/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2018 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/runtime.h" #include "py/stream.h" #include "py/mperrno.h" #include "py/mphal.h" #include "shared/runtime/interrupt_char.h" #include "shared/runtime/mpirq.h" #include "uart.h" #include "irq.h" #include "pendsv.h" /// \moduleref pyb /// \class UART - duplex serial communication bus /// /// UART implements the standard UART/USART duplex serial communications protocol. At /// the physical level it consists of 2 lines: RX and TX. The unit of communication /// is a character (not to be confused with a string character) which can be 8 or 9 /// bits wide. /// /// UART objects can be created and initialised using: /// /// from pyb import UART /// /// uart = UART(1, 9600) # init with given baudrate /// uart.init(9600, bits=8, parity=None, stop=1) # init with given parameters /// /// Bits can be 8 or 9. Parity can be None, 0 (even) or 1 (odd). Stop can be 1 or 2. /// /// A UART object acts like a stream object and reading and writing is done /// using the standard stream methods: /// /// uart.read(10) # read 10 characters, returns a bytes object /// uart.read() # read all available characters /// uart.readline() # read a line /// uart.readinto(buf) # read and store into the given buffer /// uart.write('abc') # write the 3 characters /// /// Individual characters can be read/written using: /// /// uart.readchar() # read 1 character and returns it as an integer /// uart.writechar(42) # write 1 character /// /// To check if there is anything to be read, use: /// /// uart.any() # returns True if any characters waiting STATIC void pyb_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); if (!self->is_enabled) { #ifdef LPUART1 if (self->uart_id == PYB_LPUART_1) { mp_printf(print, "UART('LP1')"); } else #endif { mp_printf(print, "UART(%u)", self->uart_id); } } else { mp_int_t bits; uint32_t cr1 = self->uartx->CR1; #if defined(UART_CR1_M1) if (cr1 & UART_CR1_M1) { bits = 7; } else if (cr1 & UART_CR1_M0) { bits = 9; } else { bits = 8; } #else if (cr1 & USART_CR1_M) { bits = 9; } else { bits = 8; } #endif if (cr1 & USART_CR1_PCE) { bits -= 1; } #ifdef LPUART1 if (self->uart_id == PYB_LPUART_1) { mp_printf(print, "UART('LP1', baudrate=%u, bits=%u, parity=", uart_get_baudrate(self), bits); } else #endif { mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=", self->uart_id, uart_get_baudrate(self), bits); } if (!(cr1 & USART_CR1_PCE)) { mp_print_str(print, "None"); } else if (!(cr1 & USART_CR1_PS)) { mp_print_str(print, "0"); } else { mp_print_str(print, "1"); } uint32_t cr2 = self->uartx->CR2; mp_printf(print, ", stop=%u, flow=", ((cr2 >> USART_CR2_STOP_Pos) & 3) == 0 ? 1 : 2); uint32_t cr3 = self->uartx->CR3; if (!(cr3 & (USART_CR3_CTSE | USART_CR3_RTSE))) { mp_print_str(print, "0"); } else { if (cr3 & USART_CR3_RTSE) { mp_print_str(print, "RTS"); if (cr3 & USART_CR3_CTSE) { mp_print_str(print, "|"); } } if (cr3 & USART_CR3_CTSE) { mp_print_str(print, "CTS"); } } mp_printf(print, ", timeout=%u, timeout_char=%u, rxbuf=%u", self->timeout, self->timeout_char, self->read_buf_len == 0 ? 0 : self->read_buf_len - 1); // -1 to adjust for usable length of buffer if (self->mp_irq_trigger != 0) { mp_printf(print, "; irq=0x%x", self->mp_irq_trigger); } mp_print_str(print, ")"); } } /// \method init(baudrate, bits=8, parity=None, stop=1, *, timeout=1000, timeout_char=0, flow=0, read_buf_len=64) /// /// Initialise the UART bus with the given parameters: /// /// - `baudrate` is the clock rate. /// - `bits` is the number of bits per byte, 7, 8 or 9. /// - `parity` is the parity, `None`, 0 (even) or 1 (odd). /// - `stop` is the number of stop bits, 1 or 2. /// - `timeout` is the timeout in milliseconds to wait for the first character. /// - `timeout_char` is the timeout in milliseconds to wait between characters. /// - `flow` is RTS | CTS where RTS == 256, CTS == 512 /// - `read_buf_len` is the character length of the read buffer (0 to disable). STATIC mp_obj_t pyb_uart_init_helper(pyb_uart_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_baudrate, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 9600} }, { MP_QSTR_bits, MP_ARG_INT, {.u_int = 8} }, { MP_QSTR_parity, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_stop, MP_ARG_INT, {.u_int = 1} }, { MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = UART_HWCONTROL_NONE} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_rxbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_read_buf_len, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 64} }, // legacy }; // parse args struct { mp_arg_val_t baudrate, bits, parity, stop, flow, timeout, timeout_char, rxbuf, read_buf_len; } args; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, (mp_arg_val_t *)&args); // baudrate uint32_t baudrate = args.baudrate.u_int; // parity uint32_t bits = args.bits.u_int; uint32_t parity; if (args.parity.u_obj == mp_const_none) { parity = UART_PARITY_NONE; } else { mp_int_t p = mp_obj_get_int(args.parity.u_obj); parity = (p & 1) ? UART_PARITY_ODD : UART_PARITY_EVEN; bits += 1; // STs convention has bits including parity } // number of bits if (bits == 8) { bits = UART_WORDLENGTH_8B; } else if (bits == 9) { bits = UART_WORDLENGTH_9B; #ifdef UART_WORDLENGTH_7B } else if (bits == 7) { bits = UART_WORDLENGTH_7B; #endif } else { mp_raise_ValueError(MP_ERROR_TEXT("unsupported combination of bits and parity")); } // stop bits uint32_t stop; switch (args.stop.u_int) { case 1: stop = UART_STOPBITS_1; break; default: stop = UART_STOPBITS_2; break; } // flow control uint32_t flow = args.flow.u_int; // Save attach_to_repl setting because uart_init will disable it. bool attach_to_repl = self->attached_to_repl; // init UART (if it fails, it's because the port doesn't exist) if (!uart_init(self, baudrate, bits, parity, stop, flow)) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%d) doesn't exist"), self->uart_id); } // Restore attach_to_repl setting so UART still works if attached to dupterm. uart_attach_to_repl(self, attach_to_repl); // set timeout self->timeout = args.timeout.u_int; // set timeout_char // make sure it is at least as long as a whole character (13 bits to be safe) // minimum value is 2ms because sys-tick has a resolution of only 1ms self->timeout_char = args.timeout_char.u_int; uint32_t min_timeout_char = 13000 / baudrate + 2; if (self->timeout_char < min_timeout_char) { self->timeout_char = min_timeout_char; } if (self->is_static) { // Static UARTs have fixed memory for the rxbuf and can't be reconfigured. if (args.rxbuf.u_int >= 0) { mp_raise_ValueError(MP_ERROR_TEXT("UART is static and rxbuf can't be changed")); } uart_set_rxbuf(self, self->read_buf_len, self->read_buf); } else { // setup the read buffer m_del(byte, self->read_buf, self->read_buf_len << self->char_width); if (args.rxbuf.u_int >= 0) { // rxbuf overrides legacy read_buf_len args.read_buf_len.u_int = args.rxbuf.u_int; } if (args.read_buf_len.u_int <= 0) { // no read buffer uart_set_rxbuf(self, 0, NULL); } else { // read buffer using interrupts size_t len = args.read_buf_len.u_int + 1; // +1 to adjust for usable length of buffer uint8_t *buf = m_new(byte, len << self->char_width); uart_set_rxbuf(self, len, buf); } } // compute actual baudrate that was configured uint32_t actual_baudrate = uart_get_baudrate(self); // check we could set the baudrate within 5% uint32_t baudrate_diff; if (actual_baudrate > baudrate) { baudrate_diff = actual_baudrate - baudrate; } else { baudrate_diff = baudrate - actual_baudrate; } if (20 * baudrate_diff > actual_baudrate) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("set baudrate %d is not within 5%% of desired value"), actual_baudrate); } return mp_const_none; } /// \classmethod \constructor(bus, ...) /// /// Construct a UART object on the given bus. `bus` can be 1-6, or 'XA', 'XB', 'YA', or 'YB'. /// With no additional parameters, the UART object is created but not /// initialised (it has the settings from the last initialisation of /// the bus, if any). If extra arguments are given, the bus is initialised. /// See `init` for parameters of initialisation. /// /// The physical pins of the UART buses are: /// /// - `UART(4)` is on `XA`: `(TX, RX) = (X1, X2) = (PA0, PA1)` /// - `UART(1)` is on `XB`: `(TX, RX) = (X9, X10) = (PB6, PB7)` /// - `UART(6)` is on `YA`: `(TX, RX) = (Y1, Y2) = (PC6, PC7)` /// - `UART(3)` is on `YB`: `(TX, RX) = (Y9, Y10) = (PB10, PB11)` /// - `UART(2)` is on: `(TX, RX) = (X3, X4) = (PA2, PA3)` STATIC mp_obj_t pyb_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); // work out port int uart_id = 0; if (mp_obj_is_str(args[0])) { const char *port = mp_obj_str_get_str(args[0]); if (0) { #ifdef MICROPY_HW_UART1_NAME } else if (strcmp(port, MICROPY_HW_UART1_NAME) == 0) { uart_id = PYB_UART_1; #endif #ifdef MICROPY_HW_UART2_NAME } else if (strcmp(port, MICROPY_HW_UART2_NAME) == 0) { uart_id = PYB_UART_2; #endif #ifdef MICROPY_HW_UART3_NAME } else if (strcmp(port, MICROPY_HW_UART3_NAME) == 0) { uart_id = PYB_UART_3; #endif #ifdef MICROPY_HW_UART4_NAME } else if (strcmp(port, MICROPY_HW_UART4_NAME) == 0) { uart_id = PYB_UART_4; #endif #ifdef MICROPY_HW_UART5_NAME } else if (strcmp(port, MICROPY_HW_UART5_NAME) == 0) { uart_id = PYB_UART_5; #endif #ifdef MICROPY_HW_UART6_NAME } else if (strcmp(port, MICROPY_HW_UART6_NAME) == 0) { uart_id = PYB_UART_6; #endif #ifdef MICROPY_HW_UART7_NAME } else if (strcmp(port, MICROPY_HW_UART7_NAME) == 0) { uart_id = PYB_UART_7; #endif #ifdef MICROPY_HW_UART8_NAME } else if (strcmp(port, MICROPY_HW_UART8_NAME) == 0) { uart_id = PYB_UART_8; #endif #ifdef MICROPY_HW_UART9_NAME } else if (strcmp(port, MICROPY_HW_UART9_NAME) == 0) { uart_id = PYB_UART_9; #endif #ifdef MICROPY_HW_UART10_NAME } else if (strcmp(port, MICROPY_HW_UART10_NAME) == 0) { uart_id = PYB_UART_10; #endif #ifdef MICROPY_HW_LPUART1_NAME } else if (strcmp(port, MICROPY_HW_LPUART1_NAME) == 0) { uart_id = PYB_LPUART_1; #endif #ifdef LPUART1 } else if (strcmp(port, "LP1") == 0 && uart_exists(PYB_LPUART_1)) { uart_id = PYB_LPUART_1; #endif } else { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%s) doesn't exist"), port); } } else { uart_id = mp_obj_get_int(args[0]); if (!uart_exists(uart_id)) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%d) doesn't exist"), uart_id); } } // check if the UART is reserved for system use or not if (MICROPY_HW_UART_IS_RESERVED(uart_id)) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%d) is reserved"), uart_id); } pyb_uart_obj_t *self; if (MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1] == NULL) { // create new UART object self = m_new0(pyb_uart_obj_t, 1); self->base.type = &pyb_uart_type; self->uart_id = uart_id; MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1] = self; } else { // reference existing UART object self = MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1]; } if (n_args > 1 || n_kw > 0) { // start the peripheral mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); pyb_uart_init_helper(self, n_args - 1, args + 1, &kw_args); } return MP_OBJ_FROM_PTR(self); } STATIC mp_obj_t pyb_uart_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { return pyb_uart_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_init_obj, 1, pyb_uart_init); /// \method deinit() /// Turn off the UART bus. STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in) { pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); uart_deinit(self); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_deinit_obj, pyb_uart_deinit); /// \method any() /// Return `True` if any characters waiting, else `False`. STATIC mp_obj_t pyb_uart_any(mp_obj_t self_in) { pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); return MP_OBJ_NEW_SMALL_INT(uart_rx_any(self)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_any_obj, pyb_uart_any); /// \method writechar(char) /// Write a single character on the bus. `char` is an integer to write. /// Return value: `None`. STATIC mp_obj_t pyb_uart_writechar(mp_obj_t self_in, mp_obj_t char_in) { pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); // get the character to write (might be 9 bits) uint16_t data = mp_obj_get_int(char_in); // write the character int errcode; if (uart_tx_wait(self, self->timeout)) { uart_tx_data(self, &data, 1, &errcode); } else { errcode = MP_ETIMEDOUT; } if (errcode != 0) { mp_raise_OSError(errcode); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_uart_writechar_obj, pyb_uart_writechar); /// \method readchar() /// Receive a single character on the bus. /// Return value: The character read, as an integer. Returns -1 on timeout. STATIC mp_obj_t pyb_uart_readchar(mp_obj_t self_in) { pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); if (uart_rx_wait(self, self->timeout)) { return MP_OBJ_NEW_SMALL_INT(uart_rx_char(self)); } else { // return -1 on timeout return MP_OBJ_NEW_SMALL_INT(-1); } } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_readchar_obj, pyb_uart_readchar); // uart.sendbreak() STATIC mp_obj_t pyb_uart_sendbreak(mp_obj_t self_in) { pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); #if defined(STM32F0) || defined(STM32F7) || defined(STM32G4) || defined(STM32H7) || defined(STM32L0) || defined(STM32L4) || defined(STM32WB) self->uartx->RQR = USART_RQR_SBKRQ; // write-only register #else self->uartx->CR1 |= USART_CR1_SBK; #endif return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_sendbreak_obj, pyb_uart_sendbreak); // irq(handler, trigger, hard) STATIC mp_obj_t pyb_uart_irq(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { mp_arg_val_t args[MP_IRQ_ARG_INIT_NUM_ARGS]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_IRQ_ARG_INIT_NUM_ARGS, mp_irq_init_args, args); pyb_uart_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); if (self->mp_irq_obj == NULL) { self->mp_irq_trigger = 0; self->mp_irq_obj = mp_irq_new(&uart_irq_methods, MP_OBJ_FROM_PTR(self)); } if (n_args > 1 || kw_args->used != 0) { // Check the handler mp_obj_t handler = args[MP_IRQ_ARG_INIT_handler].u_obj; if (handler != mp_const_none && !mp_obj_is_callable(handler)) { mp_raise_ValueError(MP_ERROR_TEXT("handler must be None or callable")); } // Check the trigger mp_uint_t trigger = args[MP_IRQ_ARG_INIT_trigger].u_int; mp_uint_t not_supported = trigger & ~MP_UART_ALLOWED_FLAGS; if (trigger != 0 && not_supported) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("trigger 0x%08x unsupported"), not_supported); } // Reconfigure user IRQs uart_irq_config(self, false); self->mp_irq_obj->handler = handler; self->mp_irq_obj->ishard = args[MP_IRQ_ARG_INIT_hard].u_bool; self->mp_irq_trigger = trigger; uart_irq_config(self, true); } return MP_OBJ_FROM_PTR(self->mp_irq_obj); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_irq_obj, 1, pyb_uart_irq); STATIC const mp_rom_map_elem_t pyb_uart_locals_dict_table[] = { // instance methods { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_uart_init_obj) }, { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_uart_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&pyb_uart_any_obj) }, /// \method read([nbytes]) { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) }, /// \method readline() { MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj)}, /// \method readinto(buf[, nbytes]) { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) }, /// \method write(buf) { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) }, { MP_ROM_QSTR(MP_QSTR_irq), MP_ROM_PTR(&pyb_uart_irq_obj) }, { MP_ROM_QSTR(MP_QSTR_writechar), MP_ROM_PTR(&pyb_uart_writechar_obj) }, { MP_ROM_QSTR(MP_QSTR_readchar), MP_ROM_PTR(&pyb_uart_readchar_obj) }, { MP_ROM_QSTR(MP_QSTR_sendbreak), MP_ROM_PTR(&pyb_uart_sendbreak_obj) }, // class constants { MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(UART_HWCONTROL_RTS) }, { MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(UART_HWCONTROL_CTS) }, // IRQ flags { MP_ROM_QSTR(MP_QSTR_IRQ_RXIDLE), MP_ROM_INT(UART_FLAG_IDLE) }, }; STATIC MP_DEFINE_CONST_DICT(pyb_uart_locals_dict, pyb_uart_locals_dict_table); STATIC mp_uint_t pyb_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) { pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); byte *buf = buf_in; // check that size is a multiple of character width if (size & self->char_width) { *errcode = MP_EIO; return MP_STREAM_ERROR; } // convert byte size to char size size >>= self->char_width; // make sure we want at least 1 char if (size == 0) { return 0; } // wait for first char to become available if (!uart_rx_wait(self, self->timeout)) { // return EAGAIN error to indicate non-blocking (then read() method returns None) *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } // read the data byte *orig_buf = buf; for (;;) { int data = uart_rx_char(self); if (self->char_width == CHAR_WIDTH_9BIT) { *(uint16_t *)buf = data; buf += 2; } else { *buf++ = data; } if (--size == 0 || !uart_rx_wait(self, self->timeout_char)) { // return number of bytes read return buf - orig_buf; } } } STATIC mp_uint_t pyb_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) { pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); const byte *buf = buf_in; // check that size is a multiple of character width if (size & self->char_width) { *errcode = MP_EIO; return MP_STREAM_ERROR; } // wait to be able to write the first character. EAGAIN causes write to return None if (!uart_tx_wait(self, self->timeout)) { *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } // write the data size_t num_tx = uart_tx_data(self, buf, size >> self->char_width, errcode); if (*errcode == 0 || *errcode == MP_ETIMEDOUT) { // return number of bytes written, even if there was a timeout return num_tx << self->char_width; } else { return MP_STREAM_ERROR; } } STATIC mp_uint_t pyb_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) { pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_uint_t ret; if (request == MP_STREAM_POLL) { uintptr_t flags = arg; ret = 0; if ((flags & MP_STREAM_POLL_RD) && uart_rx_any(self)) { ret |= MP_STREAM_POLL_RD; } if ((flags & MP_STREAM_POLL_WR) && uart_tx_avail(self)) { ret |= MP_STREAM_POLL_WR; } } else { *errcode = MP_EINVAL; ret = MP_STREAM_ERROR; } return ret; } STATIC const mp_stream_p_t uart_stream_p = { .read = pyb_uart_read, .write = pyb_uart_write, .ioctl = pyb_uart_ioctl, .is_text = false, }; const mp_obj_type_t pyb_uart_type = { { &mp_type_type }, .name = MP_QSTR_UART, .print = pyb_uart_print, .make_new = pyb_uart_make_new, .getiter = mp_identity_getiter, .iternext = mp_stream_unbuffered_iter, .protocol = &uart_stream_p, .locals_dict = (mp_obj_dict_t *)&pyb_uart_locals_dict, };