/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2015 Bryan Morrissey * Copyright (c) 2021 Mike Teachman * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include "py/obj.h" #include "py/runtime.h" #include "py/mphal.h" #include "py/misc.h" #include "py/stream.h" #include "py/objstr.h" #include "modmachine.h" #include "pin.h" #include "dma.h" #if MICROPY_HW_ENABLE_I2S // The I2S module has 3 modes of operation: // // Mode1: Blocking // - readinto() and write() methods block until the supplied buffer is filled (read) or emptied (write) // - this is the default mode of operation // // Mode2: Non-Blocking // - readinto() and write() methods return immediately // - buffer filling and emptying happens asynchronously to the main MicroPython task // - a callback function is called when the supplied buffer has been filled (read) or emptied (write) // - non-blocking mode is enabled when a callback is set with the irq() method // - the DMA callbacks (1/2 complete and complete) are used to implement the asynchronous background operations // // Mode3: Uasyncio // - implements the stream protocol // - uasyncio mode is enabled when the ioctl() function is called // - the state of the internal ring buffer is used to detect that I2S samples can be read or written // // The samples contained in the app buffer supplied for the readinto() and write() methods have the following convention: // Mono: little endian format // Stereo: little endian format, left channel first // // I2S terms: // "frame": consists of two audio samples (Left audio sample + Right audio sample) // // Misc: // - for Mono configuration: // - readinto method: samples are gathered from the L channel only // - write method: every sample is output to both the L and R channels // - for readinto method the I2S hardware is read using 8-byte frames // (this is standard for almost all I2S hardware, such as MEMS microphones) // - all 3 Modes of operation are implemented using the HAL I2S Generic Driver // - all sample data transfers use DMA // - the DMA controller is configured in Circular mode to fulfil continuous and gapless sample flows // - the DMA ping-pong buffer needs to be aligned to a cache line size of 32 bytes. 32 byte // alignment is needed to use the routines that clean and invalidate D-Cache which work on a // 32 byte address boundary. Not all STM32 devices have a D-Cache. Buffer alignment // will still happen on these devices to keep this code simple. // DMA ping-pong buffer size was empirically determined. It is a tradeoff between: // 1. memory use (smaller buffer size desirable to reduce memory footprint) // 2. interrupt frequency (larger buffer size desirable to reduce interrupt frequency) // The sizeof 1/2 of the DMA buffer must be evenly divisible by the cache line size of 32 bytes. #define SIZEOF_DMA_BUFFER_IN_BYTES (256) #define SIZEOF_HALF_DMA_BUFFER_IN_BYTES (SIZEOF_DMA_BUFFER_IN_BYTES / 2) // For non-blocking mode, to avoid underflow/overflow, sample data is written/read to/from the ring buffer at a rate faster // than the DMA transfer rate #define NON_BLOCKING_RATE_MULTIPLIER (4) #define SIZEOF_NON_BLOCKING_COPY_IN_BYTES (SIZEOF_HALF_DMA_BUFFER_IN_BYTES * NON_BLOCKING_RATE_MULTIPLIER) #define NUM_I2S_USER_FORMATS (4) #define I2S_RX_FRAME_SIZE_IN_BYTES (8) typedef enum { MONO, STEREO } format_t; typedef enum { BLOCKING, NON_BLOCKING, UASYNCIO } io_mode_t; typedef enum { TOP_HALF, BOTTOM_HALF } ping_pong_t; typedef struct _ring_buf_t { uint8_t *buffer; size_t head; size_t tail; size_t size; } ring_buf_t; typedef struct _non_blocking_descriptor_t { mp_buffer_info_t appbuf; uint32_t index; bool copy_in_progress; } non_blocking_descriptor_t; typedef struct _machine_i2s_obj_t { mp_obj_base_t base; uint8_t i2s_id; mp_hal_pin_obj_t sck; mp_hal_pin_obj_t ws; mp_hal_pin_obj_t sd; uint16_t mode; int8_t bits; format_t format; int32_t rate; int32_t ibuf; mp_obj_t callback_for_non_blocking; uint8_t dma_buffer[SIZEOF_DMA_BUFFER_IN_BYTES + 0x1f]; // 0x1f related to D-Cache alignment uint8_t *dma_buffer_dcache_aligned; ring_buf_t ring_buffer; uint8_t *ring_buffer_storage; non_blocking_descriptor_t non_blocking_descriptor; io_mode_t io_mode; I2S_HandleTypeDef hi2s; DMA_HandleTypeDef hdma_tx; DMA_HandleTypeDef hdma_rx; const dma_descr_t *dma_descr_tx; const dma_descr_t *dma_descr_rx; } machine_i2s_obj_t; STATIC mp_obj_t machine_i2s_deinit(mp_obj_t self_in); // The frame map is used with the readinto() method to transform the audio sample data coming // from DMA memory (32-bit stereo) to the format specified // in the I2S constructor. e.g. 16-bit mono STATIC const int8_t i2s_frame_map[NUM_I2S_USER_FORMATS][I2S_RX_FRAME_SIZE_IN_BYTES] = { { 0, 1, -1, -1, -1, -1, -1, -1 }, // Mono, 16-bits { 2, 3, 0, 1, -1, -1, -1, -1 }, // Mono, 32-bits { 0, 1, -1, -1, 2, 3, -1, -1 }, // Stereo, 16-bits { 2, 3, 0, 1, 6, 7, 4, 5 }, // Stereo, 32-bits }; void machine_i2s_init0() { for (uint8_t i = 0; i < MICROPY_HW_MAX_I2S; i++) { MP_STATE_PORT(machine_i2s_obj)[i] = NULL; } } // Ring Buffer // Thread safe when used with these constraints: // - Single Producer, Single Consumer // - Sequential atomic operations // One byte of capacity is used to detect buffer empty/full STATIC void ringbuf_init(ring_buf_t *rbuf, uint8_t *buffer, size_t size) { rbuf->buffer = buffer; rbuf->size = size; rbuf->head = 0; rbuf->tail = 0; } STATIC bool ringbuf_push(ring_buf_t *rbuf, uint8_t data) { size_t next_tail = (rbuf->tail + 1) % rbuf->size; if (next_tail != rbuf->head) { rbuf->buffer[rbuf->tail] = data; rbuf->tail = next_tail; return true; } // full return false; } STATIC bool ringbuf_pop(ring_buf_t *rbuf, uint8_t *data) { if (rbuf->head == rbuf->tail) { // empty return false; } *data = rbuf->buffer[rbuf->head]; rbuf->head = (rbuf->head + 1) % rbuf->size; return true; } STATIC bool ringbuf_is_empty(ring_buf_t *rbuf) { return rbuf->head == rbuf->tail; } STATIC bool ringbuf_is_full(ring_buf_t *rbuf) { return ((rbuf->tail + 1) % rbuf->size) == rbuf->head; } STATIC size_t ringbuf_available_data(ring_buf_t *rbuf) { return (rbuf->tail - rbuf->head + rbuf->size) % rbuf->size; } STATIC size_t ringbuf_available_space(ring_buf_t *rbuf) { return rbuf->size - ringbuf_available_data(rbuf) - 1; } // For 32-bit audio samples, the STM32 HAL API expects each 32-bit sample to be encoded // in an unusual byte ordering: Byte_2, Byte_3, Byte_0, Byte_1 // where: Byte_0 is the least significant byte of the 32-bit sample // // The following function takes a buffer containing 32-bits sample values formatted as little endian // and performs an in-place modification into the STM32 HAL API convention // // Example: // // wav_samples[] = [L_0-7, L_8-15, L_16-23, L_24-31, R_0-7, R_8-15, R_16-23, R_24-31] = [Left channel, Right channel] // stm_api[] = [L_16-23, L_24-31, L_0-7, L_8-15, R_16-23, R_24-31, R_0-7, R_8-15] = [Left channel, Right channel] // // where: // L_0-7 is the least significant byte of the 32 bit sample in the Left channel // L_24-31 is the most significant byte of the 32 bit sample in the Left channel // // wav_samples[] = [0x99, 0xBB, 0x11, 0x22, 0x44, 0x55, 0xAB, 0x77] = [Left channel, Right channel] // stm_api[] = [0x11, 0x22, 0x99, 0xBB, 0xAB, 0x77, 0x44, 0x55] = [Left channel, Right channel] // // where: // LEFT Channel = 0x99, 0xBB, 0x11, 0x22 // RIGHT Channel = 0x44, 0x55, 0xAB, 0x77 STATIC void reformat_32_bit_samples(int32_t *sample, uint32_t num_samples) { int16_t sample_ms; int16_t sample_ls; for (uint32_t i = 0; i < num_samples; i++) { sample_ls = sample[i] & 0xFFFF; sample_ms = sample[i] >> 16; sample[i] = (sample_ls << 16) + sample_ms; } } STATIC int8_t get_frame_mapping_index(int8_t bits, format_t format) { if (format == MONO) { if (bits == 16) { return 0; } else { // 32 bits return 1; } } else { // STEREO if (bits == 16) { return 2; } else { // 32 bits return 3; } } } STATIC int8_t get_dma_bits(uint16_t mode, int8_t bits) { if (mode == I2S_MODE_MASTER_TX) { if (bits == 16) { return I2S_DATAFORMAT_16B; } else { return I2S_DATAFORMAT_32B; } return bits; } else { // Master Rx // always read 32 bit words for I2S e.g. I2S MEMS microphones return I2S_DATAFORMAT_32B; } } STATIC uint32_t fill_appbuf_from_ringbuf(machine_i2s_obj_t *self, mp_buffer_info_t *appbuf) { // copy audio samples from the ring buffer to the app buffer // loop, copying samples until the app buffer is filled // For uasyncio mode, the loop will make an early exit if the ring buffer becomes empty // Example: // a MicroPython I2S object is configured for 16-bit mono (2 bytes per audio sample). // For every frame coming from the ring buffer (8 bytes), 2 bytes are "cherry picked" and // copied to the supplied app buffer. // Thus, for every 1 byte copied to the app buffer, 4 bytes are read from the ring buffer. // If a 8kB app buffer is supplied, 32kB of audio samples is read from the ring buffer. uint32_t num_bytes_copied_to_appbuf = 0; uint8_t *app_p = (uint8_t *)appbuf->buf; uint8_t appbuf_sample_size_in_bytes = (self->bits == 16? 2 : 4) * (self->format == STEREO ? 2: 1); uint32_t num_bytes_needed_from_ringbuf = appbuf->len * (I2S_RX_FRAME_SIZE_IN_BYTES / appbuf_sample_size_in_bytes); uint8_t discard_byte; while (num_bytes_needed_from_ringbuf) { uint8_t f_index = get_frame_mapping_index(self->bits, self->format); for (uint8_t i = 0; i < I2S_RX_FRAME_SIZE_IN_BYTES; i++) { int8_t r_to_a_mapping = i2s_frame_map[f_index][i]; if (r_to_a_mapping != -1) { if (self->io_mode == BLOCKING) { // poll the ringbuf until a sample becomes available, copy into appbuf using the mapping transform while (ringbuf_pop(&self->ring_buffer, app_p + r_to_a_mapping) == false) { ; } num_bytes_copied_to_appbuf++; } else if (self->io_mode == UASYNCIO) { if (ringbuf_pop(&self->ring_buffer, app_p + r_to_a_mapping) == false) { // ring buffer is empty, exit goto exit; } else { num_bytes_copied_to_appbuf++; } } else { return 0; // should never get here (non-blocking mode does not use this function) } } else { // r_a_mapping == -1 // discard unused byte from ring buffer if (self->io_mode == BLOCKING) { // poll the ringbuf until a sample becomes available while (ringbuf_pop(&self->ring_buffer, &discard_byte) == false) { ; } } else if (self->io_mode == UASYNCIO) { if (ringbuf_pop(&self->ring_buffer, &discard_byte) == false) { // ring buffer is empty, exit goto exit; } } else { return 0; // should never get here (non-blocking mode does not use this function) } } num_bytes_needed_from_ringbuf--; } app_p += appbuf_sample_size_in_bytes; } exit: return num_bytes_copied_to_appbuf; } // function is used in IRQ context STATIC void fill_appbuf_from_ringbuf_non_blocking(machine_i2s_obj_t *self) { // attempt to copy a block of audio samples from the ring buffer to the supplied app buffer. // audio samples will be formatted as part of the copy operation uint32_t num_bytes_copied_to_appbuf = 0; uint8_t *app_p = &(((uint8_t *)self->non_blocking_descriptor.appbuf.buf)[self->non_blocking_descriptor.index]); uint8_t appbuf_sample_size_in_bytes = (self->bits == 16? 2 : 4) * (self->format == STEREO ? 2: 1); uint32_t num_bytes_remaining_to_copy_to_appbuf = self->non_blocking_descriptor.appbuf.len - self->non_blocking_descriptor.index; uint32_t num_bytes_remaining_to_copy_from_ring_buffer = num_bytes_remaining_to_copy_to_appbuf * (I2S_RX_FRAME_SIZE_IN_BYTES / appbuf_sample_size_in_bytes); uint32_t num_bytes_needed_from_ringbuf = MIN(SIZEOF_NON_BLOCKING_COPY_IN_BYTES, num_bytes_remaining_to_copy_from_ring_buffer); uint8_t discard_byte; if (ringbuf_available_data(&self->ring_buffer) >= num_bytes_needed_from_ringbuf) { while (num_bytes_needed_from_ringbuf) { uint8_t f_index = get_frame_mapping_index(self->bits, self->format); for (uint8_t i = 0; i < I2S_RX_FRAME_SIZE_IN_BYTES; i++) { int8_t r_to_a_mapping = i2s_frame_map[f_index][i]; if (r_to_a_mapping != -1) { ringbuf_pop(&self->ring_buffer, app_p + r_to_a_mapping); num_bytes_copied_to_appbuf++; } else { // r_a_mapping == -1 // discard unused byte from ring buffer ringbuf_pop(&self->ring_buffer, &discard_byte); } num_bytes_needed_from_ringbuf--; } app_p += appbuf_sample_size_in_bytes; } self->non_blocking_descriptor.index += num_bytes_copied_to_appbuf; if (self->non_blocking_descriptor.index >= self->non_blocking_descriptor.appbuf.len) { self->non_blocking_descriptor.copy_in_progress = false; mp_sched_schedule(self->callback_for_non_blocking, MP_OBJ_FROM_PTR(self)); } } } STATIC uint32_t copy_appbuf_to_ringbuf(machine_i2s_obj_t *self, mp_buffer_info_t *appbuf) { // copy audio samples from the app buffer to the ring buffer // loop, reading samples until the app buffer is emptied // for uasyncio mode, the loop will make an early exit if the ring buffer becomes full uint32_t a_index = 0; while (a_index < appbuf->len) { if (self->io_mode == BLOCKING) { // copy a byte to the ringbuf when space becomes available while (ringbuf_push(&self->ring_buffer, ((uint8_t *)appbuf->buf)[a_index]) == false) { ; } a_index++; } else if (self->io_mode == UASYNCIO) { if (ringbuf_push(&self->ring_buffer, ((uint8_t *)appbuf->buf)[a_index]) == false) { // ring buffer is full, exit break; } else { a_index++; } } else { return 0; // should never get here (non-blocking mode does not use this function) } } return a_index; } // function is used in IRQ context STATIC void copy_appbuf_to_ringbuf_non_blocking(machine_i2s_obj_t *self) { // copy audio samples from app buffer into ring buffer uint32_t num_bytes_remaining_to_copy = self->non_blocking_descriptor.appbuf.len - self->non_blocking_descriptor.index; uint32_t num_bytes_to_copy = MIN(SIZEOF_NON_BLOCKING_COPY_IN_BYTES, num_bytes_remaining_to_copy); if (ringbuf_available_space(&self->ring_buffer) >= num_bytes_to_copy) { for (uint32_t i = 0; i < num_bytes_to_copy; i++) { ringbuf_push(&self->ring_buffer, ((uint8_t *)self->non_blocking_descriptor.appbuf.buf)[self->non_blocking_descriptor.index + i]); } self->non_blocking_descriptor.index += num_bytes_to_copy; if (self->non_blocking_descriptor.index >= self->non_blocking_descriptor.appbuf.len) { self->non_blocking_descriptor.copy_in_progress = false; mp_sched_schedule(self->callback_for_non_blocking, MP_OBJ_FROM_PTR(self)); } } } // function is used in IRQ context STATIC void empty_dma(machine_i2s_obj_t *self, ping_pong_t dma_ping_pong) { uint16_t dma_buffer_offset = 0; if (dma_ping_pong == TOP_HALF) { dma_buffer_offset = 0; } else { // BOTTOM_HALF dma_buffer_offset = SIZEOF_HALF_DMA_BUFFER_IN_BYTES; } uint8_t *dma_buffer_p = &self->dma_buffer_dcache_aligned[dma_buffer_offset]; // flush and invalidate cache so the CPU reads data placed into RAM by DMA MP_HAL_CLEANINVALIDATE_DCACHE(dma_buffer_p, SIZEOF_HALF_DMA_BUFFER_IN_BYTES); // when space exists, copy samples into ring buffer if (ringbuf_available_space(&self->ring_buffer) >= SIZEOF_HALF_DMA_BUFFER_IN_BYTES) { for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES; i++) { ringbuf_push(&self->ring_buffer, dma_buffer_p[i]); } } } // function is used in IRQ context STATIC void feed_dma(machine_i2s_obj_t *self, ping_pong_t dma_ping_pong) { uint16_t dma_buffer_offset = 0; if (dma_ping_pong == TOP_HALF) { dma_buffer_offset = 0; } else { // BOTTOM_HALF dma_buffer_offset = SIZEOF_HALF_DMA_BUFFER_IN_BYTES; } uint8_t *dma_buffer_p = &self->dma_buffer_dcache_aligned[dma_buffer_offset]; // when data exists, copy samples from ring buffer if (ringbuf_available_data(&self->ring_buffer) >= SIZEOF_HALF_DMA_BUFFER_IN_BYTES) { // copy a block of samples from the ring buffer to the dma buffer. // STM32 HAL API has a stereo I2S implementation, but not mono // mono format is implemented by duplicating each sample into both L and R channels. if ((self->format == MONO) && (self->bits == 16)) { for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES / 4; i++) { for (uint8_t b = 0; b < sizeof(uint16_t); b++) { ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i * 4 + b]); dma_buffer_p[i * 4 + b + 2] = dma_buffer_p[i * 4 + b]; // duplicated mono sample } } } else if ((self->format == MONO) && (self->bits == 32)) { for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES / 8; i++) { for (uint8_t b = 0; b < sizeof(uint32_t); b++) { ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i * 8 + b]); dma_buffer_p[i * 8 + b + 4] = dma_buffer_p[i * 8 + b]; // duplicated mono sample } } } else { // STEREO, both 16-bit and 32-bit for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES; i++) { ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i]); } } // reformat 32 bit samples to match STM32 HAL API format if (self->bits == 32) { reformat_32_bit_samples((int32_t *)dma_buffer_p, SIZEOF_HALF_DMA_BUFFER_IN_BYTES / (sizeof(uint32_t))); } } else { // underflow. clear buffer to transmit "silence" on the I2S bus memset(dma_buffer_p, 0, SIZEOF_HALF_DMA_BUFFER_IN_BYTES); } // flush cache to RAM so DMA can read the sample data MP_HAL_CLEAN_DCACHE(dma_buffer_p, SIZEOF_HALF_DMA_BUFFER_IN_BYTES); } STATIC bool i2s_init(machine_i2s_obj_t *self) { // init the GPIO lines GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.Mode = GPIO_MODE_AF_PP; GPIO_InitStructure.Speed = GPIO_SPEED_FAST; GPIO_InitStructure.Pull = GPIO_PULLUP; if (self->i2s_id == 1) { self->hi2s.Instance = I2S1; __SPI1_CLK_ENABLE(); // configure DMA streams if (self->mode == I2S_MODE_MASTER_RX) { self->dma_descr_rx = &dma_I2S_1_RX; } else { self->dma_descr_tx = &dma_I2S_1_TX; } } else if (self->i2s_id == 2) { self->hi2s.Instance = I2S2; __SPI2_CLK_ENABLE(); // configure DMA streams if (self->mode == I2S_MODE_MASTER_RX) { self->dma_descr_rx = &dma_I2S_2_RX; } else { self->dma_descr_tx = &dma_I2S_2_TX; } } else { // invalid id number; should not get here as i2s object should not // have been created without setting a valid i2s instance number return false; } // GPIO Pin initialization if (self->sck != MP_OBJ_TO_PTR(MP_OBJ_NULL)) { GPIO_InitStructure.Pin = self->sck->pin_mask; const pin_af_obj_t *af = pin_find_af(self->sck, AF_FN_I2S, self->i2s_id); GPIO_InitStructure.Alternate = (uint8_t)af->idx; HAL_GPIO_Init(self->sck->gpio, &GPIO_InitStructure); } if (self->ws != MP_OBJ_TO_PTR(MP_OBJ_NULL)) { GPIO_InitStructure.Pin = self->ws->pin_mask; const pin_af_obj_t *af = pin_find_af(self->ws, AF_FN_I2S, self->i2s_id); GPIO_InitStructure.Alternate = (uint8_t)af->idx; HAL_GPIO_Init(self->ws->gpio, &GPIO_InitStructure); } if (self->sd != MP_OBJ_TO_PTR(MP_OBJ_NULL)) { GPIO_InitStructure.Pin = self->sd->pin_mask; const pin_af_obj_t *af = pin_find_af(self->sd, AF_FN_I2S, self->i2s_id); GPIO_InitStructure.Alternate = (uint8_t)af->idx; HAL_GPIO_Init(self->sd->gpio, &GPIO_InitStructure); } if (HAL_I2S_Init(&self->hi2s) == HAL_OK) { // Reset and initialize Tx and Rx DMA channels if (self->mode == I2S_MODE_MASTER_RX) { dma_invalidate_channel(self->dma_descr_rx); dma_init(&self->hdma_rx, self->dma_descr_rx, DMA_PERIPH_TO_MEMORY, &self->hi2s); self->hi2s.hdmarx = &self->hdma_rx; } else { // I2S_MODE_MASTER_TX dma_invalidate_channel(self->dma_descr_tx); dma_init(&self->hdma_tx, self->dma_descr_tx, DMA_MEMORY_TO_PERIPH, &self->hi2s); self->hi2s.hdmatx = &self->hdma_tx; } __HAL_RCC_PLLI2S_ENABLE(); // start I2S clock return true; } else { return false; } } void HAL_I2S_ErrorCallback(I2S_HandleTypeDef *hi2s) { uint32_t errorCode = HAL_I2S_GetError(hi2s); printf("I2S Error = %ld\n", errorCode); } void HAL_I2S_RxCpltCallback(I2S_HandleTypeDef *hi2s) { machine_i2s_obj_t *self; if (hi2s->Instance == I2S1) { self = MP_STATE_PORT(machine_i2s_obj)[0]; } else { self = MP_STATE_PORT(machine_i2s_obj)[1]; } // bottom half of buffer now filled, // safe to empty the bottom half while the top half of buffer is being filled empty_dma(self, BOTTOM_HALF); // for non-blocking operation, this IRQ-based callback handles // the readinto() method requests. if ((self->io_mode == NON_BLOCKING) && (self->non_blocking_descriptor.copy_in_progress)) { fill_appbuf_from_ringbuf_non_blocking(self); } } void HAL_I2S_RxHalfCpltCallback(I2S_HandleTypeDef *hi2s) { machine_i2s_obj_t *self; if (hi2s->Instance == I2S1) { self = MP_STATE_PORT(machine_i2s_obj)[0]; } else { self = MP_STATE_PORT(machine_i2s_obj)[1]; } // top half of buffer now filled, // safe to empty the top half while the bottom half of buffer is being filled empty_dma(self, TOP_HALF); // for non-blocking operation, this IRQ-based callback handles // the readinto() method requests. if ((self->io_mode == NON_BLOCKING) && (self->non_blocking_descriptor.copy_in_progress)) { fill_appbuf_from_ringbuf_non_blocking(self); } } void HAL_I2S_TxCpltCallback(I2S_HandleTypeDef *hi2s) { machine_i2s_obj_t *self; if (hi2s->Instance == I2S1) { self = MP_STATE_PORT(machine_i2s_obj)[0]; } else { self = MP_STATE_PORT(machine_i2s_obj)[1]; } // for non-blocking operation, this IRQ-based callback handles // the write() method requests. if ((self->io_mode == NON_BLOCKING) && (self->non_blocking_descriptor.copy_in_progress)) { copy_appbuf_to_ringbuf_non_blocking(self); } // bottom half of buffer now emptied, // safe to fill the bottom half while the top half of buffer is being emptied feed_dma(self, BOTTOM_HALF); } void HAL_I2S_TxHalfCpltCallback(I2S_HandleTypeDef *hi2s) { machine_i2s_obj_t *self; if (hi2s->Instance == I2S1) { self = MP_STATE_PORT(machine_i2s_obj)[0]; } else { self = MP_STATE_PORT(machine_i2s_obj)[1]; } // for non-blocking operation, this IRQ-based callback handles // the write() method requests. if ((self->io_mode == NON_BLOCKING) && (self->non_blocking_descriptor.copy_in_progress)) { copy_appbuf_to_ringbuf_non_blocking(self); } // top half of buffer now emptied, // safe to fill the top half while the bottom half of buffer is being emptied feed_dma(self, TOP_HALF); } STATIC void machine_i2s_init_helper(machine_i2s_obj_t *self, size_t n_pos_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_sck, ARG_ws, ARG_sd, ARG_mode, ARG_bits, ARG_format, ARG_rate, ARG_ibuf, }; static const mp_arg_t allowed_args[] = { { MP_QSTR_sck, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_ws, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_sd, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_format, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_rate, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_ibuf, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_pos_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); memset(&self->hi2s, 0, sizeof(self->hi2s)); // // ---- Check validity of arguments ---- // // are I2S pin assignments valid? const pin_af_obj_t *pin_af; // is SCK valid? if (mp_obj_is_type(args[ARG_sck].u_obj, &pin_type)) { pin_af = pin_find_af(MP_OBJ_TO_PTR(args[ARG_sck].u_obj), AF_FN_I2S, self->i2s_id); if (pin_af->type != AF_PIN_TYPE_I2S_CK) { mp_raise_ValueError(MP_ERROR_TEXT("invalid SCK pin")); } } else { mp_raise_ValueError(MP_ERROR_TEXT("SCK not a Pin type")); } // is WS valid? if (mp_obj_is_type(args[ARG_ws].u_obj, &pin_type)) { pin_af = pin_find_af(MP_OBJ_TO_PTR(args[ARG_ws].u_obj), AF_FN_I2S, self->i2s_id); if (pin_af->type != AF_PIN_TYPE_I2S_WS) { mp_raise_ValueError(MP_ERROR_TEXT("invalid WS pin")); } } else { mp_raise_ValueError(MP_ERROR_TEXT("WS not a Pin type")); } // is SD valid? if (mp_obj_is_type(args[ARG_sd].u_obj, &pin_type)) { pin_af = pin_find_af(MP_OBJ_TO_PTR(args[ARG_sd].u_obj), AF_FN_I2S, self->i2s_id); if (pin_af->type != AF_PIN_TYPE_I2S_SD) { mp_raise_ValueError(MP_ERROR_TEXT("invalid SD pin")); } } else { mp_raise_ValueError(MP_ERROR_TEXT("SD not a Pin type")); } // is Mode valid? uint16_t i2s_mode = args[ARG_mode].u_int; if ((i2s_mode != (I2S_MODE_MASTER_RX)) && (i2s_mode != (I2S_MODE_MASTER_TX))) { mp_raise_ValueError(MP_ERROR_TEXT("invalid mode")); } // is Bits valid? int8_t i2s_bits = args[ARG_bits].u_int; if ((i2s_bits != 16) && (i2s_bits != 32)) { mp_raise_ValueError(MP_ERROR_TEXT("invalid bits")); } // is Format valid? format_t i2s_format = args[ARG_format].u_int; if ((i2s_format != MONO) && (i2s_format != STEREO)) { mp_raise_ValueError(MP_ERROR_TEXT("invalid format")); } // is Rate valid? // Not checked // is Ibuf valid? int32_t ring_buffer_len = args[ARG_ibuf].u_int; if (ring_buffer_len > 0) { uint8_t *buffer = m_new(uint8_t, ring_buffer_len); self->ring_buffer_storage = buffer; ringbuf_init(&self->ring_buffer, buffer, ring_buffer_len); } else { mp_raise_ValueError(MP_ERROR_TEXT("invalid ibuf")); } self->sck = MP_OBJ_TO_PTR(args[ARG_sck].u_obj); self->ws = MP_OBJ_TO_PTR(args[ARG_ws].u_obj); self->sd = MP_OBJ_TO_PTR(args[ARG_sd].u_obj); self->mode = i2s_mode; self->bits = i2s_bits; self->format = i2s_format; self->rate = args[ARG_rate].u_int; self->ibuf = ring_buffer_len; self->callback_for_non_blocking = MP_OBJ_NULL; self->non_blocking_descriptor.copy_in_progress = false; self->io_mode = BLOCKING; I2S_InitTypeDef *init = &self->hi2s.Init; init->Mode = i2s_mode; init->Standard = I2S_STANDARD_PHILIPS; init->DataFormat = get_dma_bits(self->mode, self->bits); init->MCLKOutput = I2S_MCLKOUTPUT_DISABLE; init->AudioFreq = args[ARG_rate].u_int; init->CPOL = I2S_CPOL_LOW; init->ClockSource = I2S_CLOCK_PLL; #if defined(STM32F4) init->FullDuplexMode = I2S_FULLDUPLEXMODE_DISABLE; #endif // init the I2S bus if (!i2s_init(self)) { mp_raise_msg_varg(&mp_type_OSError, MP_ERROR_TEXT("I2S init failed")); } // start DMA. DMA is configured to run continuously, using a circular buffer configuration uint32_t number_of_samples = 0; if (init->DataFormat == I2S_DATAFORMAT_16B) { number_of_samples = SIZEOF_DMA_BUFFER_IN_BYTES / sizeof(uint16_t); } else { // 32 bits number_of_samples = SIZEOF_DMA_BUFFER_IN_BYTES / sizeof(uint32_t); } HAL_StatusTypeDef status; if (self->mode == I2S_MODE_MASTER_TX) { status = HAL_I2S_Transmit_DMA(&self->hi2s, (void *)self->dma_buffer_dcache_aligned, number_of_samples); } else { // RX status = HAL_I2S_Receive_DMA(&self->hi2s, (void *)self->dma_buffer_dcache_aligned, number_of_samples); } if (status != HAL_OK) { mp_raise_msg_varg(&mp_type_OSError, MP_ERROR_TEXT("DMA init failed")); } } STATIC void machine_i2s_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_printf(print, "I2S(id=%u,\n" "sck="MP_HAL_PIN_FMT ",\n" "ws="MP_HAL_PIN_FMT ",\n" "sd="MP_HAL_PIN_FMT ",\n" "mode=%u,\n" "bits=%u, format=%u,\n" "rate=%d, ibuf=%d)", self->i2s_id, mp_hal_pin_name(self->sck), mp_hal_pin_name(self->ws), mp_hal_pin_name(self->sd), self->mode, self->bits, self->format, self->rate, self->ibuf ); } STATIC mp_obj_t machine_i2s_make_new(const mp_obj_type_t *type, size_t n_pos_args, size_t n_kw_args, const mp_obj_t *args) { mp_arg_check_num(n_pos_args, n_kw_args, 1, MP_OBJ_FUN_ARGS_MAX, true); uint8_t i2s_id = mp_obj_get_int(args[0]); uint8_t i2s_id_zero_base = 0; if (0) { #ifdef MICROPY_HW_I2S1 } else if (i2s_id == 1) { i2s_id_zero_base = 0; #endif #ifdef MICROPY_HW_I2S2 } else if (i2s_id == 2) { i2s_id_zero_base = 1; #endif } else { mp_raise_ValueError(MP_ERROR_TEXT("invalid id")); } machine_i2s_obj_t *self; if (MP_STATE_PORT(machine_i2s_obj)[i2s_id_zero_base] == NULL) { self = mp_obj_malloc(machine_i2s_obj_t, &machine_i2s_type); MP_STATE_PORT(machine_i2s_obj)[i2s_id_zero_base] = self; self->i2s_id = i2s_id; } else { self = MP_STATE_PORT(machine_i2s_obj)[i2s_id_zero_base]; machine_i2s_deinit(MP_OBJ_FROM_PTR(self)); } // align DMA buffer start to the cache line size (32 bytes) self->dma_buffer_dcache_aligned = (uint8_t *)((uint32_t)(self->dma_buffer + 0x1f) & ~0x1f); mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw_args, args + n_pos_args); machine_i2s_init_helper(self, n_pos_args - 1, args + 1, &kw_args); return MP_OBJ_FROM_PTR(self); } STATIC mp_obj_t machine_i2s_init(size_t n_pos_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { machine_i2s_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); machine_i2s_deinit(MP_OBJ_FROM_PTR(self)); machine_i2s_init_helper(self, n_pos_args - 1, pos_args + 1, kw_args); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2s_init_obj, 1, machine_i2s_init); STATIC mp_obj_t machine_i2s_deinit(mp_obj_t self_in) { machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in); if (self->ring_buffer_storage != NULL) { dma_deinit(self->dma_descr_tx); dma_deinit(self->dma_descr_rx); HAL_I2S_DeInit(&self->hi2s); if (self->hi2s.Instance == I2S1) { __SPI1_FORCE_RESET(); __SPI1_RELEASE_RESET(); __SPI1_CLK_DISABLE(); } else if (self->hi2s.Instance == I2S2) { __SPI2_FORCE_RESET(); __SPI2_RELEASE_RESET(); __SPI2_CLK_DISABLE(); } m_free(self->ring_buffer_storage); self->ring_buffer_storage = NULL; } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_i2s_deinit_obj, machine_i2s_deinit); STATIC mp_obj_t machine_i2s_irq(mp_obj_t self_in, mp_obj_t handler) { machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in); if (handler != mp_const_none && !mp_obj_is_callable(handler)) { mp_raise_ValueError(MP_ERROR_TEXT("invalid callback")); } if (handler != mp_const_none) { self->io_mode = NON_BLOCKING; } else { self->io_mode = BLOCKING; } self->callback_for_non_blocking = handler; return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(machine_i2s_irq_obj, machine_i2s_irq); // Shift() is typically used as a volume control. // shift=1 increases volume by 6dB, shift=-1 decreases volume by 6dB STATIC mp_obj_t machine_i2s_shift(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_buf, ARG_bits, ARG_shift}; static const mp_arg_t allowed_args[] = { { MP_QSTR_buf, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_bits, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_shift, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, }; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[ARG_buf].u_obj, &bufinfo, MP_BUFFER_RW); int16_t *buf_16 = bufinfo.buf; int32_t *buf_32 = bufinfo.buf; uint8_t bits = args[ARG_bits].u_int; int8_t shift = args[ARG_shift].u_int; uint32_t num_audio_samples; switch (bits) { case 16: num_audio_samples = bufinfo.len / sizeof(uint16_t); break; case 32: num_audio_samples = bufinfo.len / sizeof(uint32_t); break; default: mp_raise_ValueError(MP_ERROR_TEXT("invalid bits")); break; } for (uint32_t i = 0; i < num_audio_samples; i++) { switch (bits) { case 16: if (shift >= 0) { buf_16[i] = buf_16[i] << shift; } else { buf_16[i] = buf_16[i] >> abs(shift); } break; case 32: if (shift >= 0) { buf_32[i] = buf_32[i] << shift; } else { buf_32[i] = buf_32[i] >> abs(shift); } break; } } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2s_shift_fun_obj, 0, machine_i2s_shift); STATIC MP_DEFINE_CONST_STATICMETHOD_OBJ(machine_i2s_shift_obj, MP_ROM_PTR(&machine_i2s_shift_fun_obj)); STATIC const mp_rom_map_elem_t machine_i2s_locals_dict_table[] = { // Methods { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_i2s_init_obj) }, { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) }, { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) }, { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&machine_i2s_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR_irq), MP_ROM_PTR(&machine_i2s_irq_obj) }, // Static method { MP_ROM_QSTR(MP_QSTR_shift), MP_ROM_PTR(&machine_i2s_shift_obj) }, // Constants { MP_ROM_QSTR(MP_QSTR_RX), MP_ROM_INT(I2S_MODE_MASTER_RX) }, { MP_ROM_QSTR(MP_QSTR_TX), MP_ROM_INT(I2S_MODE_MASTER_TX) }, { MP_ROM_QSTR(MP_QSTR_STEREO), MP_ROM_INT(STEREO) }, { MP_ROM_QSTR(MP_QSTR_MONO), MP_ROM_INT(MONO) }, }; MP_DEFINE_CONST_DICT(machine_i2s_locals_dict, machine_i2s_locals_dict_table); STATIC mp_uint_t machine_i2s_stream_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) { machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in); if (self->mode != I2S_MODE_MASTER_RX) { *errcode = MP_EPERM; return MP_STREAM_ERROR; } uint8_t appbuf_sample_size_in_bytes = (self->bits / 8) * (self->format == STEREO ? 2: 1); if (size % appbuf_sample_size_in_bytes != 0) { *errcode = MP_EINVAL; return MP_STREAM_ERROR; } if (size == 0) { return 0; } if (self->io_mode == NON_BLOCKING) { self->non_blocking_descriptor.appbuf.buf = (void *)buf_in; self->non_blocking_descriptor.appbuf.len = size; self->non_blocking_descriptor.index = 0; self->non_blocking_descriptor.copy_in_progress = true; return size; } else { // blocking or uasyncio mode mp_buffer_info_t appbuf; appbuf.buf = (void *)buf_in; appbuf.len = size; uint32_t num_bytes_read = fill_appbuf_from_ringbuf(self, &appbuf); return num_bytes_read; } } STATIC mp_uint_t machine_i2s_stream_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) { machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in); if (self->mode != I2S_MODE_MASTER_TX) { *errcode = MP_EPERM; return MP_STREAM_ERROR; } if (size == 0) { return 0; } if (self->io_mode == NON_BLOCKING) { self->non_blocking_descriptor.appbuf.buf = (void *)buf_in; self->non_blocking_descriptor.appbuf.len = size; self->non_blocking_descriptor.index = 0; self->non_blocking_descriptor.copy_in_progress = true; return size; } else { // blocking or uasyncio mode mp_buffer_info_t appbuf; appbuf.buf = (void *)buf_in; appbuf.len = size; uint32_t num_bytes_written = copy_appbuf_to_ringbuf(self, &appbuf); return num_bytes_written; } } STATIC mp_uint_t machine_i2s_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) { machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_uint_t ret; uintptr_t flags = arg; self->io_mode = UASYNCIO; // a call to ioctl() is an indication that uasyncio is being used if (request == MP_STREAM_POLL) { ret = 0; if (flags & MP_STREAM_POLL_RD) { if (self->mode != I2S_MODE_MASTER_RX) { *errcode = MP_EPERM; return MP_STREAM_ERROR; } if (!ringbuf_is_empty(&self->ring_buffer)) { ret |= MP_STREAM_POLL_RD; } } if (flags & MP_STREAM_POLL_WR) { if (self->mode != I2S_MODE_MASTER_TX) { *errcode = MP_EPERM; return MP_STREAM_ERROR; } if (!ringbuf_is_full(&self->ring_buffer)) { ret |= MP_STREAM_POLL_WR; } } } else { *errcode = MP_EINVAL; ret = MP_STREAM_ERROR; } return ret; } STATIC const mp_stream_p_t i2s_stream_p = { .read = machine_i2s_stream_read, .write = machine_i2s_stream_write, .ioctl = machine_i2s_ioctl, .is_text = false, }; MP_DEFINE_CONST_OBJ_TYPE( machine_i2s_type, MP_QSTR_I2S, MP_TYPE_FLAG_NONE, machine_i2s_make_new, print, machine_i2s_print, getiter, mp_identity_getiter, iternext, mp_stream_unbuffered_iter, protocol, &i2s_stream_p, locals_dict, (mp_obj_dict_t *)&machine_i2s_locals_dict ); MP_REGISTER_ROOT_POINTER(struct _machine_i2s_obj_t *machine_i2s_obj[MICROPY_HW_MAX_I2S]); #endif // MICROPY_HW_ENABLE_I2S