name). /// - `mode` can be one of: /// - `ExtInt.IRQ_RISING` - trigger on a rising edge; /// - `ExtInt.IRQ_FALLING` - trigger on a falling edge; /// - `ExtInt.IRQ_RISING_FALLING` - trigger on a rising or falling edge. /// - `pull` can be one of: /// - `pyb.Pin.PULL_NONE` - no pull up or down resistors; /// - `pyb.Pin.PULL_UP` - enable the pull-up resistor; /// - `pyb.Pin.PULL_DOWN` - enable the pull-down resistor. /// - `callback` is the function to call when the interrupt triggers. The /// callback function must accept exactly 1 argument, which is the line that /// triggered the interrupt. STATIC const mp_arg_t pyb_extint_make_new_args[] = { { MP_QSTR_pin, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_pull, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_callback, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, }; #define PYB_EXTINT_MAKE_NEW_NUM_ARGS MP_ARRAY_SIZE(pyb_extint_make_new_args) STATIC mp_obj_t extint_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // type_in == extint_obj_type // parse args mp_arg_val_t vals[PYB_EXTINT_MAKE_NEW_NUM_ARGS]; mp_arg_parse_all_kw_array(n_args, n_kw, args, PYB_EXTINT_MAKE_NEW_NUM_ARGS, pyb_extint_make_new_args, vals); extint_obj_t *self = m_new_obj(extint_obj_t); self->base.type = type; self->line = extint_register(vals[0].u_obj, vals[1].u_int, vals[2].u_int, vals[3].u_obj, false); return MP_OBJ_FROM_PTR(self); } STATIC void extint_obj_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { extint_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_printf(print, "", self->line); } STATIC const mp_rom_map_elem_t extint_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_line), MP_ROM_PTR(&extint_obj_line_obj) }, { MP_ROM_QSTR(MP_QSTR_enable), MP_ROM_PTR(&extint_obj_enable_obj) }, { MP_ROM_QSTR(MP_QSTR_disable), MP_ROM_PTR(&extint_obj_disable_obj) }, { MP_ROM_QSTR(MP_QSTR_swint), MP_ROM_PTR(&extint_obj_swint_obj) }, { MP_ROM_QSTR(MP_QSTR_regs), MP_ROM_PTR(&extint_regs_obj) }, // class constants /// \constant IRQ_RISING - interrupt on a rising edge /// \constant IRQ_FALLING - interrupt on a falling edge /// \constant IRQ_RISING_FALLING - interrupt on a rising or falling edge { MP_ROM_QSTR(MP_QSTR_IRQ_RISING), MP_ROM_INT(GPIO_MODE_IT_RISING) }, { MP_ROM_QSTR(MP_QSTR_IRQ_FALLING), MP_ROM_INT(GPIO_MODE_IT_FALLING) }, { MP_ROM_QSTR(MP_QSTR_IRQ_RISING_FALLING), MP_ROM_INT(GPIO_MODE_IT_RISING_FALLING) }, { MP_ROM_QSTR(MP_QSTR_EVT_RISING), MP_ROM_INT(GPIO_MODE_EVT_RISING) }, { MP_ROM_QSTR(MP_QSTR_EVT_FALLING), MP_ROM_INT(GPIO_MODE_EVT_FALLING) }, { MP_ROM_QSTR(MP_QSTR_EVT_RISING_FALLING), MP_ROM_INT(GPIO_MODE_EVT_RISING_FALLING) }, }; STATIC MP_DEFINE_CONST_DICT(extint_locals_dict, extint_locals_dict_table); const mp_obj_type_t extint_type = { { &mp_type_type }, .name = MP_QSTR_ExtInt, .print = extint_obj_print, .make_new = extint_make_new, .locals_dict = (mp_obj_dict_t *)&extint_locals_dict, }; void extint_init0(void) { for (int i = 0; i < PYB_EXTI_NUM_VECTORS; i++) { if (MP_STATE_PORT(pyb_extint_callback)[i] == MP_OBJ_SENTINEL) { continue; } MP_STATE_PORT(pyb_extint_callback)[i] = mp_const_none; pyb_extint_mode[i] = EXTI_Mode_Interrupt; } } // Interrupt handler void Handle_EXTI_Irq(uint32_t line) { if (__HAL_GPIO_EXTI_GET_FLAG(1 << line)) { __HAL_GPIO_EXTI_CLEAR_FLAG(1 << line); if (line < EXTI_NUM_VECTORS) { mp_obj_t *cb = &MP_STATE_PORT(pyb_extint_callback)[line]; #if MICROPY_PY_NETWORK_CYW43 && defined(pyb_pin_WL_HOST_WAKE) if (pyb_extint_callback_arg[line] == MP_OBJ_FROM_PTR(pyb_pin_WL_HOST_WAKE)) { extern void (*cyw43_poll)(void); if (cyw43_poll) { pendsv_schedule_dispatch(PENDSV_DISPATCH_CYW43, cyw43_poll); } return; } #endif if (*cb != mp_const_none) { // If it's a soft IRQ handler then just schedule callback for later if (!pyb_extint_hard_irq[line]) { mp_sched_schedule(*cb, pyb_extint_callback_arg[line]); return; } mp_sched_lock(); // When executing code within a handler we must lock the GC to prevent // any memory allocations. We must also catch any exceptions. gc_lock(); nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { mp_call_function_1(*cb, pyb_extint_callback_arg[line]); nlr_pop(); } else { // Uncaught exception; disable the callback so it doesn't run again. *cb = mp_const_none; extint_disable(line); mp_printf(MICROPY_ERROR_PRINTER, "uncaught exception in ExtInt interrupt handler line %u\n", (unsigned int)line); mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(nlr.ret_val)); } gc_unlock(); mp_sched_unlock(); } } } }