#include #include #include #include #include "misc.h" #include "mpconfig.h" #include "qstr.h" #include "obj.h" #include "map.h" #include "runtime.h" #include "nlr.h" #include "pin.h" #include "exti.h" // Usage Model: // // There are a total of 22 interrupt lines. 16 of these can come from GPIO pins // and the remaining 6 are from internal sources. // // For lines 0 thru 15, a given line can map to the corresponding line from an // arbitrary port. So line 0 can map to Px0 where x is A, B, C, ... and // line 1 can map to Px1 where x is A, B, C, ... // // def callback(line): // print("line =", line) // // # Note: Exti will automatically configure the gpio line as an input. // exti = pyb.Exti(pin, pyb.Exti.MODE_IRQ_FALLING, pyb.PULLUP, callback) // // Now every time a falling edge is seen on the X1 pin, the callback will be // called. Caution: mechanical pushbuttons have "bounce" and pushing or // releasing a switch will often generate multiple edges. // See: http://www.eng.utah.edu/~cs5780/debouncing.pdf for a detailed // explanation, along with various techniques for debouncing. // // Trying to register 2 callbacks onto the same pin will throw an exception. // // If pin is passed as an integer, then it is assumed to map to one of the // internal interrupt sources, and must be in the range 16 thru 22. // // All other pin objects go through the pin mapper to come up with one of the // gpio pins. // // exti = pyb.Exti(pin, mode, pull, callback) // // Valid modes are pyb.Exti.MODE_IRQ_RISING, pyb.Exti.MODE_IRQ_FALLING, // pyb.Exti.MODE_IRQ_RISING_FALLING, pyb.Exti.MODE_EVT_RISING, // pyb.Exti.MODE_EVT_FALLING, and pyb.Exti.MODE_EVT_RISING_FALLING. // // Only the MODE_IRQ_xxx modes have been tested. The MODE_EVENT_xxx modes have // something to do with sleep mode and he WFE instruction. // // Valid pull values are pyb.PULL_UP, pyb.PULL_DOWN, pyb.PULL_NONE. // // exti.line() will return the line number that pin was mapped to. // exti.disable() can be use to disable the interrupt associated with a given // exti object. This could be useful for debouncing. // exti.enable() enables a disabled interrupt // exti.swint() will allow the callback to be triggered from software. // // pyb.Exti.regs() will dump the values of the EXTI registers. // // There is also a C API, so that drivers which require EXTI interrupt lines // can also use this code. See exti.h for the available functions and // usrsw.h for an example of using this. #define EXTI_OFFSET (EXTI_BASE - PERIPH_BASE) // Macro used to set/clear the bit corresponding to the line in the IMR/EMR // register in an atomic fashion by using bitband addressing. #define EXTI_MODE_BB(mode, line) (*(__IO uint32_t *)(PERIPH_BB_BASE + ((EXTI_OFFSET + (mode)) * 32) + ((line) * 4))) #define EXTI_Mode_Interrupt offsetof(EXTI_TypeDef, IMR) #define EXTI_Mode_Event offsetof(EXTI_TypeDef, EMR) #define EXTI_SWIER_BB(line) (*(__IO uint32_t *)(PERIPH_BB_BASE + ((EXTI_OFFSET + offsetof(EXTI_TypeDef, SWIER)) * 32) + ((line) * 4))) typedef struct { mp_obj_base_t base; mp_small_int_t line; } exti_obj_t; typedef struct { mp_obj_t callback_obj; void *param; uint32_t mode; } exti_vector_t; static exti_vector_t exti_vector[EXTI_NUM_VECTORS]; #if !defined(ETH) #define ETH_WKUP_IRQn 62 // The 405 doesn't have ETH, but we want a value to put in our table #endif static const uint8_t nvic_irq_channel[EXTI_NUM_VECTORS] = { EXTI0_IRQn, EXTI1_IRQn, EXTI2_IRQn, EXTI3_IRQn, EXTI4_IRQn, EXTI9_5_IRQn, EXTI9_5_IRQn, EXTI9_5_IRQn, EXTI9_5_IRQn, EXTI9_5_IRQn, EXTI15_10_IRQn, EXTI15_10_IRQn, EXTI15_10_IRQn, EXTI15_10_IRQn, EXTI15_10_IRQn, EXTI15_10_IRQn, PVD_IRQn, RTC_Alarm_IRQn, OTG_FS_WKUP_IRQn, ETH_WKUP_IRQn, OTG_HS_WKUP_IRQn, TAMP_STAMP_IRQn, RTC_WKUP_IRQn }; // NOTE: param is for C callers. Python can use closure to get an object bound // with the function. uint exti_register(mp_obj_t pin_obj, mp_obj_t mode_obj, mp_obj_t pull_obj, mp_obj_t callback_obj, void *param) { const pin_obj_t *pin = NULL; uint v_line; if (MP_OBJ_IS_INT(pin_obj)) { // If an integer is passed in, then use it to identify lines 16 thru 22 // We expect lines 0 thru 15 to be passed in as a pin, so that we can // get both the port number and line number. v_line = mp_obj_get_int(pin_obj); if (v_line < 16) { nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "EXTI vector %d < 16, use a Pin object", v_line)); } if (v_line >= EXTI_NUM_VECTORS) { nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "EXTI vector %d >= max of %d", v_line, EXTI_NUM_VECTORS)); } } else { pin = pin_map_user_obj(pin_obj); v_line = pin->pin; } int mode = mp_obj_get_int(mode_obj); if (mode != GPIO_MODE_IT_RISING && mode != GPIO_MODE_IT_FALLING && mode != GPIO_MODE_IT_RISING_FALLING && mode != GPIO_MODE_EVT_RISING && mode != GPIO_MODE_EVT_FALLING && mode != GPIO_MODE_EVT_RISING_FALLING) { nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Invalid EXTI Mode: %d", mode)); } int pull = mp_obj_get_int(pull_obj); if (pull != GPIO_NOPULL && pull != GPIO_PULLUP && pull != GPIO_PULLDOWN) { nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Invalid EXTI Pull: %d", pull)); } exti_vector_t *v = &exti_vector[v_line]; if (v->callback_obj != mp_const_none && callback_obj != mp_const_none) { nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "EXTI vector %d is already in use", v_line)); } // We need to update callback and param atomically, so we disable the line // before we update anything. exti_disable(v_line); v->callback_obj = callback_obj; v->param = param; v->mode = (mode & 0x00010000) ? // GPIO_MODE_IT == 0x00010000 EXTI_Mode_Interrupt : EXTI_Mode_Event; if (v->callback_obj != mp_const_none) { GPIO_InitTypeDef exti; exti.Pin = pin->pin_mask; exti.Mode = mode; exti.Pull = pull; exti.Speed = GPIO_SPEED_FAST; HAL_GPIO_Init(pin->gpio, &exti); // Calling HAL_GPIO_Init does an implicit exti_enable /* Enable and set NVIC Interrupt to the lowest priority */ HAL_NVIC_SetPriority(nvic_irq_channel[v_line], 0x0F, 0x0F); HAL_NVIC_EnableIRQ(nvic_irq_channel[v_line]); } return v_line; } void exti_enable(uint line) { if (line >= EXTI_NUM_VECTORS) { return; } // Since manipulating IMR/EMR is a read-modify-write, and we want this to // be atomic, we use the bit-band area to just affect the bit we're // interested in. EXTI_MODE_BB(exti_vector[line].mode, line) = 1; } void exti_disable(uint line) { if (line >= EXTI_NUM_VECTORS) { return; } // Since manipulating IMR/EMR is a read-modify-write, and we want this to // be atomic, we use the bit-band area to just affect the bit we're // interested in. EXTI_MODE_BB(EXTI_Mode_Interrupt, line) = 0; EXTI_MODE_BB(EXTI_Mode_Event, line) = 0; } void exti_swint(uint line) { if (line >= EXTI_NUM_VECTORS) { return; } EXTI->SWIER = (1 << line); } static mp_obj_t exti_obj_line(mp_obj_t self_in) { exti_obj_t *self = self_in; return MP_OBJ_NEW_SMALL_INT(self->line); } static mp_obj_t exti_obj_enable(mp_obj_t self_in) { exti_obj_t *self = self_in; exti_enable(self->line); return mp_const_none; } static mp_obj_t exti_obj_disable(mp_obj_t self_in) { exti_obj_t *self = self_in; exti_disable(self->line); return mp_const_none; } static mp_obj_t exti_obj_swint(mp_obj_t self_in) { exti_obj_t *self = self_in; exti_swint(self->line); return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_1(exti_obj_line_obj, exti_obj_line); static MP_DEFINE_CONST_FUN_OBJ_1(exti_obj_enable_obj, exti_obj_enable); static MP_DEFINE_CONST_FUN_OBJ_1(exti_obj_disable_obj, exti_obj_disable); static MP_DEFINE_CONST_FUN_OBJ_1(exti_obj_swint_obj, exti_obj_swint); STATIC const mp_map_elem_t exti_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_line), (mp_obj_t) &exti_obj_line_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_enable), (mp_obj_t) &exti_obj_enable_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_disable), (mp_obj_t) &exti_obj_disable_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_swint), (mp_obj_t) &exti_obj_swint_obj }, }; STATIC MP_DEFINE_CONST_DICT(exti_locals_dict, exti_locals_dict_table); static mp_obj_t exti_regs(void) { printf("EXTI_IMR %08lx\n", EXTI->IMR); printf("EXTI_EMR %08lx\n", EXTI->EMR); printf("EXTI_RTSR %08lx\n", EXTI->RTSR); printf("EXTI_FTSR %08lx\n", EXTI->FTSR); printf("EXTI_SWIER %08lx\n", EXTI->SWIER); printf("EXTI_PR %08lx\n", EXTI->PR); return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_0(exti_regs_obj, exti_regs); typedef struct { const char *name; uint val; } exti_const_t; static const exti_const_t exti_const[] = { { "MODE_IRQ_RISING", GPIO_MODE_IT_RISING }, { "MODE_IRQ_FALLING", GPIO_MODE_IT_FALLING }, { "MODE_IRQ_RISING_FALLING", GPIO_MODE_IT_RISING_FALLING }, { "MODE_EVT_RISING", GPIO_MODE_EVT_RISING }, { "MODE_EVT_FALLING", GPIO_MODE_EVT_FALLING }, { "MODE_EVT_RISING_FALLING", GPIO_MODE_EVT_RISING_FALLING }, }; #define EXTI_NUM_CONST (sizeof(exti_const) / sizeof(exti_const[0])) static void exti_load_attr(mp_obj_t self_in, qstr attr_qstr, mp_obj_t *dest) { (void)self_in; const char *attr = qstr_str(attr_qstr); if (strcmp(attr, "regs") == 0) { dest[0] = (mp_obj_t)&exti_regs_obj; return; } const exti_const_t *entry = &exti_const[0]; for (; entry < &exti_const[EXTI_NUM_CONST]; entry++) { if (strcmp(attr, entry->name) == 0) { dest[0] = MP_OBJ_NEW_SMALL_INT(entry->val); dest[1] = MP_OBJ_NULL; return; } } } // line_obj = pyb.Exti(pin, mode, trigger, callback) static mp_obj_t exti_call(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) { // type_in == exti_obj_type rt_check_nargs(n_args, 4, 4, n_kw, 0); exti_obj_t *self = m_new_obj(exti_obj_t); self->base.type = type_in; mp_obj_t line_obj = args[0]; mp_obj_t mode_obj = args[1]; mp_obj_t trigger_obj = args[2]; mp_obj_t callback_obj = args[3]; self->line = exti_register(line_obj, mode_obj, trigger_obj, callback_obj, NULL); return self; } static void exti_meta_obj_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { (void) self_in; print(env, ""); } static void exti_obj_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { exti_obj_t *self = self_in; print(env, "", self->line); } static const mp_obj_type_t exti_meta_obj_type = { { &mp_type_type }, .name = MP_QSTR_ExtiMeta, .print = exti_meta_obj_print, .call = exti_call, .load_attr = exti_load_attr, }; const mp_obj_type_t exti_obj_type = { { &exti_meta_obj_type }, .name = MP_QSTR_Exti, .print = exti_obj_print, .locals_dict = (mp_obj_t)&exti_locals_dict, }; void exti_init(void) { for (exti_vector_t *v = exti_vector; v < &exti_vector[EXTI_NUM_VECTORS]; v++) { v->callback_obj = mp_const_none; v->param = NULL; v->mode = EXTI_Mode_Interrupt; } } void Handle_EXTI_Irq(uint32_t line) { if (__HAL_GPIO_EXTI_GET_FLAG(1 << line)) { __HAL_GPIO_EXTI_CLEAR_FLAG(1 << line); if (line < EXTI_NUM_VECTORS) { exti_vector_t *v = &exti_vector[line]; if (v->callback_obj != mp_const_none) { rt_call_function_1(v->callback_obj, MP_OBJ_NEW_SMALL_INT(line)); } } } }