/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2018 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "py/runtime.h" #include "py/mphal.h" #include "spi.h" // Possible DMA configurations for SPI busses: // SPI1_TX: DMA2_Stream3.CHANNEL_3 or DMA2_Stream5.CHANNEL_3 // SPI1_RX: DMA2_Stream0.CHANNEL_3 or DMA2_Stream2.CHANNEL_3 // SPI2_TX: DMA1_Stream4.CHANNEL_0 // SPI2_RX: DMA1_Stream3.CHANNEL_0 // SPI3_TX: DMA1_Stream5.CHANNEL_0 or DMA1_Stream7.CHANNEL_0 // SPI3_RX: DMA1_Stream0.CHANNEL_0 or DMA1_Stream2.CHANNEL_0 // SPI4_TX: DMA2_Stream4.CHANNEL_5 or DMA2_Stream1.CHANNEL_4 // SPI4_RX: DMA2_Stream3.CHANNEL_5 or DMA2_Stream0.CHANNEL_4 // SPI5_TX: DMA2_Stream4.CHANNEL_2 or DMA2_Stream6.CHANNEL_7 // SPI5_RX: DMA2_Stream3.CHANNEL_2 or DMA2_Stream5.CHANNEL_7 // SPI6_TX: DMA2_Stream5.CHANNEL_1 // SPI6_RX: DMA2_Stream6.CHANNEL_1 #if defined(MICROPY_HW_SPI1_SCK) SPI_HandleTypeDef SPIHandle1 = {.Instance = NULL}; #endif #if defined(MICROPY_HW_SPI2_SCK) SPI_HandleTypeDef SPIHandle2 = {.Instance = NULL}; #endif #if defined(MICROPY_HW_SPI3_SCK) SPI_HandleTypeDef SPIHandle3 = {.Instance = NULL}; #endif #if defined(MICROPY_HW_SPI4_SCK) SPI_HandleTypeDef SPIHandle4 = {.Instance = NULL}; #endif #if defined(MICROPY_HW_SPI5_SCK) SPI_HandleTypeDef SPIHandle5 = {.Instance = NULL}; #endif #if defined(MICROPY_HW_SPI6_SCK) SPI_HandleTypeDef SPIHandle6 = {.Instance = NULL}; #endif const spi_t spi_obj[6] = { #if defined(MICROPY_HW_SPI1_SCK) {&SPIHandle1, &dma_SPI_1_TX, &dma_SPI_1_RX}, #else {NULL, NULL, NULL}, #endif #if defined(MICROPY_HW_SPI2_SCK) {&SPIHandle2, &dma_SPI_2_TX, &dma_SPI_2_RX}, #else {NULL, NULL, NULL}, #endif #if defined(MICROPY_HW_SPI3_SCK) {&SPIHandle3, &dma_SPI_3_TX, &dma_SPI_3_RX}, #else {NULL, NULL, NULL}, #endif #if defined(MICROPY_HW_SPI4_SCK) {&SPIHandle4, &dma_SPI_4_TX, &dma_SPI_4_RX}, #else {NULL, NULL, NULL}, #endif #if defined(MICROPY_HW_SPI5_SCK) {&SPIHandle5, &dma_SPI_5_TX, &dma_SPI_5_RX}, #else {NULL, NULL, NULL}, #endif #if defined(MICROPY_HW_SPI6_SCK) {&SPIHandle6, &dma_SPI_6_TX, &dma_SPI_6_RX}, #else {NULL, NULL, NULL}, #endif }; void spi_init0(void) { // Initialise the SPI handles. // The structs live on the BSS so all other fields will be zero after a reset. #if defined(MICROPY_HW_SPI1_SCK) SPIHandle1.Instance = SPI1; #endif #if defined(MICROPY_HW_SPI2_SCK) SPIHandle2.Instance = SPI2; #endif #if defined(MICROPY_HW_SPI3_SCK) SPIHandle3.Instance = SPI3; #endif #if defined(MICROPY_HW_SPI4_SCK) SPIHandle4.Instance = SPI4; #endif #if defined(MICROPY_HW_SPI5_SCK) SPIHandle5.Instance = SPI5; #endif #if defined(MICROPY_HW_SPI6_SCK) SPIHandle6.Instance = SPI6; #endif } int spi_find_index(mp_obj_t id) { if (MP_OBJ_IS_STR(id)) { // given a string id const char *port = mp_obj_str_get_str(id); if (0) { #ifdef MICROPY_HW_SPI1_NAME } else if (strcmp(port, MICROPY_HW_SPI1_NAME) == 0) { return 1; #endif #ifdef MICROPY_HW_SPI2_NAME } else if (strcmp(port, MICROPY_HW_SPI2_NAME) == 0) { return 2; #endif #ifdef MICROPY_HW_SPI3_NAME } else if (strcmp(port, MICROPY_HW_SPI3_NAME) == 0) { return 3; #endif #ifdef MICROPY_HW_SPI4_NAME } else if (strcmp(port, MICROPY_HW_SPI4_NAME) == 0) { return 4; #endif #ifdef MICROPY_HW_SPI5_NAME } else if (strcmp(port, MICROPY_HW_SPI5_NAME) == 0) { return 5; #endif #ifdef MICROPY_HW_SPI6_NAME } else if (strcmp(port, MICROPY_HW_SPI6_NAME) == 0) { return 6; #endif } nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "SPI(%s) doesn't exist", port)); } else { // given an integer id int spi_id = mp_obj_get_int(id); if (spi_id >= 1 && spi_id <= MP_ARRAY_SIZE(spi_obj) && spi_obj[spi_id - 1].spi != NULL) { return spi_id; } nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "SPI(%d) doesn't exist", spi_id)); } } // sets the parameters in the SPI_InitTypeDef struct // if an argument is -1 then the corresponding parameter is not changed void spi_set_params(const spi_t *spi_obj, uint32_t prescale, int32_t baudrate, int32_t polarity, int32_t phase, int32_t bits, int32_t firstbit) { SPI_HandleTypeDef *spi = spi_obj->spi; SPI_InitTypeDef *init = &spi->Init; if (prescale != 0xffffffff || baudrate != -1) { if (prescale == 0xffffffff) { // prescaler not given, so select one that yields at most the requested baudrate mp_uint_t spi_clock; #if defined(STM32F0) spi_clock = HAL_RCC_GetPCLK1Freq(); #else if (spi->Instance == SPI2 || spi->Instance == SPI3) { // SPI2 and SPI3 are on APB1 spi_clock = HAL_RCC_GetPCLK1Freq(); } else { // SPI1, SPI4, SPI5 and SPI6 are on APB2 spi_clock = HAL_RCC_GetPCLK2Freq(); } #endif prescale = (spi_clock + baudrate - 1) / baudrate; } if (prescale <= 2) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2; } else if (prescale <= 4) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4; } else if (prescale <= 8) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8; } else if (prescale <= 16) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16; } else if (prescale <= 32) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32; } else if (prescale <= 64) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64; } else if (prescale <= 128) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128; } else { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; } } if (polarity != -1) { init->CLKPolarity = polarity == 0 ? SPI_POLARITY_LOW : SPI_POLARITY_HIGH; } if (phase != -1) { init->CLKPhase = phase == 0 ? SPI_PHASE_1EDGE : SPI_PHASE_2EDGE; } if (bits != -1) { init->DataSize = (bits == 16) ? SPI_DATASIZE_16BIT : SPI_DATASIZE_8BIT; } if (firstbit != -1) { init->FirstBit = firstbit; } } // TODO allow to take a list of pins to use void spi_init(const spi_t *self, bool enable_nss_pin) { SPI_HandleTypeDef *spi = self->spi; const pin_obj_t *pins[4] = { NULL, NULL, NULL, NULL }; if (0) { #if defined(MICROPY_HW_SPI1_SCK) } else if (spi->Instance == SPI1) { #if defined(MICROPY_HW_SPI1_NSS) pins[0] = MICROPY_HW_SPI1_NSS; #endif pins[1] = MICROPY_HW_SPI1_SCK; #if defined(MICROPY_HW_SPI1_MISO) pins[2] = MICROPY_HW_SPI1_MISO; #endif pins[3] = MICROPY_HW_SPI1_MOSI; // enable the SPI clock __HAL_RCC_SPI1_CLK_ENABLE(); #endif #if defined(MICROPY_HW_SPI2_SCK) } else if (spi->Instance == SPI2) { #if defined(MICROPY_HW_SPI2_NSS) pins[0] = MICROPY_HW_SPI2_NSS; #endif pins[1] = MICROPY_HW_SPI2_SCK; #if defined(MICROPY_HW_SPI2_MISO) pins[2] = MICROPY_HW_SPI2_MISO; #endif pins[3] = MICROPY_HW_SPI2_MOSI; // enable the SPI clock __HAL_RCC_SPI2_CLK_ENABLE(); #endif #if defined(MICROPY_HW_SPI3_SCK) } else if (spi->Instance == SPI3) { #if defined(MICROPY_HW_SPI3_NSS) pins[0] = MICROPY_HW_SPI3_NSS; #endif pins[1] = MICROPY_HW_SPI3_SCK; #if defined(MICROPY_HW_SPI3_MISO) pins[2] = MICROPY_HW_SPI3_MISO; #endif pins[3] = MICROPY_HW_SPI3_MOSI; // enable the SPI clock __HAL_RCC_SPI3_CLK_ENABLE(); #endif #if defined(MICROPY_HW_SPI4_SCK) } else if (spi->Instance == SPI4) { #if defined(MICROPY_HW_SPI4_NSS) pins[0] = MICROPY_HW_SPI4_NSS; #endif pins[1] = MICROPY_HW_SPI4_SCK; #if defined(MICROPY_HW_SPI4_MISO) pins[2] = MICROPY_HW_SPI4_MISO; #endif pins[3] = MICROPY_HW_SPI4_MOSI; // enable the SPI clock __HAL_RCC_SPI4_CLK_ENABLE(); #endif #if defined(MICROPY_HW_SPI5_SCK) } else if (spi->Instance == SPI5) { #if defined(MICROPY_HW_SPI5_NSS) pins[0] = MICROPY_HW_SPI5_NSS; #endif pins[1] = MICROPY_HW_SPI5_SCK; #if defined(MICROPY_HW_SPI5_MISO) pins[2] = MICROPY_HW_SPI5_MISO; #endif pins[3] = MICROPY_HW_SPI5_MOSI; // enable the SPI clock __HAL_RCC_SPI5_CLK_ENABLE(); #endif #if defined(MICROPY_HW_SPI6_SCK) } else if (spi->Instance == SPI6) { #if defined(MICROPY_HW_SPI6_NSS) pins[0] = MICROPY_HW_SPI6_NSS; #endif pins[1] = MICROPY_HW_SPI6_SCK; #if defined(MICROPY_HW_SPI6_MISO) pins[2] = MICROPY_HW_SPI6_MISO; #endif pins[3] = MICROPY_HW_SPI6_MOSI; // enable the SPI clock __HAL_RCC_SPI6_CLK_ENABLE(); #endif } else { // SPI does not exist for this board (shouldn't get here, should be checked by caller) return; } // init the GPIO lines uint32_t mode = MP_HAL_PIN_MODE_ALT; uint32_t pull = spi->Init.CLKPolarity == SPI_POLARITY_LOW ? MP_HAL_PIN_PULL_DOWN : MP_HAL_PIN_PULL_UP; for (uint i = (enable_nss_pin ? 0 : 1); i < 4; i++) { if (pins[i] == NULL) { continue; } mp_hal_pin_config_alt(pins[i], mode, pull, AF_FN_SPI, (self - &spi_obj[0]) + 1); } // init the SPI device if (HAL_SPI_Init(spi) != HAL_OK) { // init error // TODO should raise an exception, but this function is not necessarily going to be // called via Python, so may not be properly wrapped in an NLR handler printf("OSError: HAL_SPI_Init failed\n"); return; } // After calling HAL_SPI_Init() it seems that the DMA gets disconnected if // it was previously configured. So we invalidate the DMA channel to force // an initialisation the next time we use it. dma_invalidate_channel(self->tx_dma_descr); dma_invalidate_channel(self->rx_dma_descr); } void spi_deinit(const spi_t *spi_obj) { SPI_HandleTypeDef *spi = spi_obj->spi; HAL_SPI_DeInit(spi); if (0) { #if defined(MICROPY_HW_SPI1_SCK) } else if (spi->Instance == SPI1) { __HAL_RCC_SPI1_FORCE_RESET(); __HAL_RCC_SPI1_RELEASE_RESET(); __HAL_RCC_SPI1_CLK_DISABLE(); #endif #if defined(MICROPY_HW_SPI2_SCK) } else if (spi->Instance == SPI2) { __HAL_RCC_SPI2_FORCE_RESET(); __HAL_RCC_SPI2_RELEASE_RESET(); __HAL_RCC_SPI2_CLK_DISABLE(); #endif #if defined(MICROPY_HW_SPI3_SCK) } else if (spi->Instance == SPI3) { __HAL_RCC_SPI3_FORCE_RESET(); __HAL_RCC_SPI3_RELEASE_RESET(); __HAL_RCC_SPI3_CLK_DISABLE(); #endif #if defined(MICROPY_HW_SPI4_SCK) } else if (spi->Instance == SPI4) { __HAL_RCC_SPI4_FORCE_RESET(); __HAL_RCC_SPI4_RELEASE_RESET(); __HAL_RCC_SPI4_CLK_DISABLE(); #endif #if defined(MICROPY_HW_SPI5_SCK) } else if (spi->Instance == SPI5) { __HAL_RCC_SPI5_FORCE_RESET(); __HAL_RCC_SPI5_RELEASE_RESET(); __HAL_RCC_SPI5_CLK_DISABLE(); #endif #if defined(MICROPY_HW_SPI6_SCK) } else if (spi->Instance == SPI6) { __HAL_RCC_SPI6_FORCE_RESET(); __HAL_RCC_SPI6_RELEASE_RESET(); __HAL_RCC_SPI6_CLK_DISABLE(); #endif } } STATIC HAL_StatusTypeDef spi_wait_dma_finished(const spi_t *spi, uint32_t t_start, uint32_t timeout) { volatile HAL_SPI_StateTypeDef *state = &spi->spi->State; for (;;) { // Do an atomic check of the state; WFI will exit even if IRQs are disabled uint32_t irq_state = disable_irq(); if (*state == HAL_SPI_STATE_READY) { enable_irq(irq_state); return HAL_OK; } __WFI(); enable_irq(irq_state); if (HAL_GetTick() - t_start >= timeout) { return HAL_TIMEOUT; } } return HAL_OK; } void spi_transfer(const spi_t *self, size_t len, const uint8_t *src, uint8_t *dest, uint32_t timeout) { // Note: there seems to be a problem sending 1 byte using DMA the first // time directly after the SPI/DMA is initialised. The cause of this is // unknown but we sidestep the issue by using polling for 1 byte transfer. // Note: DMA transfers are limited to 65535 bytes at a time. HAL_StatusTypeDef status; if (dest == NULL) { // send only if (len == 1 || query_irq() == IRQ_STATE_DISABLED) { status = HAL_SPI_Transmit(self->spi, (uint8_t*)src, len, timeout); } else { DMA_HandleTypeDef tx_dma; dma_init(&tx_dma, self->tx_dma_descr, DMA_MEMORY_TO_PERIPH, self->spi); self->spi->hdmatx = &tx_dma; self->spi->hdmarx = NULL; MP_HAL_CLEAN_DCACHE(src, len); uint32_t t_start = HAL_GetTick(); do { uint32_t l = MIN(len, 65535); status = HAL_SPI_Transmit_DMA(self->spi, (uint8_t*)src, l); if (status != HAL_OK) { break; } status = spi_wait_dma_finished(self, t_start, timeout); if (status != HAL_OK) { break; } len -= l; src += l; } while (len); dma_deinit(self->tx_dma_descr); } } else if (src == NULL) { // receive only if (len == 1 || query_irq() == IRQ_STATE_DISABLED) { status = HAL_SPI_Receive(self->spi, dest, len, timeout); } else { DMA_HandleTypeDef tx_dma, rx_dma; if (self->spi->Init.Mode == SPI_MODE_MASTER) { // in master mode the HAL actually does a TransmitReceive call dma_init(&tx_dma, self->tx_dma_descr, DMA_MEMORY_TO_PERIPH, self->spi); self->spi->hdmatx = &tx_dma; } else { self->spi->hdmatx = NULL; } dma_init(&rx_dma, self->rx_dma_descr, DMA_PERIPH_TO_MEMORY, self->spi); self->spi->hdmarx = &rx_dma; MP_HAL_CLEANINVALIDATE_DCACHE(dest, len); uint32_t t_start = HAL_GetTick(); do { uint32_t l = MIN(len, 65535); status = HAL_SPI_Receive_DMA(self->spi, dest, l); if (status != HAL_OK) { break; } status = spi_wait_dma_finished(self, t_start, timeout); if (status != HAL_OK) { break; } len -= l; dest += l; } while (len); if (self->spi->hdmatx != NULL) { dma_deinit(self->tx_dma_descr); } dma_deinit(self->rx_dma_descr); } } else { // send and receive if (len == 1 || query_irq() == IRQ_STATE_DISABLED) { status = HAL_SPI_TransmitReceive(self->spi, (uint8_t*)src, dest, len, timeout); } else { DMA_HandleTypeDef tx_dma, rx_dma; dma_init(&tx_dma, self->tx_dma_descr, DMA_MEMORY_TO_PERIPH, self->spi); self->spi->hdmatx = &tx_dma; dma_init(&rx_dma, self->rx_dma_descr, DMA_PERIPH_TO_MEMORY, self->spi); self->spi->hdmarx = &rx_dma; MP_HAL_CLEAN_DCACHE(src, len); MP_HAL_CLEANINVALIDATE_DCACHE(dest, len); uint32_t t_start = HAL_GetTick(); do { uint32_t l = MIN(len, 65535); status = HAL_SPI_TransmitReceive_DMA(self->spi, (uint8_t*)src, dest, l); if (status != HAL_OK) { break; } status = spi_wait_dma_finished(self, t_start, timeout); if (status != HAL_OK) { break; } len -= l; src += l; dest += l; } while (len); dma_deinit(self->tx_dma_descr); dma_deinit(self->rx_dma_descr); } } if (status != HAL_OK) { mp_hal_raise(status); } } void spi_print(const mp_print_t *print, const spi_t *spi_obj, bool legacy) { SPI_HandleTypeDef *spi = spi_obj->spi; uint spi_num = 1; // default to SPI1 if (spi->Instance == SPI2) { spi_num = 2; } #if defined(SPI3) else if (spi->Instance == SPI3) { spi_num = 3; } #endif #if defined(SPI4) else if (spi->Instance == SPI4) { spi_num = 4; } #endif #if defined(SPI5) else if (spi->Instance == SPI5) { spi_num = 5; } #endif #if defined(SPI6) else if (spi->Instance == SPI6) { spi_num = 6; } #endif mp_printf(print, "SPI(%u", spi_num); if (spi->State != HAL_SPI_STATE_RESET) { if (spi->Init.Mode == SPI_MODE_MASTER) { // compute baudrate uint spi_clock; #if defined(STM32F0) spi_clock = HAL_RCC_GetPCLK1Freq(); #else if (spi->Instance == SPI2 || spi->Instance == SPI3) { // SPI2 and SPI3 are on APB1 spi_clock = HAL_RCC_GetPCLK1Freq(); } else { // SPI1, SPI4, SPI5 and SPI6 are on APB2 spi_clock = HAL_RCC_GetPCLK2Freq(); } #endif uint log_prescaler = (spi->Init.BaudRatePrescaler >> 3) + 1; uint baudrate = spi_clock >> log_prescaler; if (legacy) { mp_printf(print, ", SPI.MASTER"); } mp_printf(print, ", baudrate=%u", baudrate); if (legacy) { mp_printf(print, ", prescaler=%u", 1 << log_prescaler); } } else { mp_printf(print, ", SPI.SLAVE"); } mp_printf(print, ", polarity=%u, phase=%u, bits=%u", spi->Init.CLKPolarity == SPI_POLARITY_LOW ? 0 : 1, spi->Init.CLKPhase == SPI_PHASE_1EDGE ? 0 : 1, spi->Init.DataSize == SPI_DATASIZE_8BIT ? 8 : 16); if (spi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) { mp_printf(print, ", crc=0x%x", spi->Init.CRCPolynomial); } } mp_print_str(print, ")"); } const spi_t *spi_from_mp_obj(mp_obj_t o) { if (MP_OBJ_IS_TYPE(o, &pyb_spi_type)) { pyb_spi_obj_t *self = MP_OBJ_TO_PTR(o); return self->spi; } else if (MP_OBJ_IS_TYPE(o, &machine_hard_spi_type)) { machine_hard_spi_obj_t *self = MP_OBJ_TO_PTR(o); return self->spi; } else { mp_raise_TypeError("expecting an SPI object"); } } /******************************************************************************/ // Implementation of low-level SPI C protocol STATIC int spi_proto_ioctl(void *self_in, uint32_t cmd) { spi_proto_cfg_t *self = (spi_proto_cfg_t*)self_in; switch (cmd) { case MP_SPI_IOCTL_INIT: spi_set_params(self->spi, 0xffffffff, self->baudrate, self->polarity, self->phase, self->bits, self->firstbit); spi_init(self->spi, false); break; case MP_SPI_IOCTL_DEINIT: spi_deinit(self->spi); break; } return 0; } STATIC void spi_proto_transfer(void *self_in, size_t len, const uint8_t *src, uint8_t *dest) { spi_proto_cfg_t *self = (spi_proto_cfg_t*)self_in; spi_transfer(self->spi, len, src, dest, SPI_TRANSFER_TIMEOUT(len)); } const mp_spi_proto_t spi_proto = { .ioctl = spi_proto_ioctl, .transfer = spi_proto_transfer, };