/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2022 Mike Teachman * Copyright (c) 2022 Robert Hammelrath * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // This file is never compiled standalone, it's included directly from // extmod/machine_i2s.c via MICROPY_PY_MACHINE_I2S_INCLUDEFILE. #include "py/mphal.h" #include "dma_manager.h" #include CLOCK_CONFIG_H #include "fsl_iomuxc.h" #include "fsl_dmamux.h" #include "fsl_edma.h" #include "fsl_sai.h" #if MICROPY_PY_MACHINE_I2S // The I2S module has 3 modes of operation: // // Mode1: Blocking // - readinto() and write() methods block until the supplied buffer is filled (read) or emptied (write) // - this is the default mode of operation // // Mode2: Non-Blocking // - readinto() and write() methods return immediately // - buffer filling and emptying happens asynchronously to the main MicroPython task // - a callback function is called when the supplied buffer has been filled (read) or emptied (write) // - non-blocking mode is enabled when a callback is set with the irq() method // - the DMA callback is used to implement the asynchronous background operations // // Mode3: Asyncio // - implements the stream protocol // - asyncio mode is enabled when the ioctl() function is called // - the state of the internal ring buffer is used to detect that I2S samples can be read or written // // The samples contained in the app buffer supplied for the readinto() and write() methods have the following convention: // Mono: little endian format // Stereo: little endian format, left channel first // // I2S terms: // "frame": consists of two audio samples (Left audio sample + Right audio sample) // // Misc: // - for Mono configuration: // - readinto method: samples are gathered from the L channel only // - write method: every sample is output to both the L and R channels // - for readinto method the I2S hardware is read using 8-byte frames // (this is standard for almost all I2S hardware, such as MEMS microphones) // - all 3 Modes of operation are implemented using the peripheral drivers in the NXP MCUXpresso SDK // - all sample data transfers use DMA // - the DMA ping-pong buffer needs to be aligned to a cache line size of 32 bytes. 32 byte // alignment is needed to use the routines that clean and invalidate D-Cache which work on a // 32 byte address boundary. // - master clock frequency is sampling frequency * 256 // DMA ping-pong buffer size was empirically determined. It is a tradeoff between: // 1. memory use (smaller buffer size desirable to reduce memory footprint) // 2. interrupt frequency (larger buffer size desirable to reduce interrupt frequency) // The sizeof 1/2 of the DMA buffer must be evenly divisible by the cache line size of 32 bytes. #define SIZEOF_DMA_BUFFER_IN_BYTES (256) #define SIZEOF_HALF_DMA_BUFFER_IN_BYTES (SIZEOF_DMA_BUFFER_IN_BYTES / 2) // For non-blocking mode, to avoid underflow/overflow, sample data is written/read to/from the ring buffer at a rate faster // than the DMA transfer rate #define NON_BLOCKING_RATE_MULTIPLIER (4) #define SIZEOF_NON_BLOCKING_COPY_IN_BYTES (SIZEOF_HALF_DMA_BUFFER_IN_BYTES * NON_BLOCKING_RATE_MULTIPLIER) #define NUM_I2S_USER_FORMATS (4) #define I2S_RX_FRAME_SIZE_IN_BYTES (8) #define SAI_CHANNEL_0 (0) #define SAI_NUM_AUDIO_CHANNELS (2U) typedef enum { SCK, WS, SD, MCK } i2s_pin_function_t; typedef enum { RX, TX, } i2s_mode_t; typedef enum { MONO, STEREO } format_t; typedef enum { BLOCKING, NON_BLOCKING, ASYNCIO } io_mode_t; typedef enum { TOP_HALF, BOTTOM_HALF } ping_pong_t; typedef struct _machine_i2s_obj_t { mp_obj_base_t base; uint8_t i2s_id; mp_hal_pin_obj_t sck; mp_hal_pin_obj_t ws; mp_hal_pin_obj_t sd; mp_hal_pin_obj_t mck; i2s_mode_t mode; int8_t bits; format_t format; int32_t rate; int32_t ibuf; mp_obj_t callback_for_non_blocking; uint8_t dma_buffer[SIZEOF_DMA_BUFFER_IN_BYTES + 0x1f]; // 0x1f related to D-Cache alignment uint8_t *dma_buffer_dcache_aligned; ring_buf_t ring_buffer; uint8_t *ring_buffer_storage; non_blocking_descriptor_t non_blocking_descriptor; io_mode_t io_mode; I2S_Type *i2s_inst; int dma_channel; edma_handle_t edmaHandle; edma_tcd_t *edmaTcd; } machine_i2s_obj_t; typedef struct _iomux_table_t { uint32_t muxRegister; uint32_t muxMode; uint32_t inputRegister; uint32_t inputDaisy; uint32_t configRegister; } iomux_table_t; typedef struct _gpio_map_t { uint8_t hw_id; i2s_pin_function_t fn; i2s_mode_t mode; qstr name; iomux_table_t iomux; } gpio_map_t; typedef struct _i2s_clock_config_t { sai_sample_rate_t rate; const clock_audio_pll_config_t *pll_config; uint32_t clock_pre_divider; uint32_t clock_divider; } i2s_clock_config_t; STATIC mp_obj_t machine_i2s_deinit(mp_obj_t self_in); // The frame map is used with the readinto() method to transform the audio sample data coming // from DMA memory (32-bit stereo) to the format specified // in the I2S constructor. e.g. 16-bit mono STATIC const int8_t i2s_frame_map[NUM_I2S_USER_FORMATS][I2S_RX_FRAME_SIZE_IN_BYTES] = { {-1, -1, 0, 1, -1, -1, -1, -1 }, // Mono, 16-bits { 0, 1, 2, 3, -1, -1, -1, -1 }, // Mono, 32-bits {-1, -1, 0, 1, -1, -1, 2, 3 }, // Stereo, 16-bits { 0, 1, 2, 3, 4, 5, 6, 7 }, // Stereo, 32-bits }; // 2 PLL configurations // PLL output frequency = 24MHz * (.loopDivider + .numerator/.denominator) // Configuration 1: for sampling frequencies [Hz]: 8000, 12000, 16000, 24000, 32000, 48000 // Clock frequency = 786,432,000 Hz = 48000 * 64 * 256 STATIC const clock_audio_pll_config_t audioPllConfig_8000_48000 = { .loopDivider = 32, // PLL loop divider. Valid range for DIV_SELECT divider value: 27~54 .postDivider = 1, // Divider after the PLL, should only be 1, 2, 4, 8, 16 .numerator = 76800, // 30 bit numerator of fractional loop divider .denominator = 100000, // 30 bit denominator of fractional loop divider #if !defined(MIMXRT117x_SERIES) .src = kCLOCK_PllClkSrc24M // Pll clock source #endif }; // Configuration 2: for sampling frequencies [Hz]: 11025, 22050, 44100 // Clock frequency = 722,534,400 = 44100 * 64 * 256 STATIC const clock_audio_pll_config_t audioPllConfig_11025_44100 = { .loopDivider = 30, // PLL loop divider. Valid range for DIV_SELECT divider value: 27~54 .postDivider = 1, // Divider after the PLL, should only be 1, 2, 4, 8, 16 .numerator = 10560, // 30 bit numerator of fractional loop divider .denominator = 100000, // 30 bit denominator of fractional loop divider #if !defined(MIMXRT117x_SERIES) .src = kCLOCK_PllClkSrc24M // Pll clock source #endif }; #if defined(MIMXRT117x_SERIES) // for 1176 the pre_div value is used for post_div of the Audio PLL, // which is 2**n: 0->1, 1->2, 2->4, 3->8, 4->16, 5->32 // The divider is 8 bit and must be given as n (not n-1) // So the total division factor is given by (2**p) * d STATIC const i2s_clock_config_t clock_config_map[] = { {kSAI_SampleRate8KHz, &audioPllConfig_8000_48000, 1, 192}, // 384 {kSAI_SampleRate11025Hz, &audioPllConfig_11025_44100, 1, 128}, // 256 {kSAI_SampleRate12KHz, &audioPllConfig_8000_48000, 1, 128}, // 256 {kSAI_SampleRate16KHz, &audioPllConfig_8000_48000, 0, 192}, // 192 {kSAI_SampleRate22050Hz, &audioPllConfig_11025_44100, 0, 128}, // 128 {kSAI_SampleRate24KHz, &audioPllConfig_8000_48000, 0, 128}, // 128 {kSAI_SampleRate32KHz, &audioPllConfig_8000_48000, 0, 96}, // 96 {kSAI_SampleRate44100Hz, &audioPllConfig_11025_44100, 0, 64}, // 64 {kSAI_SampleRate48KHz, &audioPllConfig_8000_48000, 0, 64} // 64 }; STATIC const clock_root_t i2s_clock_mux[] = I2S_CLOCK_MUX; #else // for 10xx the total division factor is given by (p + 1) * (d + 1) STATIC const i2s_clock_config_t clock_config_map[] = { {kSAI_SampleRate8KHz, &audioPllConfig_8000_48000, 5, 63}, // 384 {kSAI_SampleRate11025Hz, &audioPllConfig_11025_44100, 3, 63}, // 256 {kSAI_SampleRate12KHz, &audioPllConfig_8000_48000, 3, 63}, // 256 {kSAI_SampleRate16KHz, &audioPllConfig_8000_48000, 2, 63}, // 192 {kSAI_SampleRate22050Hz, &audioPllConfig_11025_44100, 1, 63}, // 128 {kSAI_SampleRate24KHz, &audioPllConfig_8000_48000, 1, 63}, // 128 {kSAI_SampleRate32KHz, &audioPllConfig_8000_48000, 1, 47}, // 96 {kSAI_SampleRate44100Hz, &audioPllConfig_11025_44100, 0, 63}, // 64 {kSAI_SampleRate48KHz, &audioPllConfig_8000_48000, 0, 63} // 64 }; STATIC const clock_mux_t i2s_clock_mux[] = I2S_CLOCK_MUX; STATIC const clock_div_t i2s_clock_pre_div[] = I2S_CLOCK_PRE_DIV; STATIC const clock_div_t i2s_clock_div[] = I2S_CLOCK_DIV; STATIC const iomuxc_gpr_mode_t i2s_iomuxc_gpr_mode[] = I2S_IOMUXC_GPR_MODE; #endif STATIC const I2S_Type *i2s_base_ptr[] = I2S_BASE_PTRS; STATIC const dma_request_source_t i2s_dma_req_src_tx[] = I2S_DMA_REQ_SRC_TX; STATIC const dma_request_source_t i2s_dma_req_src_rx[] = I2S_DMA_REQ_SRC_RX; STATIC const gpio_map_t i2s_gpio_map[] = I2S_GPIO_MAP; AT_NONCACHEABLE_SECTION_ALIGN(STATIC edma_tcd_t edmaTcd[MICROPY_HW_I2S_NUM], 32); // called on processor reset void machine_i2s_init0() { for (uint8_t i = 0; i < MICROPY_HW_I2S_NUM; i++) { MP_STATE_PORT(machine_i2s_obj)[i] = NULL; } } // called on soft reboot void machine_i2s_deinit_all(void) { for (uint8_t i = 0; i < MICROPY_HW_I2S_NUM; i++) { machine_i2s_obj_t *i2s_obj = MP_STATE_PORT(machine_i2s_obj)[i]; if (i2s_obj != NULL) { machine_i2s_deinit(i2s_obj); MP_STATE_PORT(machine_i2s_obj)[i] = NULL; } } } STATIC int8_t get_frame_mapping_index(int8_t bits, format_t format) { if (format == MONO) { if (bits == 16) { return 0; } else { // 32 bits return 1; } } else { // STEREO if (bits == 16) { return 2; } else { // 32 bits return 3; } } } STATIC int8_t get_dma_bits(uint16_t mode, int8_t bits) { if (mode == TX) { if (bits == 16) { return 16; } else { return 32; } return bits; } else { // RX // always read 32 bit words for I2S e.g. I2S MEMS microphones return 32; } } STATIC bool lookup_gpio(const machine_pin_obj_t *pin, i2s_pin_function_t fn, uint8_t hw_id, uint16_t *index) { for (uint16_t i = 0; i < ARRAY_SIZE(i2s_gpio_map); i++) { if ((pin->name == i2s_gpio_map[i].name) && (i2s_gpio_map[i].fn == fn) && (i2s_gpio_map[i].hw_id == hw_id)) { *index = i; return true; } } return false; } STATIC bool set_iomux(const machine_pin_obj_t *pin, i2s_pin_function_t fn, uint8_t hw_id) { uint16_t mapping_index; if (lookup_gpio(pin, fn, hw_id, &mapping_index)) { iomux_table_t iom = i2s_gpio_map[mapping_index].iomux; IOMUXC_SetPinMux(iom.muxRegister, iom.muxMode, iom.inputRegister, iom.inputDaisy, iom.configRegister, 1U); IOMUXC_SetPinConfig(iom.muxRegister, iom.muxMode, iom.inputRegister, iom.inputDaisy, iom.configRegister, pin_generate_config(PIN_PULL_DISABLED, PIN_MODE_OUT, 2, iom.configRegister)); return true; } else { return false; } } STATIC bool is_rate_supported(int32_t rate) { for (uint16_t i = 0; i < ARRAY_SIZE(clock_config_map); i++) { if (clock_config_map[i].rate == rate) { return true; } } return false; } STATIC const clock_audio_pll_config_t *get_pll_config(int32_t rate) { for (uint16_t i = 0; i < ARRAY_SIZE(clock_config_map); i++) { if (clock_config_map[i].rate == rate) { return clock_config_map[i].pll_config; } } return 0; } STATIC const uint32_t get_clock_pre_divider(int32_t rate) { for (uint16_t i = 0; i < ARRAY_SIZE(clock_config_map); i++) { if (clock_config_map[i].rate == rate) { return clock_config_map[i].clock_pre_divider; } } return 0; } STATIC const uint32_t get_clock_divider(int32_t rate) { for (uint16_t i = 0; i < ARRAY_SIZE(clock_config_map); i++) { if (clock_config_map[i].rate == rate) { return clock_config_map[i].clock_divider; } } return 0; } // function is used in IRQ context STATIC void empty_dma(machine_i2s_obj_t *self, ping_pong_t dma_ping_pong) { uint16_t dma_buffer_offset = 0; if (dma_ping_pong == TOP_HALF) { dma_buffer_offset = 0; } else { // BOTTOM_HALF dma_buffer_offset = SIZEOF_HALF_DMA_BUFFER_IN_BYTES; } uint8_t *dma_buffer_p = &self->dma_buffer_dcache_aligned[dma_buffer_offset]; // flush and invalidate cache so the CPU reads data placed into RAM by DMA MP_HAL_CLEANINVALIDATE_DCACHE(dma_buffer_p, SIZEOF_HALF_DMA_BUFFER_IN_BYTES); // when space exists, copy samples into ring buffer if (ringbuf_available_space(&self->ring_buffer) >= SIZEOF_HALF_DMA_BUFFER_IN_BYTES) { for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES; i++) { ringbuf_push(&self->ring_buffer, dma_buffer_p[i]); } } } // function is used in IRQ context STATIC void feed_dma(machine_i2s_obj_t *self, ping_pong_t dma_ping_pong) { uint16_t dma_buffer_offset = 0; if (dma_ping_pong == TOP_HALF) { dma_buffer_offset = 0; } else { // BOTTOM_HALF dma_buffer_offset = SIZEOF_HALF_DMA_BUFFER_IN_BYTES; } uint8_t *dma_buffer_p = &self->dma_buffer_dcache_aligned[dma_buffer_offset]; // when data exists, copy samples from ring buffer if (ringbuf_available_data(&self->ring_buffer) >= SIZEOF_HALF_DMA_BUFFER_IN_BYTES) { // copy a block of samples from the ring buffer to the dma buffer. // mono format is implemented by duplicating each sample into both L and R channels. if ((self->format == MONO) && (self->bits == 16)) { for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES / 4; i++) { for (uint8_t b = 0; b < sizeof(uint16_t); b++) { ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i * 4 + b]); dma_buffer_p[i * 4 + b + 2] = dma_buffer_p[i * 4 + b]; // duplicated mono sample } } } else if ((self->format == MONO) && (self->bits == 32)) { for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES / 8; i++) { for (uint8_t b = 0; b < sizeof(uint32_t); b++) { ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i * 8 + b]); dma_buffer_p[i * 8 + b + 4] = dma_buffer_p[i * 8 + b]; // duplicated mono sample } } } else { // STEREO, both 16-bit and 32-bit for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES; i++) { ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i]); } } } else { // underflow. clear buffer to transmit "silence" on the I2S bus memset(dma_buffer_p, 0, SIZEOF_HALF_DMA_BUFFER_IN_BYTES); } // flush cache to RAM so DMA can read the sample data MP_HAL_CLEAN_DCACHE(dma_buffer_p, SIZEOF_HALF_DMA_BUFFER_IN_BYTES); } STATIC void edma_i2s_callback(edma_handle_t *handle, void *userData, bool transferDone, uint32_t tcds) { machine_i2s_obj_t *self = userData; if (self->mode == TX) { // for non-blocking mode, sample copying (appbuf->ibuf) is initiated in this callback routine if ((self->io_mode == NON_BLOCKING) && (self->non_blocking_descriptor.copy_in_progress)) { copy_appbuf_to_ringbuf_non_blocking(self); } if (transferDone) { // bottom half of buffer now emptied, // safe to fill the bottom half while the top half of buffer is being emptied feed_dma(self, BOTTOM_HALF); } else { // top half of buffer now emptied, // safe to fill the top half while the bottom half of buffer is being emptied feed_dma(self, TOP_HALF); } } else { // RX if (transferDone) { // bottom half of buffer now filled, // safe to empty the bottom half while the top half of buffer is being filled empty_dma(self, BOTTOM_HALF); } else { // top half of buffer now filled, // safe to empty the top half while the bottom half of buffer is being filled empty_dma(self, TOP_HALF); } // for non-blocking mode, sample copying (ibuf->appbuf) is initiated in this callback routine if ((self->io_mode == NON_BLOCKING) && (self->non_blocking_descriptor.copy_in_progress)) { fill_appbuf_from_ringbuf_non_blocking(self); } } } STATIC bool i2s_init(machine_i2s_obj_t *self) { #if defined(MIMXRT117x_SERIES) clock_audio_pll_config_t pll_config = *get_pll_config(self->rate); pll_config.postDivider = get_clock_pre_divider(self->rate); CLOCK_InitAudioPll(&pll_config); CLOCK_SetRootClockMux(i2s_clock_mux[self->i2s_id], I2S_AUDIO_PLL_CLOCK); CLOCK_SetRootClockDiv(i2s_clock_mux[self->i2s_id], get_clock_divider(self->rate)); uint32_t clock_freq = CLOCK_GetFreq(kCLOCK_AudioPllOut) / get_clock_divider(self->rate); #else CLOCK_InitAudioPll(get_pll_config(self->rate)); CLOCK_SetMux(i2s_clock_mux[self->i2s_id], I2S_AUDIO_PLL_CLOCK); CLOCK_SetDiv(i2s_clock_pre_div[self->i2s_id], get_clock_pre_divider(self->rate)); CLOCK_SetDiv(i2s_clock_div[self->i2s_id], get_clock_divider(self->rate)); uint32_t clock_freq = (CLOCK_GetFreq(kCLOCK_AudioPllClk) / (get_clock_divider(self->rate) + 1U) / (get_clock_pre_divider(self->rate) + 1U)); #endif if (!set_iomux(self->sck, SCK, self->i2s_id)) { return false; } if (!set_iomux(self->ws, WS, self->i2s_id)) { return false; } if (!set_iomux(self->sd, SD, self->i2s_id)) { return false; } if (self->mck) { if (!set_iomux(self->mck, MCK, self->i2s_id)) { return false; } #if defined(MIMXRT117x_SERIES) switch (self->i2s_id) { case 1: IOMUXC_GPR->GPR0 |= IOMUXC_GPR_GPR0_SAI1_MCLK_DIR_MASK; break; case 2: IOMUXC_GPR->GPR1 |= IOMUXC_GPR_GPR1_SAI2_MCLK_DIR_MASK; break; case 3: IOMUXC_GPR->GPR2 |= IOMUXC_GPR_GPR2_SAI3_MCLK_DIR_MASK; break; case 4: IOMUXC_GPR->GPR2 |= IOMUXC_GPR_GPR2_SAI4_MCLK_DIR_MASK; break; } #else IOMUXC_EnableMode(IOMUXC_GPR, i2s_iomuxc_gpr_mode[self->i2s_id], true); #endif } self->dma_channel = allocate_dma_channel(); DMAMUX_Init(DMAMUX); if (self->mode == TX) { DMAMUX_SetSource(DMAMUX, self->dma_channel, i2s_dma_req_src_tx[self->i2s_id]); } else { // RX DMAMUX_SetSource(DMAMUX, self->dma_channel, i2s_dma_req_src_rx[self->i2s_id]); } DMAMUX_EnableChannel(DMAMUX, self->dma_channel); dma_init(); EDMA_CreateHandle(&self->edmaHandle, DMA0, self->dma_channel); EDMA_SetCallback(&self->edmaHandle, edma_i2s_callback, self); EDMA_ResetChannel(DMA0, self->dma_channel); SAI_Init(self->i2s_inst); sai_transceiver_t saiConfig; SAI_GetClassicI2SConfig(&saiConfig, get_dma_bits(self->mode, self->bits), kSAI_Stereo, kSAI_Channel0Mask); saiConfig.masterSlave = kSAI_Master; uint16_t sck_index; lookup_gpio(self->sck, SCK, self->i2s_id, &sck_index); if ((self->mode == TX) && (i2s_gpio_map[sck_index].mode == TX)) { saiConfig.syncMode = kSAI_ModeAsync; SAI_TxSetConfig(self->i2s_inst, &saiConfig); } else if ((self->mode == RX) && (i2s_gpio_map[sck_index].mode == RX)) { saiConfig.syncMode = kSAI_ModeAsync; SAI_RxSetConfig(self->i2s_inst, &saiConfig); } else if ((self->mode == TX) && (i2s_gpio_map[sck_index].mode == RX)) { saiConfig.syncMode = kSAI_ModeAsync; SAI_RxSetConfig(self->i2s_inst, &saiConfig); saiConfig.bitClock.bclkSrcSwap = true; saiConfig.syncMode = kSAI_ModeSync; SAI_TxSetConfig(self->i2s_inst, &saiConfig); } else if ((self->mode == RX) && (i2s_gpio_map[sck_index].mode == TX)) { saiConfig.syncMode = kSAI_ModeAsync; SAI_TxSetConfig(self->i2s_inst, &saiConfig); saiConfig.syncMode = kSAI_ModeSync; SAI_RxSetConfig(self->i2s_inst, &saiConfig); } else { return false; // should never happen } SAI_TxSetBitClockRate(self->i2s_inst, clock_freq, self->rate, get_dma_bits(self->mode, self->bits), SAI_NUM_AUDIO_CHANNELS); SAI_RxSetBitClockRate(self->i2s_inst, clock_freq, self->rate, get_dma_bits(self->mode, self->bits), SAI_NUM_AUDIO_CHANNELS); edma_transfer_config_t transferConfig; uint8_t bytes_per_sample = get_dma_bits(self->mode, self->bits) / 8; if (self->mode == TX) { uint32_t destAddr = SAI_TxGetDataRegisterAddress(self->i2s_inst, SAI_CHANNEL_0); EDMA_PrepareTransfer(&transferConfig, self->dma_buffer_dcache_aligned, bytes_per_sample, (void *)destAddr, bytes_per_sample, (FSL_FEATURE_SAI_FIFO_COUNT - saiConfig.fifo.fifoWatermark) * bytes_per_sample, SIZEOF_DMA_BUFFER_IN_BYTES, kEDMA_MemoryToPeripheral); } else { // RX uint32_t srcAddr = SAI_RxGetDataRegisterAddress(self->i2s_inst, SAI_CHANNEL_0); EDMA_PrepareTransfer(&transferConfig, (void *)srcAddr, bytes_per_sample, self->dma_buffer_dcache_aligned, bytes_per_sample, (FSL_FEATURE_SAI_FIFO_COUNT - saiConfig.fifo.fifoWatermark) * bytes_per_sample, SIZEOF_DMA_BUFFER_IN_BYTES, kEDMA_PeripheralToMemory); } memset(self->edmaTcd, 0, sizeof(edma_tcd_t)); // continuous DMA operation is achieved using the scatter/gather feature, with one TCD linked back to itself EDMA_TcdSetTransferConfig(self->edmaTcd, &transferConfig, self->edmaTcd); EDMA_TcdEnableInterrupts(self->edmaTcd, kEDMA_MajorInterruptEnable | kEDMA_HalfInterruptEnable); EDMA_InstallTCD(DMA0, self->dma_channel, self->edmaTcd); EDMA_StartTransfer(&self->edmaHandle); if (self->mode == TX) { SAI_TxEnableDMA(self->i2s_inst, kSAI_FIFORequestDMAEnable, true); SAI_TxEnable(self->i2s_inst, true); SAI_TxSetChannelFIFOMask(self->i2s_inst, kSAI_Channel0Mask); } else { // RX SAI_RxEnableDMA(self->i2s_inst, kSAI_FIFORequestDMAEnable, true); SAI_RxEnable(self->i2s_inst, true); SAI_RxSetChannelFIFOMask(self->i2s_inst, kSAI_Channel0Mask); } return true; } STATIC void mp_machine_i2s_init_helper(machine_i2s_obj_t *self, size_t n_pos_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_sck, ARG_ws, ARG_sd, ARG_mck, ARG_mode, ARG_bits, ARG_format, ARG_rate, ARG_ibuf, }; static const mp_arg_t allowed_args[] = { { MP_QSTR_sck, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_ws, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_sd, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_mck, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_format, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_rate, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_ibuf, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_pos_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // // ---- Check validity of arguments ---- // // is Mode valid? uint16_t i2s_mode = args[ARG_mode].u_int; if ((i2s_mode != (RX)) && (i2s_mode != (TX))) { mp_raise_ValueError(MP_ERROR_TEXT("invalid mode")); } // are I2S pin assignments valid? uint16_t not_used; // is SCK valid? const machine_pin_obj_t *pin_sck = pin_find(args[ARG_sck].u_obj); if (!lookup_gpio(pin_sck, SCK, self->i2s_id, ¬_used)) { mp_raise_ValueError(MP_ERROR_TEXT("invalid SCK pin")); } // is WS valid? const machine_pin_obj_t *pin_ws = pin_find(args[ARG_ws].u_obj); if (!lookup_gpio(pin_ws, WS, self->i2s_id, ¬_used)) { mp_raise_ValueError(MP_ERROR_TEXT("invalid WS pin")); } // is SD valid? const machine_pin_obj_t *pin_sd = pin_find(args[ARG_sd].u_obj); uint16_t mapping_index; bool invalid_sd = true; if (lookup_gpio(pin_sd, SD, self->i2s_id, &mapping_index)) { if (i2s_mode == i2s_gpio_map[mapping_index].mode) { invalid_sd = false; } } if (invalid_sd) { mp_raise_ValueError(MP_ERROR_TEXT("invalid SD pin")); } // is MCK defined and valid? const machine_pin_obj_t *pin_mck = NULL; if (args[ARG_mck].u_obj != mp_const_none) { pin_mck = pin_find(args[ARG_mck].u_obj); if (!lookup_gpio(pin_mck, MCK, self->i2s_id, ¬_used)) { mp_raise_ValueError(MP_ERROR_TEXT("invalid MCK pin")); } } // is Bits valid? int8_t i2s_bits = args[ARG_bits].u_int; if ((i2s_bits != 16) && (i2s_bits != 32)) { mp_raise_ValueError(MP_ERROR_TEXT("invalid bits")); } // is Format valid? format_t i2s_format = args[ARG_format].u_int; if ((i2s_format != MONO) && (i2s_format != STEREO)) { mp_raise_ValueError(MP_ERROR_TEXT("invalid format")); } // is Rate valid? int32_t i2s_rate = args[ARG_rate].u_int; if (!is_rate_supported(i2s_rate)) { mp_raise_ValueError(MP_ERROR_TEXT("invalid rate")); } // is Ibuf valid? int32_t ring_buffer_len = args[ARG_ibuf].u_int; if (ring_buffer_len > 0) { uint8_t *buffer = m_new(uint8_t, ring_buffer_len); self->ring_buffer_storage = buffer; ringbuf_init(&self->ring_buffer, buffer, ring_buffer_len); } else { mp_raise_ValueError(MP_ERROR_TEXT("invalid ibuf")); } self->sck = pin_sck; self->ws = pin_ws; self->sd = pin_sd; self->mck = pin_mck; self->mode = i2s_mode; self->bits = i2s_bits; self->format = i2s_format; self->rate = i2s_rate; self->ibuf = ring_buffer_len; self->callback_for_non_blocking = MP_OBJ_NULL; self->non_blocking_descriptor.copy_in_progress = false; self->io_mode = BLOCKING; self->i2s_inst = (I2S_Type *)i2s_base_ptr[self->i2s_id]; // init the I2S bus if (!i2s_init(self)) { mp_raise_msg_varg(&mp_type_OSError, MP_ERROR_TEXT("I2S init failed")); } } STATIC void machine_i2s_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_printf(print, "I2S(id=%u,\n" "sck="MP_HAL_PIN_FMT ",\n" "ws="MP_HAL_PIN_FMT ",\n" "sd="MP_HAL_PIN_FMT ",\n" "mck="MP_HAL_PIN_FMT ",\n" "mode=%u,\n" "bits=%u, format=%u,\n" "rate=%d, ibuf=%d)", self->i2s_id, mp_hal_pin_name(self->sck), mp_hal_pin_name(self->ws), mp_hal_pin_name(self->sd), mp_hal_pin_name(self->mck), self->mode, self->bits, self->format, self->rate, self->ibuf ); } STATIC machine_i2s_obj_t *mp_machine_i2s_make_new_instance(mp_int_t i2s_id) { if (i2s_id < 1 || i2s_id > MICROPY_HW_I2S_NUM) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("I2S(%d) does not exist"), i2s_id); } uint8_t i2s_id_zero_base = i2s_id - 1; machine_i2s_obj_t *self; if (MP_STATE_PORT(machine_i2s_obj)[i2s_id_zero_base] == NULL) { self = mp_obj_malloc(machine_i2s_obj_t, &machine_i2s_type); MP_STATE_PORT(machine_i2s_obj)[i2s_id_zero_base] = self; self->i2s_id = i2s_id; self->edmaTcd = &edmaTcd[i2s_id_zero_base]; } else { self = MP_STATE_PORT(machine_i2s_obj)[i2s_id_zero_base]; machine_i2s_deinit(MP_OBJ_FROM_PTR(self)); } // align DMA buffer to the cache line size (32 bytes) self->dma_buffer_dcache_aligned = (uint8_t *)((uint32_t)(self->dma_buffer + 0x1f) & ~0x1f); // fill the DMA buffer with NULLs memset(self->dma_buffer_dcache_aligned, 0, SIZEOF_DMA_BUFFER_IN_BYTES); return self; } STATIC void mp_machine_i2s_deinit(machine_i2s_obj_t *self) { // use self->i2s_inst as in indication that I2S object has already been de-initialized if (self->i2s_inst != NULL) { EDMA_AbortTransfer(&self->edmaHandle); if (self->mode == TX) { SAI_TxSetChannelFIFOMask(self->i2s_inst, 0); SAI_TxEnableDMA(self->i2s_inst, kSAI_FIFORequestDMAEnable, false); SAI_TxEnable(self->i2s_inst, false); SAI_TxReset(self->i2s_inst); } else { // RX SAI_RxSetChannelFIFOMask(self->i2s_inst, 0); SAI_RxEnableDMA(self->i2s_inst, kSAI_FIFORequestDMAEnable, false); SAI_RxEnable(self->i2s_inst, false); SAI_RxReset(self->i2s_inst); } SAI_Deinit(self->i2s_inst); free_dma_channel(self->dma_channel); m_free(self->ring_buffer_storage); self->i2s_inst = NULL; // flag object as de-initialized } } STATIC mp_obj_t machine_i2s_irq(mp_obj_t self_in, mp_obj_t handler) { machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in); if (handler != mp_const_none && !mp_obj_is_callable(handler)) { mp_raise_ValueError(MP_ERROR_TEXT("invalid callback")); } if (handler != mp_const_none) { self->io_mode = NON_BLOCKING; } else { self->io_mode = BLOCKING; } self->callback_for_non_blocking = handler; return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(machine_i2s_irq_obj, machine_i2s_irq); MP_REGISTER_ROOT_POINTER(struct _machine_i2s_obj_t *machine_i2s_obj[MICROPY_HW_I2S_NUM]); #endif // MICROPY_PY_MACHINE_I2S