/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include "mpconfig.h" #include "nlr.h" #include "misc.h" #include "qstr.h" #include "obj.h" #include "runtime0.h" #include "runtime.h" #include "objtype.h" #if 0 // print debugging info #define DEBUG_PRINT (1) #define DEBUG_printf DEBUG_printf #else // don't print debugging info #define DEBUG_printf(...) (void)0 #endif /******************************************************************************/ // instance object #define is_native_type(type) ((type)->make_new != instance_make_new) STATIC mp_obj_t instance_make_new(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args); STATIC mp_obj_t mp_obj_new_instance(mp_obj_t class, uint subobjs) { mp_obj_instance_t *o = m_new_obj_var(mp_obj_instance_t, mp_obj_t, subobjs); o->base.type = class; mp_map_init(&o->members, 0); mp_seq_clear(o->subobj, 0, subobjs, sizeof(*o->subobj)); return o; } STATIC int instance_count_native_bases(const mp_obj_type_t *type, const mp_obj_type_t **last_native_base) { uint len; mp_obj_t *items; mp_obj_tuple_get(type->bases_tuple, &len, &items); int count = 0; for (uint i = 0; i < len; i++) { assert(MP_OBJ_IS_TYPE(items[i], &mp_type_type)); const mp_obj_type_t *bt = (const mp_obj_type_t *)items[i]; if (bt == &mp_type_object) { // Not a "real" type continue; } if (is_native_type(bt)) { *last_native_base = items[i]; count++; } else { count += instance_count_native_bases(items[i], last_native_base); } } return count; } // TODO // This implements depth-first left-to-right MRO, which is not compliant with Python3 MRO // http://python-history.blogspot.com/2010/06/method-resolution-order.html // https://www.python.org/download/releases/2.3/mro/ // // will return MP_OBJ_NULL if not found // will return MP_OBJ_SENTINEL if special method was found in a native type base // via slot id (meth_offset). As there can be only one native base, it's known that it // applies to instance->subobj[0]. In most cases, we also don't need to know which type // it was - because instance->subobj[0] is of that type. The only exception is when // object is not yet constructed, then we need to know base native type to construct // instance->subobj[0]. This case is handled via instance_count_native_bases() though. STATIC void mp_obj_class_lookup(mp_obj_instance_t *o, const mp_obj_type_t *type, qstr attr, machine_uint_t meth_offset, mp_obj_t *dest) { assert(dest[0] == NULL); assert(dest[1] == NULL); for (;;) { // Optimize special method lookup for native types // This avoids extra method_name => slot lookup. On the other hand, // this should not be applied to class types, as will result in extra // lookup either. if (meth_offset != 0 && is_native_type(type)) { if (*(void**)((char*)type + meth_offset) != NULL) { DEBUG_printf("mp_obj_class_lookup: matched special meth slot for %s\n", qstr_str(attr)); dest[0] = MP_OBJ_SENTINEL; return; } } if (type->locals_dict != NULL) { // search locals_dict (the set of methods/attributes) assert(MP_OBJ_IS_TYPE(type->locals_dict, &mp_type_dict)); // Micro Python restriction, for now mp_map_t *locals_map = mp_obj_dict_get_map(type->locals_dict); mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP); if (elem != NULL) { dest[0] = elem->value; if (o != MP_OBJ_NULL && is_native_type(type)) { dest[1] = o->subobj[0]; } // TODO: Sensibly, we should call instance_convert_return_attr() here, // instead of multiple places later. Also, this code duplicates runtime.c much. return; } } // Try this for completeness, but all native methods should be statically defined // in locals_dict, and would be handled by above. if (o != MP_OBJ_NULL && is_native_type(type)) { mp_load_method_maybe(o->subobj[0], attr, dest); if (dest[0] != MP_OBJ_NULL) { return; } } // attribute not found, keep searching base classes // for a const struct, this entry might be NULL if (type->bases_tuple == MP_OBJ_NULL) { return; } uint len; mp_obj_t *items; mp_obj_tuple_get(type->bases_tuple, &len, &items); if (len == 0) { return; } for (uint i = 0; i < len - 1; i++) { assert(MP_OBJ_IS_TYPE(items[i], &mp_type_type)); mp_obj_type_t *bt = (mp_obj_type_t*)items[i]; if (bt == &mp_type_object) { // Not a "real" type continue; } mp_obj_class_lookup(o, bt, attr, meth_offset, dest); if (dest[0] != MP_OBJ_NULL) { return; } } // search last base (simple tail recursion elimination) assert(MP_OBJ_IS_TYPE(items[len - 1], &mp_type_type)); type = (mp_obj_type_t*)items[len - 1]; if (type == &mp_type_object) { // Not a "real" type return; } } } STATIC void instance_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { mp_obj_instance_t *self = self_in; qstr meth = (kind == PRINT_STR) ? MP_QSTR___str__ : MP_QSTR___repr__; mp_obj_t member[2] = {MP_OBJ_NULL}; mp_obj_class_lookup(self, self->base.type, meth, offsetof(mp_obj_type_t, print), member); if (member[0] == MP_OBJ_NULL && kind == PRINT_STR) { // If there's no __str__, fall back to __repr__ mp_obj_class_lookup(self, self->base.type, MP_QSTR___repr__, 0, member); } if (member[0] == MP_OBJ_SENTINEL) { // Handle Exception subclasses specially if (mp_obj_is_native_exception_instance(self->subobj[0])) { if (kind != PRINT_STR) { print(env, "%s", qstr_str(self->base.type->name)); } mp_obj_print_helper(print, env, self->subobj[0], kind | PRINT_EXC_SUBCLASS); } else { mp_obj_print_helper(print, env, self->subobj[0], kind); } return; } if (member[0] != MP_OBJ_NULL) { mp_obj_t r = mp_call_function_1(member[0], self_in); mp_obj_print_helper(print, env, r, PRINT_STR); return; } // TODO: CPython prints fully-qualified type name print(env, "<%s object at %p>", mp_obj_get_type_str(self_in), self_in); } STATIC mp_obj_t instance_make_new(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) { assert(MP_OBJ_IS_TYPE(self_in, &mp_type_type)); mp_obj_type_t *self = self_in; const mp_obj_type_t *native_base; uint num_native_bases = instance_count_native_bases(self, &native_base); assert(num_native_bases < 2); mp_obj_instance_t *o = mp_obj_new_instance(self_in, num_native_bases); // look for __init__ function mp_obj_t init_fn[2] = {MP_OBJ_NULL}; mp_obj_class_lookup(NULL, self, MP_QSTR___init__, offsetof(mp_obj_type_t, make_new), init_fn); if (init_fn[0] == MP_OBJ_SENTINEL) { // Native type's constructor is what wins - it gets all our arguments, // and none Python classes are initialized at all. o->subobj[0] = native_base->make_new((mp_obj_type_t*)native_base, n_args, n_kw, args); } else if (init_fn[0] != MP_OBJ_NULL) { // We need to default-initialize any native subobjs first if (num_native_bases > 0) { o->subobj[0] = native_base->make_new((mp_obj_type_t*)native_base, 0, 0, NULL); } // now call Python class __init__ function with all args mp_obj_t init_ret; if (n_args == 0 && n_kw == 0) { init_ret = mp_call_function_n_kw(init_fn[0], 1, 0, (mp_obj_t*)(void*)&o); } else { mp_obj_t *args2 = m_new(mp_obj_t, 1 + n_args + 2 * n_kw); args2[0] = o; memcpy(args2 + 1, args, (n_args + 2 * n_kw) * sizeof(mp_obj_t)); init_ret = mp_call_function_n_kw(init_fn[0], n_args + 1, n_kw, args2); m_del(mp_obj_t, args2, 1 + n_args + 2 * n_kw); } if (init_ret != mp_const_none) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "__init__() should return None, not '%s'", mp_obj_get_type_str(init_ret))); } } else { if (n_args != 0) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "object() takes no parameters")); } } return o; } STATIC const qstr unary_op_method_name[] = { [MP_UNARY_OP_BOOL] = MP_QSTR___bool__, [MP_UNARY_OP_LEN] = MP_QSTR___len__, //[MP_UNARY_OP_POSITIVE, //[MP_UNARY_OP_NEGATIVE, //[MP_UNARY_OP_INVERT, [MP_UNARY_OP_NOT] = MP_QSTR_, // don't need to implement this, used to make sure array has full size }; STATIC mp_obj_t instance_unary_op(int op, mp_obj_t self_in) { mp_obj_instance_t *self = self_in; qstr op_name = unary_op_method_name[op]; /* Still try to lookup native slot if (op_name == 0) { return MP_OBJ_NOT_SUPPORTED; } */ mp_obj_t member[2] = {MP_OBJ_NULL}; mp_obj_class_lookup(self, self->base.type, op_name, offsetof(mp_obj_type_t, unary_op), member); if (member[0] == MP_OBJ_SENTINEL) { return mp_unary_op(op, self->subobj[0]); } else if (member[0] != MP_OBJ_NULL) { return mp_call_function_1(member[0], self_in); } else { return MP_OBJ_NOT_SUPPORTED; } } STATIC const qstr binary_op_method_name[] = { /* MP_BINARY_OP_OR, MP_BINARY_OP_XOR, MP_BINARY_OP_AND, MP_BINARY_OP_LSHIFT, MP_BINARY_OP_RSHIFT, */ [MP_BINARY_OP_ADD] = MP_QSTR___add__, [MP_BINARY_OP_SUBTRACT] = MP_QSTR___sub__, /* MP_BINARY_OP_MULTIPLY, MP_BINARY_OP_FLOOR_DIVIDE, MP_BINARY_OP_TRUE_DIVIDE, MP_BINARY_OP_MODULO, MP_BINARY_OP_POWER, MP_BINARY_OP_INPLACE_OR, MP_BINARY_OP_INPLACE_XOR, MP_BINARY_OP_INPLACE_AND, MP_BINARY_OP_INPLACE_LSHIFT, MP_BINARY_OP_INPLACE_RSHIFT, MP_BINARY_OP_INPLACE_ADD, MP_BINARY_OP_INPLACE_SUBTRACT, MP_BINARY_OP_INPLACE_MULTIPLY, MP_BINARY_OP_INPLACE_FLOOR_DIVIDE, MP_BINARY_OP_INPLACE_TRUE_DIVIDE, MP_BINARY_OP_INPLACE_MODULO, MP_BINARY_OP_INPLACE_POWER, MP_BINARY_OP_LESS, MP_BINARY_OP_MORE, MP_BINARY_OP_EQUAL, MP_BINARY_OP_LESS_EQUAL, MP_BINARY_OP_MORE_EQUAL, MP_BINARY_OP_NOT_EQUAL, MP_BINARY_OP_IN, MP_BINARY_OP_IS, */ [MP_BINARY_OP_EXCEPTION_MATCH] = MP_QSTR_, // not implemented, used to make sure array has full size }; // Given a member that was extracted from an instance, convert it correctly // and put the result in the dest[] array for a possible method call. // Conversion means dealing with static/class methods, callables, and values. // see http://docs.python.org/3.3/howto/descriptor.html STATIC void instance_convert_return_attr(mp_obj_t self, mp_obj_t member, mp_obj_t *dest) { assert(dest[1] == NULL); if (MP_OBJ_IS_TYPE(member, &mp_type_staticmethod)) { // return just the function dest[0] = ((mp_obj_static_class_method_t*)member)->fun; } else if (MP_OBJ_IS_TYPE(member, &mp_type_classmethod)) { // return a bound method, with self being the type of this object dest[0] = ((mp_obj_static_class_method_t*)member)->fun; dest[1] = mp_obj_get_type(self); } else if (MP_OBJ_IS_TYPE(member, &mp_type_type)) { // Don't try to bind types dest[0] = member; } else if (mp_obj_is_callable(member)) { // return a bound method, with self being this object dest[0] = member; dest[1] = self; } else { // class member is a value, so just return that value dest[0] = member; } } STATIC mp_obj_t instance_binary_op(int op, mp_obj_t lhs_in, mp_obj_t rhs_in) { // Note: For ducktyping, CPython does not look in the instance members or use // __getattr__ or __getattribute__. It only looks in the class dictionary. mp_obj_instance_t *lhs = lhs_in; qstr op_name = binary_op_method_name[op]; /* Still try to lookup native slot if (op_name == 0) { return MP_OBJ_NOT_SUPPORTED; } */ mp_obj_t member[2] = {MP_OBJ_NULL}; mp_obj_class_lookup(lhs, lhs->base.type, op_name, offsetof(mp_obj_type_t, binary_op), member); if (member[0] == MP_OBJ_SENTINEL) { return mp_binary_op(op, lhs->subobj[0], rhs_in); } else if (member[0] != MP_OBJ_NULL) { mp_obj_t dest[3]; dest[1] = MP_OBJ_NULL; instance_convert_return_attr(lhs_in, member[0], dest); dest[2] = rhs_in; return mp_call_method_n_kw(1, 0, dest); } else { return MP_OBJ_NOT_SUPPORTED; } } STATIC void instance_load_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { // logic: look in obj members then class locals (TODO check this against CPython) mp_obj_instance_t *self = self_in; mp_map_elem_t *elem = mp_map_lookup(&self->members, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP); if (elem != NULL) { // object member, always treated as a value // TODO should we check for properties? dest[0] = elem->value; return; } mp_obj_class_lookup(self, self->base.type, attr, 0, dest); mp_obj_t member = dest[0]; if (member != MP_OBJ_NULL) { if (0) { #if MICROPY_ENABLE_PROPERTY } else if (MP_OBJ_IS_TYPE(member, &mp_type_property)) { // object member is a property // delegate the store to the property // TODO should this be part of instance_convert_return_attr? const mp_obj_t *proxy = mp_obj_property_get(member); if (proxy[0] == mp_const_none) { // TODO } else { dest[0] = mp_call_function_n_kw(proxy[0], 1, 0, &self_in); // TODO should we convert the returned value using instance_convert_return_attr? } #endif } else { // not a property // if we don't yet have bound method (supposedly from native base), go // try to convert own attrs. if (dest[1] == MP_OBJ_NULL) { instance_convert_return_attr(self_in, member, dest); } } return; } // try __getattr__ if (attr != MP_QSTR___getattr__) { mp_obj_t dest2[3]; mp_load_method_maybe(self_in, MP_QSTR___getattr__, dest2); if (dest2[0] != MP_OBJ_NULL) { // __getattr__ exists, call it and return its result // XXX if this fails to load the requested attr, should we catch the attribute error and return silently? dest2[2] = MP_OBJ_NEW_QSTR(attr); dest[0] = mp_call_method_n_kw(1, 0, dest2); return; } } } STATIC bool instance_store_attr(mp_obj_t self_in, qstr attr, mp_obj_t value) { mp_obj_instance_t *self = self_in; #if MICROPY_ENABLE_PROPERTY // for property, we need to do a lookup first in the class dict // this makes all stores slow... how to fix? mp_obj_t member[2] = {MP_OBJ_NULL}; mp_obj_class_lookup(self, self->base.type, attr, 0, member); if (member[0] != MP_OBJ_NULL && MP_OBJ_IS_TYPE(member[0], &mp_type_property)) { // attribute already exists and is a property // delegate the store to the property const mp_obj_t *proxy = mp_obj_property_get(member[0]); if (proxy[1] == mp_const_none) { // TODO better error message return false; } else { mp_obj_t dest[2] = {self_in, value}; mp_call_function_n_kw(proxy[1], 2, 0, dest); return true; } } #endif if (value == MP_OBJ_NULL) { // delete attribute mp_map_elem_t *elem = mp_map_lookup(&self->members, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_REMOVE_IF_FOUND); return elem != NULL; } else { // store attribute mp_map_lookup(&self->members, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = value; return true; } } STATIC mp_obj_t instance_subscr(mp_obj_t self_in, mp_obj_t index, mp_obj_t value) { mp_obj_instance_t *self = self_in; mp_obj_t member[2] = {MP_OBJ_NULL}; uint meth_args; if (value == MP_OBJ_NULL) { // delete item mp_obj_class_lookup(self, self->base.type, MP_QSTR___delitem__, offsetof(mp_obj_type_t, subscr), member); meth_args = 2; } else if (value == MP_OBJ_SENTINEL) { // load item mp_obj_class_lookup(self, self->base.type, MP_QSTR___getitem__, offsetof(mp_obj_type_t, subscr), member); meth_args = 2; } else { // store item mp_obj_class_lookup(self, self->base.type, MP_QSTR___setitem__, offsetof(mp_obj_type_t, subscr), member); meth_args = 3; } if (member[0] == MP_OBJ_SENTINEL) { return mp_obj_subscr(self->subobj[0], index, value); } else if (member[0] != MP_OBJ_NULL) { mp_obj_t args[3] = {self_in, index, value}; // TODO probably need to call instance_convert_return_attr, and use mp_call_method_n_kw mp_obj_t ret = mp_call_function_n_kw(member[0], meth_args, 0, args); if (value == MP_OBJ_SENTINEL) { return ret; } else { return mp_const_none; } } else { return MP_OBJ_NOT_SUPPORTED; } } STATIC mp_obj_t instance_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) { mp_obj_instance_t *self = self_in; mp_obj_t member[2] = {MP_OBJ_NULL}; mp_obj_class_lookup(self, self->base.type, MP_QSTR___call__, offsetof(mp_obj_type_t, call), member); if (member[0] == MP_OBJ_NULL) { return MP_OBJ_NULL; } if (member[0] == MP_OBJ_SENTINEL) { return mp_call_function_n_kw(self->subobj[0], n_args, n_kw, args); } mp_obj_t meth = mp_obj_new_bound_meth(member[0], self); return mp_call_function_n_kw(meth, n_args, n_kw, args); } STATIC mp_obj_t instance_getiter(mp_obj_t self_in) { mp_obj_instance_t *self = self_in; mp_obj_t member[2] = {MP_OBJ_NULL}; mp_obj_class_lookup(self, self->base.type, MP_QSTR___iter__, offsetof(mp_obj_type_t, getiter), member); if (member[0] == MP_OBJ_NULL) { // This kinda duplicates code in mp_getiter() mp_obj_class_lookup(self, self->base.type, MP_QSTR___getitem__, 0, member); if (member[0] != MP_OBJ_NULL) { // __getitem__ exists, create an iterator instance_convert_return_attr(self_in, member[0], member); return mp_obj_new_getitem_iter(member); } return MP_OBJ_NULL; } if (member[0] == MP_OBJ_SENTINEL) { mp_obj_type_t *type = mp_obj_get_type(self->subobj[0]); return type->getiter(self->subobj[0]); } mp_obj_t meth = mp_obj_new_bound_meth(member[0], self); return mp_call_function_n_kw(meth, 0, 0, NULL); } /******************************************************************************/ // type object // - the struct is mp_obj_type_t and is defined in obj.h so const types can be made // - there is a constant mp_obj_type_t (called mp_type_type) for the 'type' object // - creating a new class (a new type) creates a new mp_obj_type_t STATIC void type_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { mp_obj_type_t *self = self_in; print(env, "", qstr_str(self->name)); } STATIC mp_obj_t type_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 1, 3, false); switch (n_args) { case 1: return mp_obj_get_type(args[0]); case 3: // args[0] = name // args[1] = bases tuple // args[2] = locals dict return mp_obj_new_type(mp_obj_str_get_qstr(args[0]), args[1], args[2]); default: nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "type takes 1 or 3 arguments")); } } STATIC mp_obj_t type_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) { // instantiate an instance of a class mp_obj_type_t *self = self_in; if (self->make_new == NULL) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "cannot create '%s' instances", qstr_str(self->name))); } // make new instance mp_obj_t o = self->make_new(self, n_args, n_kw, args); // return new instance return o; } // for fail, do nothing; for attr, dest[0] = value; for method, dest[0] = method, dest[1] = self STATIC void type_load_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { assert(MP_OBJ_IS_TYPE(self_in, &mp_type_type)); mp_obj_type_t *self = self_in; #if MICROPY_CPYTHON_COMPAT if (attr == MP_QSTR___name__) { dest[0] = MP_OBJ_NEW_QSTR(self->name); return; } #endif mp_obj_t member[2] = {MP_OBJ_NULL}; mp_obj_class_lookup(NULL, self, attr, 0, member); if (member[0] != MP_OBJ_NULL) { // check if the methods are functions, static or class methods // see http://docs.python.org/3.3/howto/descriptor.html if (MP_OBJ_IS_TYPE(member[0], &mp_type_staticmethod)) { // return just the function dest[0] = ((mp_obj_static_class_method_t*)member[0])->fun; } else if (MP_OBJ_IS_TYPE(member[0], &mp_type_classmethod)) { // return a bound method, with self being this class dest[0] = ((mp_obj_static_class_method_t*)member[0])->fun; dest[1] = self_in; } else { // return just the function // TODO need to wrap in a type check for the first argument; eg list.append(1,1) needs to throw an exception dest[0] = member[0]; } } } STATIC bool type_store_attr(mp_obj_t self_in, qstr attr, mp_obj_t value) { assert(MP_OBJ_IS_TYPE(self_in, &mp_type_type)); mp_obj_type_t *self = self_in; // TODO CPython allows STORE_ATTR to a class, but is this the correct implementation? if (self->locals_dict != NULL) { assert(MP_OBJ_IS_TYPE(self->locals_dict, &mp_type_dict)); // Micro Python restriction, for now mp_map_t *locals_map = mp_obj_dict_get_map(self->locals_dict); if (value == MP_OBJ_NULL) { // delete attribute mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_REMOVE_IF_FOUND); // note that locals_map may be in ROM, so remove will fail in that case return elem != NULL; } else { // store attribute mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND); // note that locals_map may be in ROM, so add will fail in that case if (elem != NULL) { elem->value = value; return true; } } } return false; } STATIC mp_obj_t type_binary_op(int op, mp_obj_t lhs_in, mp_obj_t rhs_in) { switch (op) { case MP_BINARY_OP_EQUAL: // Types can be equal only if it's the same type structure, // we don't even need to check for 2nd arg type. return MP_BOOL(lhs_in == rhs_in); default: return MP_OBJ_NOT_SUPPORTED; } } const mp_obj_type_t mp_type_type = { { &mp_type_type }, .name = MP_QSTR_type, .print = type_print, .make_new = type_make_new, .call = type_call, .load_attr = type_load_attr, .store_attr = type_store_attr, .binary_op = type_binary_op, }; mp_obj_t mp_obj_new_type(qstr name, mp_obj_t bases_tuple, mp_obj_t locals_dict) { assert(MP_OBJ_IS_TYPE(bases_tuple, &mp_type_tuple)); // Micro Python restriction, for now assert(MP_OBJ_IS_TYPE(locals_dict, &mp_type_dict)); // Micro Python restriction, for now // Basic validation of base classes uint len; mp_obj_t *items; mp_obj_tuple_get(bases_tuple, &len, &items); for (uint i = 0; i < len; i++) { assert(MP_OBJ_IS_TYPE(items[i], &mp_type_type)); mp_obj_type_t *t = items[i]; // TODO: Verify with CPy, tested on function type if (t->make_new == NULL) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "type '%s' is not an acceptable base type", qstr_str(t->name))); } } mp_obj_type_t *o = m_new0(mp_obj_type_t, 1); o->base.type = &mp_type_type; o->name = name; o->print = instance_print; o->make_new = instance_make_new; o->unary_op = instance_unary_op; o->binary_op = instance_binary_op; o->load_attr = instance_load_attr; o->store_attr = instance_store_attr; o->subscr = instance_subscr; o->call = instance_call; o->getiter = instance_getiter; o->bases_tuple = bases_tuple; o->locals_dict = locals_dict; const mp_obj_type_t *native_base; uint num_native_bases = instance_count_native_bases(o, &native_base); if (num_native_bases > 1) { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "multiple bases have instance lay-out conflict")); } return o; } /******************************************************************************/ // super object typedef struct _mp_obj_super_t { mp_obj_base_t base; mp_obj_t type; mp_obj_t obj; } mp_obj_super_t; STATIC void super_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { mp_obj_super_t *self = self_in; print(env, "type, PRINT_STR); print(env, ", "); mp_obj_print_helper(print, env, self->obj, PRINT_STR); print(env, ">"); } STATIC mp_obj_t super_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) { if (n_args != 2 || n_kw != 0) { // 0 arguments are turned into 2 in the compiler // 1 argument is not yet implemented nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "super() requires 2 arguments")); } return mp_obj_new_super(args[0], args[1]); } // for fail, do nothing; for attr, dest[0] = value; for method, dest[0] = method, dest[1] = self STATIC void super_load_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { assert(MP_OBJ_IS_TYPE(self_in, &mp_type_super)); mp_obj_super_t *self = self_in; assert(MP_OBJ_IS_TYPE(self->type, &mp_type_type)); mp_obj_type_t *type = self->type; // for a const struct, this entry might be NULL if (type->bases_tuple == MP_OBJ_NULL) { return; } uint len; mp_obj_t *items; mp_obj_tuple_get(type->bases_tuple, &len, &items); for (uint i = 0; i < len; i++) { assert(MP_OBJ_IS_TYPE(items[i], &mp_type_type)); mp_obj_t member[2] = {MP_OBJ_NULL}; mp_obj_class_lookup(self->obj, (mp_obj_type_t*)items[i], attr, 0, member); if (member[0] != MP_OBJ_NULL) { instance_convert_return_attr(self->obj, member[0], dest); return; } } } const mp_obj_type_t mp_type_super = { { &mp_type_type }, .name = MP_QSTR_super, .print = super_print, .make_new = super_make_new, .load_attr = super_load_attr, }; mp_obj_t mp_obj_new_super(mp_obj_t type, mp_obj_t obj) { mp_obj_super_t *o = m_new_obj(mp_obj_super_t); *o = (mp_obj_super_t){{&mp_type_super}, type, obj}; return o; } /******************************************************************************/ // subclassing and built-ins specific to types // object and classinfo should be type objects // (but the function will fail gracefully if they are not) bool mp_obj_is_subclass_fast(mp_const_obj_t object, mp_const_obj_t classinfo) { for (;;) { if (object == classinfo) { return true; } // not equivalent classes, keep searching base classes // object should always be a type object, but just return false if it's not if (!MP_OBJ_IS_TYPE(object, &mp_type_type)) { return false; } const mp_obj_type_t *self = object; // for a const struct, this entry might be NULL if (self->bases_tuple == MP_OBJ_NULL) { return false; } // get the base objects (they should be type objects) uint len; mp_obj_t *items; mp_obj_tuple_get(self->bases_tuple, &len, &items); if (len == 0) { return false; } // iterate through the base objects for (uint i = 0; i < len - 1; i++) { if (mp_obj_is_subclass_fast(items[i], classinfo)) { return true; } } // search last base (simple tail recursion elimination) object = items[len - 1]; } } STATIC mp_obj_t mp_obj_is_subclass(mp_obj_t object, mp_obj_t classinfo) { uint len; mp_obj_t *items; if (MP_OBJ_IS_TYPE(classinfo, &mp_type_type)) { len = 1; items = &classinfo; } else if (MP_OBJ_IS_TYPE(classinfo, &mp_type_tuple)) { mp_obj_tuple_get(classinfo, &len, &items); } else { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "issubclass() arg 2 must be a class or a tuple of classes")); } for (uint i = 0; i < len; i++) { // We explicitly check for 'object' here since no-one explicitly derives from it if (items[i] == &mp_type_object || mp_obj_is_subclass_fast(object, items[i])) { return mp_const_true; } } return mp_const_false; } STATIC mp_obj_t mp_builtin_issubclass(mp_obj_t object, mp_obj_t classinfo) { if (!MP_OBJ_IS_TYPE(object, &mp_type_type)) { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "issubclass() arg 1 must be a class")); } return mp_obj_is_subclass(object, classinfo); } MP_DEFINE_CONST_FUN_OBJ_2(mp_builtin_issubclass_obj, mp_builtin_issubclass); STATIC mp_obj_t mp_builtin_isinstance(mp_obj_t object, mp_obj_t classinfo) { return mp_obj_is_subclass(mp_obj_get_type(object), classinfo); } MP_DEFINE_CONST_FUN_OBJ_2(mp_builtin_isinstance_obj, mp_builtin_isinstance); mp_obj_t mp_instance_cast_to_native_base(mp_const_obj_t self_in, mp_const_obj_t native_type) { mp_obj_type_t *self_type = mp_obj_get_type(self_in); if (!mp_obj_is_subclass_fast(self_type, native_type)) { return MP_OBJ_NULL; } mp_obj_instance_t *self = (mp_obj_instance_t*)self_in; return self->subobj[0]; } /******************************************************************************/ // staticmethod and classmethod types (probably should go in a different file) STATIC mp_obj_t static_class_method_make_new(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) { assert(self_in == &mp_type_staticmethod || self_in == &mp_type_classmethod); if (n_args != 1 || n_kw != 0) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "function takes 1 positional argument but %d were given", n_args)); } mp_obj_static_class_method_t *o = m_new_obj(mp_obj_static_class_method_t); *o = (mp_obj_static_class_method_t){{(mp_obj_type_t*)self_in}, args[0]}; return o; } const mp_obj_type_t mp_type_staticmethod = { { &mp_type_type }, .name = MP_QSTR_staticmethod, .make_new = static_class_method_make_new }; const mp_obj_type_t mp_type_classmethod = { { &mp_type_type }, .name = MP_QSTR_classmethod, .make_new = static_class_method_make_new };