/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2018 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "py/runtime.h" #include "py/mperrno.h" #include "extmod/vfs_fat.h" #include "systick.h" #include "led.h" #include "storage.h" #include "irq.h" #if MICROPY_HW_ENABLE_STORAGE #define STORAGE_SYSTICK_MASK (0x1ff) // 512ms #define STORAGE_IDLE_TICK(tick) (((tick) & ~(SYSTICK_DISPATCH_NUM_SLOTS - 1) & STORAGE_SYSTICK_MASK) == 0) #if defined(MICROPY_HW_BDEV2_IOCTL) #define FLASH_PART2_START_BLOCK (FLASH_PART1_START_BLOCK + MICROPY_HW_BDEV_IOCTL(BDEV_IOCTL_NUM_BLOCKS, 0)) #endif static bool storage_is_initialised = false; static void storage_systick_callback(uint32_t ticks_ms); void storage_init(void) { if (!storage_is_initialised) { storage_is_initialised = true; systick_enable_dispatch(SYSTICK_DISPATCH_STORAGE, storage_systick_callback); MICROPY_HW_BDEV_IOCTL(BDEV_IOCTL_INIT, 0); #if defined(MICROPY_HW_BDEV2_IOCTL) MICROPY_HW_BDEV2_IOCTL(BDEV_IOCTL_INIT, 0); #endif // Enable the flash IRQ, which is used to also call our storage IRQ handler // It must go at the same priority as USB (see comment in irq.h). NVIC_SetPriority(FLASH_IRQn, IRQ_PRI_FLASH); HAL_NVIC_EnableIRQ(FLASH_IRQn); } } uint32_t storage_get_block_size(void) { return FLASH_BLOCK_SIZE; } uint32_t storage_get_block_count(void) { #if defined(MICROPY_HW_BDEV2_IOCTL) return FLASH_PART2_START_BLOCK + MICROPY_HW_BDEV2_IOCTL(BDEV_IOCTL_NUM_BLOCKS, 0); #else return FLASH_PART1_START_BLOCK + MICROPY_HW_BDEV_IOCTL(BDEV_IOCTL_NUM_BLOCKS, 0); #endif } static void storage_systick_callback(uint32_t ticks_ms) { if (STORAGE_IDLE_TICK(ticks_ms)) { // Trigger a FLASH IRQ to execute at a lower priority #if __CORTEX_M == 0 NVIC_SetPendingIRQ(FLASH_IRQn); #else NVIC->STIR = FLASH_IRQn; #endif } } void FLASH_IRQHandler(void) { IRQ_ENTER(FLASH_IRQn); MICROPY_HW_BDEV_IOCTL(BDEV_IOCTL_IRQ_HANDLER, 0); #if defined(MICROPY_HW_BDEV2_IOCTL) MICROPY_HW_BDEV2_IOCTL(BDEV_IOCTL_IRQ_HANDLER, 0); #endif IRQ_EXIT(FLASH_IRQn); } void storage_flush(void) { MICROPY_HW_BDEV_IOCTL(BDEV_IOCTL_SYNC, 0); #if defined(MICROPY_HW_BDEV2_IOCTL) MICROPY_HW_BDEV2_IOCTL(BDEV_IOCTL_SYNC, 0); #endif } static void build_partition(uint8_t *buf, int boot, int type, uint32_t start_block, uint32_t num_blocks) { buf[0] = boot; if (num_blocks == 0) { buf[1] = 0; buf[2] = 0; buf[3] = 0; } else { buf[1] = 0xff; buf[2] = 0xff; buf[3] = 0xff; } buf[4] = type; if (num_blocks == 0) { buf[5] = 0; buf[6] = 0; buf[7] = 0; } else { buf[5] = 0xff; buf[6] = 0xff; buf[7] = 0xff; } buf[8] = start_block; buf[9] = start_block >> 8; buf[10] = start_block >> 16; buf[11] = start_block >> 24; buf[12] = num_blocks; buf[13] = num_blocks >> 8; buf[14] = num_blocks >> 16; buf[15] = num_blocks >> 24; } bool storage_read_block(uint8_t *dest, uint32_t block) { // printf("RD %u\n", block); if (block == 0) { // fake the MBR so we can decide on our own partition table for (int i = 0; i < 446; i++) { dest[i] = 0; } build_partition(dest + 446, 0, 0x01 /* FAT12 */, FLASH_PART1_START_BLOCK, MICROPY_HW_BDEV_IOCTL(BDEV_IOCTL_NUM_BLOCKS, 0)); #if defined(MICROPY_HW_BDEV2_IOCTL) build_partition(dest + 462, 0, 0x01 /* FAT12 */, FLASH_PART2_START_BLOCK, MICROPY_HW_BDEV2_IOCTL(BDEV_IOCTL_NUM_BLOCKS, 0)); #else build_partition(dest + 462, 0, 0, 0, 0); #endif build_partition(dest + 478, 0, 0, 0, 0); build_partition(dest + 494, 0, 0, 0, 0); dest[510] = 0x55; dest[511] = 0xaa; return true; #if defined(MICROPY_HW_BDEV_READBLOCK) } else if (FLASH_PART1_START_BLOCK <= block && block < FLASH_PART1_START_BLOCK + MICROPY_HW_BDEV_IOCTL(BDEV_IOCTL_NUM_BLOCKS, 0)) { return MICROPY_HW_BDEV_READBLOCK(dest, block - FLASH_PART1_START_BLOCK); #endif } else { return false; } } bool storage_write_block(const uint8_t *src, uint32_t block) { // printf("WR %u\n", block); if (block == 0) { // can't write MBR, but pretend we did return true; #if defined(MICROPY_HW_BDEV_WRITEBLOCK) } else if (FLASH_PART1_START_BLOCK <= block && block < FLASH_PART1_START_BLOCK + MICROPY_HW_BDEV_IOCTL(BDEV_IOCTL_NUM_BLOCKS, 0)) { return MICROPY_HW_BDEV_WRITEBLOCK(src, block - FLASH_PART1_START_BLOCK); #endif } else { return false; } } int storage_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) { #if defined(MICROPY_HW_BDEV_READBLOCKS) if (FLASH_PART1_START_BLOCK <= block_num && block_num + num_blocks <= FLASH_PART1_START_BLOCK + MICROPY_HW_BDEV_IOCTL(BDEV_IOCTL_NUM_BLOCKS, 0)) { return MICROPY_HW_BDEV_READBLOCKS(dest, block_num - FLASH_PART1_START_BLOCK, num_blocks); } #endif #if defined(MICROPY_HW_BDEV2_READBLOCKS) if (FLASH_PART2_START_BLOCK <= block_num && block_num + num_blocks <= FLASH_PART2_START_BLOCK + MICROPY_HW_BDEV2_IOCTL(BDEV_IOCTL_NUM_BLOCKS, 0)) { return MICROPY_HW_BDEV2_READBLOCKS(dest, block_num - FLASH_PART2_START_BLOCK, num_blocks); } #endif for (size_t i = 0; i < num_blocks; i++) { if (!storage_read_block(dest + i * FLASH_BLOCK_SIZE, block_num + i)) { return -MP_EIO; // error } } return 0; // success } int storage_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) { #if defined(MICROPY_HW_BDEV_WRITEBLOCKS) if (FLASH_PART1_START_BLOCK <= block_num && block_num + num_blocks <= FLASH_PART1_START_BLOCK + MICROPY_HW_BDEV_IOCTL(BDEV_IOCTL_NUM_BLOCKS, 0)) { return MICROPY_HW_BDEV_WRITEBLOCKS(src, block_num - FLASH_PART1_START_BLOCK, num_blocks); } #endif #if defined(MICROPY_HW_BDEV2_WRITEBLOCKS) if (FLASH_PART2_START_BLOCK <= block_num && block_num + num_blocks <= FLASH_PART2_START_BLOCK + MICROPY_HW_BDEV2_IOCTL(BDEV_IOCTL_NUM_BLOCKS, 0)) { return MICROPY_HW_BDEV2_WRITEBLOCKS(src, block_num - FLASH_PART2_START_BLOCK, num_blocks); } #endif for (size_t i = 0; i < num_blocks; i++) { if (!storage_write_block(src + i * FLASH_BLOCK_SIZE, block_num + i)) { return -MP_EIO; // error } } return 0; // success } /******************************************************************************/ // MicroPython bindings // // Expose the flash as an object with the block protocol. #ifdef MICROPY_HW_BDEV_SPIFLASH_EXTENDED // Board defined an external SPI flash for use with extended block protocol #define MICROPY_HW_BDEV_BLOCKSIZE_EXT (MP_SPIFLASH_ERASE_BLOCK_SIZE) #define MICROPY_HW_BDEV_READBLOCKS_EXT(dest, bl, off, len) \ (spi_bdev_readblocks_raw(MICROPY_HW_BDEV_SPIFLASH_EXTENDED, (dest), (bl), (off), (len))) #define MICROPY_HW_BDEV_WRITEBLOCKS_EXT(src, bl, off, len) \ (spi_bdev_writeblocks_raw(MICROPY_HW_BDEV_SPIFLASH_EXTENDED, (src), (bl), (off), (len))) #define MICROPY_HW_BDEV_ERASEBLOCKS_EXT(bl, len) \ (spi_bdev_eraseblocks_raw(MICROPY_HW_BDEV_SPIFLASH_EXTENDED, (bl), (len))) #elif (MICROPY_VFS_LFS1 || MICROPY_VFS_LFS2) && MICROPY_HW_ENABLE_INTERNAL_FLASH_STORAGE // Board uses littlefs and internal flash, so enable extended block protocol on internal flash #define MICROPY_HW_BDEV_BLOCKSIZE_EXT (FLASH_BLOCK_SIZE) #define MICROPY_HW_BDEV_READBLOCKS_EXT(dest, bl, off, len) (flash_bdev_readblocks_ext((dest), (bl), (off), (len))) #define MICROPY_HW_BDEV_WRITEBLOCKS_EXT(dest, bl, off, len) (flash_bdev_writeblocks_ext((dest), (bl), (off), (len))) #endif #ifndef MICROPY_HW_BDEV_BLOCKSIZE_EXT #define MICROPY_HW_BDEV_BLOCKSIZE_EXT (FLASH_BLOCK_SIZE) #endif #if defined(MICROPY_HW_BDEV_READBLOCKS_EXT) // Size of blocks is MICROPY_HW_BDEV_BLOCKSIZE_EXT int storage_readblocks_ext(uint8_t *dest, uint32_t block, uint32_t offset, uint32_t len) { return MICROPY_HW_BDEV_READBLOCKS_EXT(dest, block, offset, len); } #endif typedef struct _pyb_flash_obj_t { mp_obj_base_t base; uint32_t start; // in bytes uint32_t len; // in bytes bool use_native_block_size; } pyb_flash_obj_t; // This Flash object represents the entire available flash, with emulated partition table at start const pyb_flash_obj_t pyb_flash_obj = { { &pyb_flash_type }, -(FLASH_PART1_START_BLOCK * FLASH_BLOCK_SIZE), // to offset FLASH_PART1_START_BLOCK 0, // actual size handled in ioctl, MP_BLOCKDEV_IOCTL_BLOCK_COUNT case }; STATIC void pyb_flash_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { pyb_flash_obj_t *self = MP_OBJ_TO_PTR(self_in); if (self == &pyb_flash_obj) { mp_printf(print, "Flash()"); } else { mp_printf(print, "Flash(start=%u, len=%u)", self->start, self->len); } } STATIC mp_obj_t pyb_flash_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { // Parse arguments enum { ARG_start, ARG_len }; static const mp_arg_t allowed_args[] = { { MP_QSTR_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_len, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if (args[ARG_start].u_int == -1 && args[ARG_len].u_int == -1) { // Default singleton object that accesses entire flash, including virtual partition table return MP_OBJ_FROM_PTR(&pyb_flash_obj); } pyb_flash_obj_t *self = mp_obj_malloc(pyb_flash_obj_t, &pyb_flash_type); self->use_native_block_size = false; uint32_t bl_len = (storage_get_block_count() - FLASH_PART1_START_BLOCK) * FLASH_BLOCK_SIZE; mp_int_t start = args[ARG_start].u_int; if (start == -1) { start = 0; } else if (!(0 <= start && start < bl_len && start % MICROPY_HW_BDEV_BLOCKSIZE_EXT == 0)) { mp_raise_ValueError(NULL); } mp_int_t len = args[ARG_len].u_int; if (len == -1) { len = bl_len - start; } else if (!(0 < len && start + len <= bl_len && len % MICROPY_HW_BDEV_BLOCKSIZE_EXT == 0)) { mp_raise_ValueError(NULL); } self->start = start; self->len = len; return MP_OBJ_FROM_PTR(self); } STATIC mp_obj_t pyb_flash_readblocks(size_t n_args, const mp_obj_t *args) { pyb_flash_obj_t *self = MP_OBJ_TO_PTR(args[0]); uint32_t block_num = mp_obj_get_int(args[1]); mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_WRITE); mp_uint_t ret = -MP_EIO; if (n_args == 3) { // Cast self->start to signed in case it's pyb_flash_obj with negative start block_num += FLASH_PART1_START_BLOCK + (int32_t)self->start / FLASH_BLOCK_SIZE; ret = storage_read_blocks(bufinfo.buf, block_num, bufinfo.len / FLASH_BLOCK_SIZE); } #if defined(MICROPY_HW_BDEV_READBLOCKS_EXT) else if (self != &pyb_flash_obj) { // Extended block read on a sub-section of the flash storage uint32_t offset = mp_obj_get_int(args[3]); if ((block_num * MICROPY_HW_BDEV_BLOCKSIZE_EXT) >= self->len) { ret = -MP_EFAULT; // Bad address } else { block_num += self->start / MICROPY_HW_BDEV_BLOCKSIZE_EXT; ret = MICROPY_HW_BDEV_READBLOCKS_EXT(bufinfo.buf, block_num, offset, bufinfo.len); } } #endif return MP_OBJ_NEW_SMALL_INT(ret); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_flash_readblocks_obj, 3, 4, pyb_flash_readblocks); STATIC mp_obj_t pyb_flash_writeblocks(size_t n_args, const mp_obj_t *args) { pyb_flash_obj_t *self = MP_OBJ_TO_PTR(args[0]); uint32_t block_num = mp_obj_get_int(args[1]); mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_READ); mp_uint_t ret = -MP_EIO; if (n_args == 3) { // Cast self->start to signed in case it's pyb_flash_obj with negative start block_num += FLASH_PART1_START_BLOCK + (int32_t)self->start / FLASH_BLOCK_SIZE; ret = storage_write_blocks(bufinfo.buf, block_num, bufinfo.len / FLASH_BLOCK_SIZE); } #if defined(MICROPY_HW_BDEV_WRITEBLOCKS_EXT) else if (self != &pyb_flash_obj) { // Extended block write on a sub-section of the flash storage uint32_t offset = mp_obj_get_int(args[3]); if ((block_num * MICROPY_HW_BDEV_BLOCKSIZE_EXT) >= self->len) { ret = -MP_EFAULT; // Bad address } else { block_num += self->start / MICROPY_HW_BDEV_BLOCKSIZE_EXT; ret = MICROPY_HW_BDEV_WRITEBLOCKS_EXT(bufinfo.buf, block_num, offset, bufinfo.len); } } #endif return MP_OBJ_NEW_SMALL_INT(ret); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_flash_writeblocks_obj, 3, 4, pyb_flash_writeblocks); STATIC mp_obj_t pyb_flash_ioctl(mp_obj_t self_in, mp_obj_t cmd_in, mp_obj_t arg_in) { pyb_flash_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_int_t cmd = mp_obj_get_int(cmd_in); switch (cmd) { case MP_BLOCKDEV_IOCTL_INIT: { mp_int_t ret = 0; storage_init(); if (mp_obj_get_int(arg_in) == 1) { // Will be using extended block protocol if (self == &pyb_flash_obj) { ret = -1; } else { // Switch to use native block size of the underlying storage. self->use_native_block_size = true; } } return MP_OBJ_NEW_SMALL_INT(ret); } case MP_BLOCKDEV_IOCTL_DEINIT: storage_flush(); return MP_OBJ_NEW_SMALL_INT(0); // TODO properly case MP_BLOCKDEV_IOCTL_SYNC: storage_flush(); return MP_OBJ_NEW_SMALL_INT(0); case MP_BLOCKDEV_IOCTL_BLOCK_COUNT: { mp_int_t n; if (self == &pyb_flash_obj) { // Get true size n = storage_get_block_count(); } else if (self->use_native_block_size) { n = self->len / MICROPY_HW_BDEV_BLOCKSIZE_EXT; } else { n = self->len / FLASH_BLOCK_SIZE; } return MP_OBJ_NEW_SMALL_INT(n); } case MP_BLOCKDEV_IOCTL_BLOCK_SIZE: { mp_int_t n = FLASH_BLOCK_SIZE; if (self->use_native_block_size) { n = MICROPY_HW_BDEV_BLOCKSIZE_EXT; } return MP_OBJ_NEW_SMALL_INT(n); } case MP_BLOCKDEV_IOCTL_BLOCK_ERASE: { int ret = 0; #if defined(MICROPY_HW_BDEV_ERASEBLOCKS_EXT) if (self->use_native_block_size) { mp_int_t block_num = self->start / MICROPY_HW_BDEV_BLOCKSIZE_EXT + mp_obj_get_int(arg_in); ret = MICROPY_HW_BDEV_ERASEBLOCKS_EXT(block_num, MICROPY_HW_BDEV_BLOCKSIZE_EXT); } #endif return MP_OBJ_NEW_SMALL_INT(ret); } default: return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_flash_ioctl_obj, pyb_flash_ioctl); STATIC const mp_rom_map_elem_t pyb_flash_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_readblocks), MP_ROM_PTR(&pyb_flash_readblocks_obj) }, { MP_ROM_QSTR(MP_QSTR_writeblocks), MP_ROM_PTR(&pyb_flash_writeblocks_obj) }, { MP_ROM_QSTR(MP_QSTR_ioctl), MP_ROM_PTR(&pyb_flash_ioctl_obj) }, }; STATIC MP_DEFINE_CONST_DICT(pyb_flash_locals_dict, pyb_flash_locals_dict_table); MP_DEFINE_CONST_OBJ_TYPE( pyb_flash_type, MP_QSTR_Flash, MP_TYPE_FLAG_NONE, pyb_flash_make_new, print, pyb_flash_print, locals_dict, (mp_obj_dict_t *)&pyb_flash_locals_dict ); void pyb_flash_init_vfs(fs_user_mount_t *vfs) { vfs->base.type = &mp_fat_vfs_type; vfs->blockdev.flags |= MP_BLOCKDEV_FLAG_NATIVE | MP_BLOCKDEV_FLAG_HAVE_IOCTL; vfs->fatfs.drv = vfs; #if MICROPY_FATFS_MULTI_PARTITION vfs->fatfs.part = 1; // flash filesystem lives on first partition #endif vfs->blockdev.readblocks[0] = MP_OBJ_FROM_PTR(&pyb_flash_readblocks_obj); vfs->blockdev.readblocks[1] = MP_OBJ_FROM_PTR(&pyb_flash_obj); vfs->blockdev.readblocks[2] = MP_OBJ_FROM_PTR(storage_read_blocks); // native version vfs->blockdev.writeblocks[0] = MP_OBJ_FROM_PTR(&pyb_flash_writeblocks_obj); vfs->blockdev.writeblocks[1] = MP_OBJ_FROM_PTR(&pyb_flash_obj); vfs->blockdev.writeblocks[2] = MP_OBJ_FROM_PTR(storage_write_blocks); // native version vfs->blockdev.u.ioctl[0] = MP_OBJ_FROM_PTR(&pyb_flash_ioctl_obj); vfs->blockdev.u.ioctl[1] = MP_OBJ_FROM_PTR(&pyb_flash_obj); } #endif