/* * This file is part of the MicroPython project, http://micropython.org/ * * Original template from ST Cube library. See below for header. * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ /** ****************************************************************************** * @file Templates/Src/stm32f4xx_it.c * @author MCD Application Team * @version V1.0.1 * @date 26-February-2014 * @brief Main Interrupt Service Routines. * This file provides template for all exceptions handler and * peripherals interrupt service routine. ****************************************************************************** * @attention * *

© COPYRIGHT(c) 2014 STMicroelectronics

* * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ #include #include "py/obj.h" #include "py/mphal.h" #include "stm32_it.h" #include "pendsv.h" #include "irq.h" #include "powerctrl.h" #include "pybthread.h" #include "gccollect.h" #include "extint.h" #include "timer.h" #include "uart.h" #include "storage.h" #include "dma.h" #include "i2c.h" #include "usb.h" #if defined(MICROPY_HW_USB_FS) extern PCD_HandleTypeDef pcd_fs_handle; #endif #if defined(MICROPY_HW_USB_HS) extern PCD_HandleTypeDef pcd_hs_handle; #endif /******************************************************************************/ /* Cortex-M4 Processor Exceptions Handlers */ /******************************************************************************/ // Set the following to 1 to get some more information on the Hard Fault // More information about decoding the fault registers can be found here: // http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0646a/Cihdjcfc.html STATIC char *fmt_hex(uint32_t val, char *buf) { const char *hexDig = "0123456789abcdef"; buf[0] = hexDig[(val >> 28) & 0x0f]; buf[1] = hexDig[(val >> 24) & 0x0f]; buf[2] = hexDig[(val >> 20) & 0x0f]; buf[3] = hexDig[(val >> 16) & 0x0f]; buf[4] = hexDig[(val >> 12) & 0x0f]; buf[5] = hexDig[(val >> 8) & 0x0f]; buf[6] = hexDig[(val >> 4) & 0x0f]; buf[7] = hexDig[(val >> 0) & 0x0f]; buf[8] = '\0'; return buf; } STATIC void print_reg(const char *label, uint32_t val) { char hexStr[9]; mp_hal_stdout_tx_str(label); mp_hal_stdout_tx_str(fmt_hex(val, hexStr)); mp_hal_stdout_tx_str("\r\n"); } STATIC void print_hex_hex(const char *label, uint32_t val1, uint32_t val2) { char hex_str[9]; mp_hal_stdout_tx_str(label); mp_hal_stdout_tx_str(fmt_hex(val1, hex_str)); mp_hal_stdout_tx_str(" "); mp_hal_stdout_tx_str(fmt_hex(val2, hex_str)); mp_hal_stdout_tx_str("\r\n"); } // The ARMv7M Architecture manual (section B.1.5.6) says that upon entry // to an exception, that the registers will be in the following order on the // // stack: R0, R1, R2, R3, R12, LR, PC, XPSR typedef struct { uint32_t r0, r1, r2, r3, r12, lr, pc, xpsr; } ExceptionRegisters_t; int pyb_hard_fault_debug = 0; void HardFault_C_Handler(ExceptionRegisters_t *regs) { if (!pyb_hard_fault_debug) { powerctrl_mcu_reset(); } #if MICROPY_HW_ENABLE_USB // We need to disable the USB so it doesn't try to write data out on // the VCP and then block indefinitely waiting for the buffer to drain. pyb_usb_flags = 0; #endif mp_hal_stdout_tx_str("HardFault\r\n"); print_reg("R0 ", regs->r0); print_reg("R1 ", regs->r1); print_reg("R2 ", regs->r2); print_reg("R3 ", regs->r3); print_reg("R12 ", regs->r12); print_reg("SP ", (uint32_t)regs); print_reg("LR ", regs->lr); print_reg("PC ", regs->pc); print_reg("XPSR ", regs->xpsr); #if __CORTEX_M >= 3 uint32_t cfsr = SCB->CFSR; print_reg("HFSR ", SCB->HFSR); print_reg("CFSR ", cfsr); if (cfsr & 0x80) { print_reg("MMFAR ", SCB->MMFAR); } if (cfsr & 0x8000) { print_reg("BFAR ", SCB->BFAR); } #endif if ((void *)&_ram_start <= (void *)regs && (void *)regs < (void *)&_ram_end) { mp_hal_stdout_tx_str("Stack:\r\n"); uint32_t *stack_top = &_estack; if ((void *)regs < (void *)&_sstack) { // stack not in static stack area so limit the amount we print stack_top = (uint32_t *)regs + 32; } for (uint32_t *sp = (uint32_t *)regs; sp < stack_top; ++sp) { print_hex_hex(" ", (uint32_t)sp, *sp); } } /* Go to infinite loop when Hard Fault exception occurs */ while (1) { MICROPY_BOARD_FATAL_ERROR("HardFault"); } } // Naked functions have no compiler generated gunk, so are the best thing to // use for asm functions. __attribute__((naked)) void HardFault_Handler(void) { // From the ARMv7M Architecture Reference Manual, section B.1.5.6 // on entry to the Exception, the LR register contains, amongst other // things, the value of CONTROL.SPSEL. This can be found in bit 3. // // If CONTROL.SPSEL is 0, then the exception was stacked up using the // main stack pointer (aka MSP). If CONTROL.SPSEL is 1, then the exception // was stacked up using the process stack pointer (aka PSP). #if __CORTEX_M == 0 __asm volatile ( " mov r0, lr \n" " lsr r0, r0, #3 \n" // Shift Bit 3 into carry to see which stack pointer we should use. " mrs r0, msp \n" // Make R0 point to main stack pointer " bcc .use_msp \n" // Keep MSP in R0 if SPSEL (carry) is 0 " mrs r0, psp \n" // Make R0 point to process stack pointer " .use_msp: \n" " b HardFault_C_Handler \n" // Off to C land ); #else __asm volatile ( " tst lr, #4 \n" // Test Bit 3 to see which stack pointer we should use. " ite eq \n" // Tell the assembler that the nest 2 instructions are if-then-else " mrseq r0, msp \n" // Make R0 point to main stack pointer " mrsne r0, psp \n" // Make R0 point to process stack pointer " b HardFault_C_Handler \n" // Off to C land ); #endif } /** * @brief This function handles NMI exception. * @param None * @retval None */ void NMI_Handler(void) { } /** * @brief This function handles Memory Manage exception. * @param None * @retval None */ void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) { MICROPY_BOARD_FATAL_ERROR("MemManage"); } } /** * @brief This function handles Bus Fault exception. * @param None * @retval None */ void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) { MICROPY_BOARD_FATAL_ERROR("BusFault"); } } /** * @brief This function handles Usage Fault exception. * @param None * @retval None */ void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) { MICROPY_BOARD_FATAL_ERROR("UsageFault"); } } /** * @brief This function handles SVCall exception. * @param None * @retval None */ void SVC_Handler(void) { } /** * @brief This function handles Debug Monitor exception. * @param None * @retval None */ void DebugMon_Handler(void) { } /******************************************************************************/ /* STM32F4xx Peripherals Interrupt Handlers */ /* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */ /* available peripheral interrupt handler's name please refer to the startup */ /* file (startup_stm32f4xx.s). */ /******************************************************************************/ #if defined(STM32G0) #if MICROPY_HW_USB_FS void USB_UCPD1_2_IRQHandler(void) { HAL_PCD_IRQHandler(&pcd_fs_handle); } #endif #elif defined(STM32H5) #if MICROPY_HW_USB_FS void USB_DRD_FS_IRQHandler(void) { HAL_PCD_IRQHandler(&pcd_fs_handle); } #endif #elif defined(STM32L0) || defined(STM32L432xx) #if MICROPY_HW_USB_FS void USB_IRQHandler(void) { HAL_PCD_IRQHandler(&pcd_fs_handle); } #endif #elif defined(STM32G4) || defined(STM32L1) || defined(STM32WB) #if MICROPY_HW_USB_FS void USB_LP_IRQHandler(void) { HAL_PCD_IRQHandler(&pcd_fs_handle); } #endif #else /** * @brief This function handles USB-On-The-Go FS global interrupt request. * @param None * @retval None */ #if MICROPY_HW_USB_FS void OTG_FS_IRQHandler(void) { IRQ_ENTER(OTG_FS_IRQn); HAL_PCD_IRQHandler(&pcd_fs_handle); IRQ_EXIT(OTG_FS_IRQn); } #endif #if MICROPY_HW_USB_HS void OTG_HS_IRQHandler(void) { IRQ_ENTER(OTG_HS_IRQn); HAL_PCD_IRQHandler(&pcd_hs_handle); IRQ_EXIT(OTG_HS_IRQn); } #endif #if MICROPY_HW_USB_FS || MICROPY_HW_USB_HS /** * @brief This function handles USB OTG Common FS/HS Wakeup functions. * @param *pcd_handle for FS or HS * @retval None */ STATIC void OTG_CMD_WKUP_Handler(PCD_HandleTypeDef *pcd_handle) { if (pcd_handle->Init.low_power_enable) { /* Reset SLEEPDEEP bit of Cortex System Control Register */ SCB->SCR &= (uint32_t) ~((uint32_t)(SCB_SCR_SLEEPDEEP_Msk | SCB_SCR_SLEEPONEXIT_Msk)); /* Configures system clock after wake-up from STOP: enable HSE/HSI, PLL and select PLL as system clock source (HSE/HSI and PLL are disabled in STOP mode) */ __HAL_RCC_HSE_CONFIG(MICROPY_HW_RCC_HSE_STATE); #if MICROPY_HW_CLK_USE_HSI __HAL_RCC_HSI_ENABLE(); #endif /* Wait till HSE/HSI is ready */ while (__HAL_RCC_GET_FLAG(MICROPY_HW_RCC_FLAG_HSxRDY) == RESET) { } /* Enable the main PLL. */ __HAL_RCC_PLL_ENABLE(); /* Wait till PLL is ready */ while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) { } /* Select PLL as SYSCLK */ MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_SYSCLKSOURCE_PLLCLK); #if defined(STM32H7) while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL1) { } #else while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) { } #endif /* ungate PHY clock */ __HAL_PCD_UNGATE_PHYCLOCK(pcd_handle); } } #endif #if MICROPY_HW_USB_FS /** * @brief This function handles USB OTG FS Wakeup IRQ Handler. * @param None * @retval None */ void OTG_FS_WKUP_IRQHandler(void) { IRQ_ENTER(OTG_FS_WKUP_IRQn); OTG_CMD_WKUP_Handler(&pcd_fs_handle); #if defined(STM32L4) EXTI->PR1 = USB_OTG_FS_WAKEUP_EXTI_LINE; #elif !defined(STM32H5) && !defined(STM32H7) /* Clear EXTI pending Bit*/ __HAL_USB_FS_EXTI_CLEAR_FLAG(); #endif IRQ_EXIT(OTG_FS_WKUP_IRQn); } #endif #if MICROPY_HW_USB_HS /** * @brief This function handles USB OTG HS Wakeup IRQ Handler. * @param None * @retval None */ void OTG_HS_WKUP_IRQHandler(void) { IRQ_ENTER(OTG_HS_WKUP_IRQn); OTG_CMD_WKUP_Handler(&pcd_hs_handle); #if !defined(STM32H5) && !defined(STM32H7) /* Clear EXTI pending Bit*/ __HAL_USB_HS_EXTI_CLEAR_FLAG(); #endif IRQ_EXIT(OTG_HS_WKUP_IRQn); } #endif #endif // !defined(STM32L0) /** * @brief This function handles PPP interrupt request. * @param None * @retval None */ /*void PPP_IRQHandler(void) { }*/ /** * @brief These functions handle the EXTI interrupt requests. * @param None * @retval None */ void EXTI0_IRQHandler(void) { IRQ_ENTER(EXTI0_IRQn); Handle_EXTI_Irq(0); IRQ_EXIT(EXTI0_IRQn); } void EXTI1_IRQHandler(void) { IRQ_ENTER(EXTI1_IRQn); Handle_EXTI_Irq(1); IRQ_EXIT(EXTI1_IRQn); } void EXTI2_IRQHandler(void) { IRQ_ENTER(EXTI2_IRQn); Handle_EXTI_Irq(2); IRQ_EXIT(EXTI2_IRQn); } void EXTI3_IRQHandler(void) { IRQ_ENTER(EXTI3_IRQn); Handle_EXTI_Irq(3); IRQ_EXIT(EXTI3_IRQn); } void EXTI4_IRQHandler(void) { IRQ_ENTER(EXTI4_IRQn); Handle_EXTI_Irq(4); IRQ_EXIT(EXTI4_IRQn); } void EXTI9_5_IRQHandler(void) { IRQ_ENTER(EXTI9_5_IRQn); Handle_EXTI_Irq(5); Handle_EXTI_Irq(6); Handle_EXTI_Irq(7); Handle_EXTI_Irq(8); Handle_EXTI_Irq(9); IRQ_EXIT(EXTI9_5_IRQn); } void EXTI15_10_IRQHandler(void) { IRQ_ENTER(EXTI15_10_IRQn); Handle_EXTI_Irq(10); Handle_EXTI_Irq(11); Handle_EXTI_Irq(12); Handle_EXTI_Irq(13); Handle_EXTI_Irq(14); Handle_EXTI_Irq(15); IRQ_EXIT(EXTI15_10_IRQn); } void PVD_IRQHandler(void) { IRQ_ENTER(PVD_IRQn); Handle_EXTI_Irq(EXTI_PVD_OUTPUT); IRQ_EXIT(PVD_IRQn); } #if defined(STM32L4) void PVD_PVM_IRQHandler(void) { IRQ_ENTER(PVD_PVM_IRQn); Handle_EXTI_Irq(EXTI_PVD_OUTPUT); IRQ_EXIT(PVD_PVM_IRQn); } #endif void RTC_Alarm_IRQHandler(void) { IRQ_ENTER(RTC_Alarm_IRQn); Handle_EXTI_Irq(EXTI_RTC_ALARM); IRQ_EXIT(RTC_Alarm_IRQn); } #if defined(ETH) // The 407 has ETH, the 405 doesn't void ETH_WKUP_IRQHandler(void) { IRQ_ENTER(ETH_WKUP_IRQn); Handle_EXTI_Irq(EXTI_ETH_WAKEUP); IRQ_EXIT(ETH_WKUP_IRQn); } #endif #if defined(STM32H5) void TAMP_IRQHandler(void) { IRQ_ENTER(TAMP_IRQn); Handle_EXTI_Irq(EXTI_RTC_TAMP); IRQ_EXIT(TAMP_IRQn); } #elif defined(STM32L1) void TAMPER_STAMP_IRQHandler(void) { IRQ_ENTER(TAMPER_STAMP_IRQn); Handle_EXTI_Irq(EXTI_RTC_TIMESTAMP); IRQ_EXIT(TAMPER_STAMP_IRQn); } #else void TAMP_STAMP_IRQHandler(void) { IRQ_ENTER(TAMP_STAMP_IRQn); Handle_EXTI_Irq(EXTI_RTC_TIMESTAMP); IRQ_EXIT(TAMP_STAMP_IRQn); } #endif #if defined(STM32H5) void RTC_IRQHandler(void) #else void RTC_WKUP_IRQHandler(void) #endif { IRQ_ENTER(RTC_WKUP_IRQn); #if defined(STM32G0) || defined(STM32G4) || defined(STM32WL) RTC->MISR &= ~RTC_MISR_WUTMF; // clear wakeup interrupt flag #elif defined(STM32H5) RTC->SCR = RTC_SCR_CWUTF; // clear wakeup interrupt flag #elif defined(STM32H7A3xx) || defined(STM32H7A3xxQ) || defined(STM32H7B3xx) || defined(STM32H7B3xxQ) RTC->SR &= ~RTC_SR_WUTF; // clear wakeup interrupt flag #else RTC->ISR &= ~RTC_ISR_WUTF; // clear wakeup interrupt flag #endif Handle_EXTI_Irq(EXTI_RTC_WAKEUP); // clear EXTI flag and execute optional callback IRQ_EXIT(RTC_WKUP_IRQn); } #if defined(STM32F0) || defined(STM32G0) || defined(STM32L0) #if defined(STM32G0) void RTC_TAMP_IRQHandler(void) { IRQ_ENTER(RTC_TAMP_IRQn); RTC->MISR &= ~RTC_MISR_WUTMF; // clear wakeup interrupt flag Handle_EXTI_Irq(EXTI_RTC_WAKEUP); // clear EXTI flag and execute optional callback Handle_EXTI_Irq(EXTI_RTC_TIMESTAMP); // clear EXTI flag and execute optional callback IRQ_EXIT(RTC_TAMP_IRQn); } #else void RTC_IRQHandler(void) { IRQ_ENTER(RTC_IRQn); if (RTC->ISR & RTC_ISR_WUTF) { RTC->ISR &= ~RTC_ISR_WUTF; // clear wakeup interrupt flag Handle_EXTI_Irq(EXTI_RTC_WAKEUP); // clear EXTI flag and execute optional callback } if (RTC->ISR & RTC_ISR_ALRAF) { RTC->ISR &= ~RTC_ISR_ALRAF; // clear Alarm A flag Handle_EXTI_Irq(EXTI_RTC_ALARM); // clear EXTI flag and execute optional callback } if (RTC->ISR & RTC_ISR_TSF) { RTC->ISR &= ~RTC_ISR_TSF; // clear timestamp flag Handle_EXTI_Irq(EXTI_RTC_TIMESTAMP); // clear EXTI flag and execute optional callback } IRQ_EXIT(RTC_IRQn); } #endif void EXTI0_1_IRQHandler(void) { IRQ_ENTER(EXTI0_1_IRQn); Handle_EXTI_Irq(0); Handle_EXTI_Irq(1); IRQ_EXIT(EXTI0_1_IRQn); } void EXTI2_3_IRQHandler(void) { IRQ_ENTER(EXTI2_3_IRQn); Handle_EXTI_Irq(2); Handle_EXTI_Irq(3); IRQ_EXIT(EXTI2_3_IRQn); } void EXTI4_15_IRQHandler(void) { IRQ_ENTER(EXTI4_15_IRQn); for (int i = 4; i <= 15; ++i) { Handle_EXTI_Irq(i); } IRQ_EXIT(EXTI4_15_IRQn); } void TIM1_BRK_UP_TRG_COM_IRQHandler(void) { IRQ_ENTER(TIM1_BRK_UP_TRG_COM_IRQn); timer_irq_handler(1); IRQ_EXIT(TIM1_BRK_UP_TRG_COM_IRQn); } #endif void TIM1_BRK_TIM9_IRQHandler(void) { IRQ_ENTER(TIM1_BRK_TIM9_IRQn); timer_irq_handler(9); IRQ_EXIT(TIM1_BRK_TIM9_IRQn); } #if defined(STM32G4) || defined(STM32L4) void TIM1_BRK_TIM15_IRQHandler(void) { IRQ_ENTER(TIM1_BRK_TIM15_IRQn); timer_irq_handler(15); IRQ_EXIT(TIM1_BRK_TIM15_IRQn); } #endif void TIM1_UP_TIM10_IRQHandler(void) { IRQ_ENTER(TIM1_UP_TIM10_IRQn); timer_irq_handler(1); timer_irq_handler(10); IRQ_EXIT(TIM1_UP_TIM10_IRQn); } #if defined(STM32G4) || defined(STM32L4) || defined(STM32WB) void TIM1_UP_TIM16_IRQHandler(void) { IRQ_ENTER(TIM1_UP_TIM16_IRQn); timer_irq_handler(1); timer_irq_handler(16); IRQ_EXIT(TIM1_UP_TIM16_IRQn); } #endif #if defined(STM32H7) void TIM1_UP_IRQHandler(void) { IRQ_ENTER(TIM1_UP_IRQn); timer_irq_handler(1); IRQ_EXIT(TIM1_UP_IRQn); } #endif void TIM1_TRG_COM_TIM11_IRQHandler(void) { IRQ_ENTER(TIM1_TRG_COM_TIM11_IRQn); timer_irq_handler(11); IRQ_EXIT(TIM1_TRG_COM_TIM11_IRQn); } #if defined(STM32G4) || defined(STM32L4) || defined(STM32WB) void TIM1_TRG_COM_TIM17_IRQHandler(void) { IRQ_ENTER(TIM1_TRG_COM_TIM17_IRQn); timer_irq_handler(17); IRQ_EXIT(TIM1_TRG_COM_TIM17_IRQn); } #endif void TIM1_CC_IRQHandler(void) { IRQ_ENTER(TIM1_CC_IRQn); timer_irq_handler(1); IRQ_EXIT(TIM1_CC_IRQn); } void TIM2_IRQHandler(void) { IRQ_ENTER(TIM2_IRQn); timer_irq_handler(2); IRQ_EXIT(TIM2_IRQn); } #if defined(STM32G0) void TIM3_TIM4_IRQHandler(void) { IRQ_ENTER(TIM3_TIM4_IRQn); timer_irq_handler(3); timer_irq_handler(4); IRQ_EXIT(TIM3_TIM4_IRQn); } #else void TIM3_IRQHandler(void) { IRQ_ENTER(TIM3_IRQn); timer_irq_handler(3); IRQ_EXIT(TIM3_IRQn); } void TIM4_IRQHandler(void) { IRQ_ENTER(TIM4_IRQn); timer_irq_handler(4); IRQ_EXIT(TIM4_IRQn); } #endif void TIM5_IRQHandler(void) { IRQ_ENTER(TIM5_IRQn); timer_irq_handler(5); HAL_TIM_IRQHandler(&TIM5_Handle); IRQ_EXIT(TIM5_IRQn); } #if defined(TIM6) // STM32F401 doesn't have TIM6 #if defined(STM32G0) void TIM6_DAC_LPTIM1_IRQHandler(void) { IRQ_ENTER(TIM6_DAC_LPTIM1_IRQn); timer_irq_handler(6); IRQ_EXIT(TIM6_DAC_LPTIM1_IRQn); } #elif defined(STM32L1) void TIM6_IRQHandler(void) { IRQ_ENTER(TIM6_IRQn); timer_irq_handler(6); IRQ_EXIT(TIM6_IRQn); } #else void TIM6_DAC_IRQHandler(void) { IRQ_ENTER(TIM6_DAC_IRQn); timer_irq_handler(6); IRQ_EXIT(TIM6_DAC_IRQn); } #endif #endif #if defined(TIM7) // STM32F401 doesn't have TIM7 #if defined(STM32G0) void TIM7_LPTIM2_IRQHandler(void) { IRQ_ENTER(TIM7_LPTIM2_IRQn); timer_irq_handler(7); IRQ_EXIT(TIM7_LPTIM2_IRQn); } #elif defined(STM32G4) void TIM7_DAC_IRQHandler(void) { IRQ_ENTER(TIM7_DAC_IRQn); timer_irq_handler(7); IRQ_EXIT(TIM7_DAC_IRQn); } #else void TIM7_IRQHandler(void) { IRQ_ENTER(TIM7_IRQn); timer_irq_handler(7); IRQ_EXIT(TIM7_IRQn); } #endif #endif #if defined(TIM8) // STM32F401 doesn't have TIM8 void TIM8_BRK_TIM12_IRQHandler(void) { IRQ_ENTER(TIM8_BRK_TIM12_IRQn); timer_irq_handler(12); IRQ_EXIT(TIM8_BRK_TIM12_IRQn); } void TIM8_UP_TIM13_IRQHandler(void) { IRQ_ENTER(TIM8_UP_TIM13_IRQn); timer_irq_handler(8); timer_irq_handler(13); IRQ_EXIT(TIM8_UP_TIM13_IRQn); } #if defined(STM32G4) || defined(STM32H5) || defined(STM32L4) void TIM8_UP_IRQHandler(void) { IRQ_ENTER(TIM8_UP_IRQn); timer_irq_handler(8); IRQ_EXIT(TIM8_UP_IRQn); } #endif void TIM8_CC_IRQHandler(void) { IRQ_ENTER(TIM8_CC_IRQn); timer_irq_handler(8); IRQ_EXIT(TIM8_CC_IRQn); } void TIM8_TRG_COM_TIM14_IRQHandler(void) { IRQ_ENTER(TIM8_TRG_COM_TIM14_IRQn); timer_irq_handler(14); IRQ_EXIT(TIM8_TRG_COM_TIM14_IRQn); } #endif #if defined(STM32L1) void TIM9_IRQHandler(void) { IRQ_ENTER(TIM9_IRQn); timer_irq_handler(9); IRQ_EXIT(TIM9_IRQn); } void TIM10_IRQHandler(void) { IRQ_ENTER(TIM9_IRQn); timer_irq_handler(10); IRQ_EXIT(TIM9_IRQn); } void TIM11_IRQHandler(void) { IRQ_ENTER(TIM9_IRQn); timer_irq_handler(11); IRQ_EXIT(TIM9_IRQn); } #endif #if defined(STM32G0) void TIM14_IRQHandler(void) { IRQ_ENTER(TIM14_IRQn); timer_irq_handler(14); IRQ_EXIT(TIM14_IRQn); } void TIM15_IRQHandler(void) { IRQ_ENTER(TIM15_IRQn); timer_irq_handler(15); IRQ_EXIT(TIM15_IRQn); } void TIM16_FDCAN_IT0_IRQHandler(void) { IRQ_ENTER(TIM16_FDCAN_IT0_IRQn); timer_irq_handler(16); IRQ_EXIT(TIM16_FDCAN_IT0_IRQn); } void TIM17_FDCAN_IT1_IRQHandler(void) { IRQ_ENTER(TIM17_FDCAN_IT1_IRQn); timer_irq_handler(17); IRQ_EXIT(TIM17_FDCAN_IT1_IRQn); } #endif #if defined(STM32H7) void TIM15_IRQHandler(void) { IRQ_ENTER(TIM15_IRQn); timer_irq_handler(15); IRQ_EXIT(TIM15_IRQn); } void TIM16_IRQHandler(void) { IRQ_ENTER(TIM16_IRQn); timer_irq_handler(16); IRQ_EXIT(TIM16_IRQn); } void TIM17_IRQHandler(void) { IRQ_ENTER(TIM17_IRQn); timer_irq_handler(17); IRQ_EXIT(TIM17_IRQn); } #endif // UART/USART IRQ handlers void USART1_IRQHandler(void) { IRQ_ENTER(USART1_IRQn); uart_irq_handler(1); IRQ_EXIT(USART1_IRQn); } #if defined(USART2) void USART2_IRQHandler(void) { IRQ_ENTER(USART2_IRQn); uart_irq_handler(2); IRQ_EXIT(USART2_IRQn); } #endif #if defined(STM32F0) void USART3_8_IRQHandler(void) { IRQ_ENTER(USART3_8_IRQn); uart_irq_handler(3); uart_irq_handler(4); uart_irq_handler(5); uart_irq_handler(6); uart_irq_handler(7); uart_irq_handler(8); IRQ_EXIT(USART3_8_IRQn); } #elif defined(STM32G0) #if defined(STM32G0B1xx) || defined(STM32G0C1xx) void USART2_LPUART2_IRQHandler(void) { IRQ_ENTER(USART2_LPUART2_IRQn); uart_irq_handler(2); uart_irq_handler(PYB_LPUART_2); IRQ_EXIT(USART2_LPUART2_IRQn); } void USART3_4_5_6_LPUART1_IRQHandler(void) { IRQ_ENTER(USART3_4_5_6_LPUART1_IRQn); uart_irq_handler(3); uart_irq_handler(4); uart_irq_handler(5); uart_irq_handler(6); uart_irq_handler(PYB_LPUART_1); IRQ_EXIT(USART3_4_5_6_LPUART1_IRQn); } #else #error Unsupported processor #endif #elif defined(STM32L0) void USART4_5_IRQHandler(void) { IRQ_ENTER(USART4_5_IRQn); uart_irq_handler(4); uart_irq_handler(5); IRQ_EXIT(USART4_5_IRQn); } #else #if defined(USART3) void USART3_IRQHandler(void) { IRQ_ENTER(USART3_IRQn); uart_irq_handler(3); IRQ_EXIT(USART3_IRQn); } #endif #if defined(USART4) void USART4_IRQHandler(void) { IRQ_ENTER(USART4_IRQn); uart_irq_handler(4); IRQ_EXIT(USART4_IRQn); } #endif #if defined(UART4) void UART4_IRQHandler(void) { IRQ_ENTER(UART4_IRQn); uart_irq_handler(4); IRQ_EXIT(UART4_IRQn); } #endif #if defined(USART5) void USART5_IRQHandler(void) { IRQ_ENTER(USART5_IRQn); uart_irq_handler(5); IRQ_EXIT(USART5_IRQn); } #endif #if defined(UART5) void UART5_IRQHandler(void) { IRQ_ENTER(UART5_IRQn); uart_irq_handler(5); IRQ_EXIT(UART5_IRQn); } #endif #if defined(USART6) void USART6_IRQHandler(void) { IRQ_ENTER(USART6_IRQn); uart_irq_handler(6); IRQ_EXIT(USART6_IRQn); } #endif #if defined(UART7) void UART7_IRQHandler(void) { IRQ_ENTER(UART7_IRQn); uart_irq_handler(7); IRQ_EXIT(UART7_IRQn); } #endif #if defined(UART8) void UART8_IRQHandler(void) { IRQ_ENTER(UART8_IRQn); uart_irq_handler(8); IRQ_EXIT(UART8_IRQn); } #endif #if defined(UART9) void UART9_IRQHandler(void) { IRQ_ENTER(UART9_IRQn); uart_irq_handler(9); IRQ_EXIT(UART9_IRQn); } #endif #if defined(UART10) void UART10_IRQHandler(void) { IRQ_ENTER(UART10_IRQn); uart_irq_handler(10); IRQ_EXIT(UART10_IRQn); } #endif #endif #if defined(LPUART1) void LPUART1_IRQHandler(void) { IRQ_ENTER(LPUART1_IRQn); uart_irq_handler(PYB_LPUART_1); IRQ_EXIT(LPUART1_IRQn); } #endif #if defined(LPUART2) void LPUART2_IRQHandler(void) { IRQ_ENTER(LPUART2_IRQn); uart_irq_handler(PYB_LPUART_2); IRQ_EXIT(LPUART2_IRQn); } #endif #if MICROPY_PY_PYB_LEGACY #if defined(MICROPY_HW_I2C1_SCL) void I2C1_EV_IRQHandler(void) { IRQ_ENTER(I2C1_EV_IRQn); i2c_ev_irq_handler(1); IRQ_EXIT(I2C1_EV_IRQn); } void I2C1_ER_IRQHandler(void) { IRQ_ENTER(I2C1_ER_IRQn); i2c_er_irq_handler(1); IRQ_EXIT(I2C1_ER_IRQn); } #endif // defined(MICROPY_HW_I2C1_SCL) #if defined(MICROPY_HW_I2C2_SCL) void I2C2_EV_IRQHandler(void) { IRQ_ENTER(I2C2_EV_IRQn); i2c_ev_irq_handler(2); IRQ_EXIT(I2C2_EV_IRQn); } void I2C2_ER_IRQHandler(void) { IRQ_ENTER(I2C2_ER_IRQn); i2c_er_irq_handler(2); IRQ_EXIT(I2C2_ER_IRQn); } #endif // defined(MICROPY_HW_I2C2_SCL) #if defined(MICROPY_HW_I2C3_SCL) void I2C3_EV_IRQHandler(void) { IRQ_ENTER(I2C3_EV_IRQn); i2c_ev_irq_handler(3); IRQ_EXIT(I2C3_EV_IRQn); } void I2C3_ER_IRQHandler(void) { IRQ_ENTER(I2C3_ER_IRQn); i2c_er_irq_handler(3); IRQ_EXIT(I2C3_ER_IRQn); } #endif // defined(MICROPY_HW_I2C3_SCL) #if defined(MICROPY_HW_I2C4_SCL) void I2C4_EV_IRQHandler(void) { IRQ_ENTER(I2C4_EV_IRQn); i2c_ev_irq_handler(4); IRQ_EXIT(I2C4_EV_IRQn); } void I2C4_ER_IRQHandler(void) { IRQ_ENTER(I2C4_ER_IRQn); i2c_er_irq_handler(4); IRQ_EXIT(I2C4_ER_IRQn); } #endif // defined(MICROPY_HW_I2C4_SCL) #endif // MICROPY_PY_PYB_LEGACY