/* * This file is part of the MicroPython project, http://micropython.org/ * * This file provides functions for configuring the clocks. * * The MIT License (MIT) * * Copyright (c) 2022 Robert Hammelrath * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/runtime.h" #include "py/mphal.h" #include "samd_soc.h" static uint32_t cpu_freq = CPU_FREQ; static uint32_t peripheral_freq = DFLL48M_FREQ; static uint32_t dfll48m_calibration; int sercom_gclk_id[] = { GCLK_CLKCTRL_ID_SERCOM0_CORE, GCLK_CLKCTRL_ID_SERCOM1_CORE, GCLK_CLKCTRL_ID_SERCOM2_CORE, GCLK_CLKCTRL_ID_SERCOM3_CORE, GCLK_CLKCTRL_ID_SERCOM4_CORE, GCLK_CLKCTRL_ID_SERCOM5_CORE }; uint32_t get_cpu_freq(void) { return cpu_freq; } uint32_t get_peripheral_freq(void) { return peripheral_freq; } void set_cpu_freq(uint32_t cpu_freq_arg) { cpu_freq = cpu_freq_arg; } void check_usb_recovery_mode(void) { #if !MICROPY_HW_XOSC32K mp_hal_delay_ms(500); // Check USB status. If not connected, switch DFLL48M back to open loop if (USB->DEVICE.DeviceEndpoint[0].EPCFG.reg == 0) { // Set/keep the open loop mode of the device. SYSCTRL->DFLLVAL.reg = dfll48m_calibration; SYSCTRL->DFLLCTRL.reg = SYSCTRL_DFLLCTRL_CCDIS | SYSCTRL_DFLLCTRL_ENABLE; } #endif // MICROPY_HW_XOSC32K } void init_clocks(uint32_t cpu_freq) { dfll48m_calibration = 0; // please the compiler // SAMD21 Clock settings // GCLK0: 48MHz from DFLL open loop mode or closed loop mode from 32k Crystal // GCLK1: 32768 Hz from 32K ULP or DFLL48M // GCLK2: 48MHz from DFLL for Peripherals // GCLK3: 1Mhz for the us-counter (TC4/TC5) // GCLK4: 32kHz from crystal, if present // GCLK8: 1kHz clock for WDT NVMCTRL->CTRLB.bit.MANW = 1; // errata "Spurious Writes" NVMCTRL->CTRLB.bit.RWS = 1; // 1 read wait state for 48MHz #if MICROPY_HW_XOSC32K // Set up OSC32K according datasheet 17.6.3 SYSCTRL->XOSC32K.reg = SYSCTRL_XOSC32K_STARTUP(0x3) | SYSCTRL_XOSC32K_EN32K | SYSCTRL_XOSC32K_XTALEN; SYSCTRL->XOSC32K.bit.ENABLE = 1; while (SYSCTRL->PCLKSR.bit.XOSC32KRDY == 0) { } // Set up the DFLL48 according to the data sheet 17.6.7.1.2 // Step 1: Set up the reference clock #if MICROPY_HW_MCU_OSC32KULP // Connect the GCLK1 to the XOSC32KULP GCLK->GENDIV.reg = GCLK_GENDIV_ID(1) | GCLK_GENDIV_DIV(1); GCLK->GENCTRL.reg = GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_OSCULP32K | GCLK_GENCTRL_ID(1); #else // Connect the GCLK1 to OSC32K via GCLK1 to the DFLL input and for further use. GCLK->GENDIV.reg = GCLK_GENDIV_ID(1) | GCLK_GENDIV_DIV(1); GCLK->GENCTRL.reg = GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_XOSC32K | GCLK_GENCTRL_ID(1); #endif while (GCLK->STATUS.bit.SYNCBUSY) { } // Connect the GCLK4 to OSC32K via GCLK1 to the DFLL input and for further use. GCLK->GENDIV.reg = GCLK_GENDIV_ID(4) | GCLK_GENDIV_DIV(1); GCLK->GENCTRL.reg = GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_XOSC32K | GCLK_GENCTRL_ID(4); while (GCLK->STATUS.bit.SYNCBUSY) { } // Connect GCLK4 to the DFLL input and for further use. GCLK->CLKCTRL.reg = GCLK_CLKCTRL_ID_DFLL48 | GCLK_CLKCTRL_GEN_GCLK4 | GCLK_CLKCTRL_CLKEN; // Enable access to the DFLLCTRL reg acc. to Errata 1.2.1 SYSCTRL->DFLLCTRL.reg = SYSCTRL_DFLLCTRL_ENABLE; while (SYSCTRL->PCLKSR.bit.DFLLRDY == 0) { } // Step 2: Set the coarse and fine values. // Get the coarse value from the calib data. In case it is not set, // set a midrange value. uint32_t coarse = (*((uint32_t *)FUSES_DFLL48M_COARSE_CAL_ADDR) & FUSES_DFLL48M_COARSE_CAL_Msk) >> FUSES_DFLL48M_COARSE_CAL_Pos; if (coarse == 0x3f) { coarse = 0x1f; } SYSCTRL->DFLLVAL.reg = SYSCTRL_DFLLVAL_COARSE(coarse) | SYSCTRL_DFLLVAL_FINE(512); while (SYSCTRL->PCLKSR.bit.DFLLRDY == 0) { } // Step 3: Set the multiplication values. The offset of 16384 to the freq is for rounding. SYSCTRL->DFLLMUL.reg = SYSCTRL_DFLLMUL_MUL((CPU_FREQ + 16384) / 32768) | SYSCTRL_DFLLMUL_FSTEP(1) | SYSCTRL_DFLLMUL_CSTEP(1); while (SYSCTRL->PCLKSR.bit.DFLLRDY == 0) { } // Step 4: Start the DFLL and wait for the PLL lock. We just wait for the fine lock, since // coarse adjusting is bypassed. SYSCTRL->DFLLCTRL.reg |= SYSCTRL_DFLLCTRL_MODE | SYSCTRL_DFLLCTRL_WAITLOCK | SYSCTRL_DFLLCTRL_STABLE | SYSCTRL_DFLLCTRL_BPLCKC | SYSCTRL_DFLLCTRL_ENABLE; while (SYSCTRL->PCLKSR.bit.DFLLLCKF == 0) { } #else // MICROPY_HW_XOSC32K // Enable DFLL48M SYSCTRL->DFLLCTRL.reg = SYSCTRL_DFLLCTRL_ENABLE; while (!SYSCTRL->PCLKSR.bit.DFLLRDY) { } uint32_t coarse = (*((uint32_t *)FUSES_DFLL48M_COARSE_CAL_ADDR) & FUSES_DFLL48M_COARSE_CAL_Msk) >> FUSES_DFLL48M_COARSE_CAL_Pos; if (coarse == 0x3f) { coarse = 0x1f; } SYSCTRL->DFLLVAL.reg = SYSCTRL_DFLLVAL_COARSE(coarse) | SYSCTRL_DFLLVAL_FINE(511); #if MICROPY_HW_DFLL_USB_SYNC // Configure the DFLL48M for USB clock recovery. // Will have to switch back if no USB SYSCTRL->DFLLSYNC.bit.READREQ = 1; dfll48m_calibration = SYSCTRL->DFLLVAL.reg; // Set the Multiplication factor. SYSCTRL->DFLLMUL.reg = SYSCTRL_DFLLMUL_CSTEP(1) | SYSCTRL_DFLLMUL_FSTEP(1) | SYSCTRL_DFLLMUL_MUL(48000); // Set the mode to closed loop USB Recovery mode SYSCTRL->DFLLCTRL.reg = SYSCTRL_DFLLCTRL_USBCRM | SYSCTRL_DFLLCTRL_CCDIS | SYSCTRL_DFLLCTRL_MODE | SYSCTRL_DFLLCTRL_ENABLE; #else // Set/keep the open loop mode of the device. SYSCTRL->DFLLCTRL.reg = SYSCTRL_DFLLCTRL_CCDIS | SYSCTRL_DFLLCTRL_ENABLE; #endif while (!SYSCTRL->PCLKSR.bit.DFLLRDY) { } // Enable 32768 Hz on GCLK1 for consistency GCLK->GENDIV.reg = GCLK_GENDIV_ID(1) | GCLK_GENDIV_DIV(48016384 / 32768); GCLK->GENCTRL.reg = GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL48M | GCLK_GENCTRL_ID(1); while (GCLK->STATUS.bit.SYNCBUSY) { } #endif // MICROPY_HW_XOSC32K // Enable GCLK output: 48M on both CCLK0 and GCLK2 GCLK->GENDIV.reg = GCLK_GENDIV_ID(0) | GCLK_GENDIV_DIV(1); GCLK->GENCTRL.reg = GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL48M | GCLK_GENCTRL_ID(0); while (GCLK->STATUS.bit.SYNCBUSY) { } GCLK->GENDIV.reg = GCLK_GENDIV_ID(2) | GCLK_GENDIV_DIV(1); GCLK->GENCTRL.reg = GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL48M | GCLK_GENCTRL_ID(2); while (GCLK->STATUS.bit.SYNCBUSY) { } // Enable GCLK output: 1MHz on GCLK3 for TC4 GCLK->GENDIV.reg = GCLK_GENDIV_ID(3) | GCLK_GENDIV_DIV(48); GCLK->GENCTRL.reg = GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL48M | GCLK_GENCTRL_ID(3); while (GCLK->STATUS.bit.SYNCBUSY) { } // Set GCLK8 to 1 kHz. GCLK->GENDIV.reg = GCLK_GENDIV_ID(8) | GCLK_GENDIV_DIV(32); GCLK->GENCTRL.reg = GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_OSCULP32K | GCLK_GENCTRL_ID(8); while (GCLK->STATUS.bit.SYNCBUSY) { } } void enable_sercom_clock(int id) { // Enable synchronous clock. The bits are nicely arranged PM->APBCMASK.reg |= 0x04 << id; // Select multiplexer generic clock source and enable. GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK2 | sercom_gclk_id[id]; // Wait while it updates synchronously. while (GCLK->STATUS.bit.SYNCBUSY) { } }