/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * Copyright (c) 2014 Paul Sokolovsky * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "py/nlr.h" #include "py/objtuple.h" #include "py/objfun.h" #include "py/runtime0.h" #include "py/runtime.h" #include "py/bc.h" #include "py/stackctrl.h" #if 0 // print debugging info #define DEBUG_PRINT (1) #else // don't print debugging info #define DEBUG_PRINT (0) #define DEBUG_printf(...) (void)0 #endif // Note: the "name" entry in mp_obj_type_t for a function type must be // MP_QSTR_function because it is used to determine if an object is of generic // function type. /******************************************************************************/ /* builtin functions */ // mp_obj_fun_builtin_t defined in obj.h STATIC mp_obj_t fun_builtin_call(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin)); mp_obj_fun_builtin_t *self = self_in; // check number of arguments mp_arg_check_num(n_args, n_kw, self->n_args_min, self->n_args_max, self->is_kw); if (self->is_kw) { // function allows keywords // we create a map directly from the given args array mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); return ((mp_fun_kw_t)self->fun)(n_args, args, &kw_args); } else if (self->n_args_min <= 3 && self->n_args_min == self->n_args_max) { // function requires a fixed number of arguments // dispatch function call switch (self->n_args_min) { case 0: return ((mp_fun_0_t)self->fun)(); case 1: return ((mp_fun_1_t)self->fun)(args[0]); case 2: return ((mp_fun_2_t)self->fun)(args[0], args[1]); case 3: default: return ((mp_fun_3_t)self->fun)(args[0], args[1], args[2]); } } else { // function takes a variable number of arguments, but no keywords return ((mp_fun_var_t)self->fun)(n_args, args); } } const mp_obj_type_t mp_type_fun_builtin = { { &mp_type_type }, .name = MP_QSTR_function, .call = fun_builtin_call, }; /******************************************************************************/ /* byte code functions */ qstr mp_obj_code_get_name(const byte *code_info) { mp_decode_uint(&code_info); // skip code_info_size entry return mp_decode_uint(&code_info); } #if MICROPY_EMIT_NATIVE STATIC const mp_obj_type_t mp_type_fun_native; #endif qstr mp_obj_fun_get_name(mp_const_obj_t fun_in) { const mp_obj_fun_bc_t *fun = fun_in; #if MICROPY_EMIT_NATIVE if (fun->base.type == &mp_type_fun_native) { // TODO native functions don't have name stored return MP_QSTR_; } #endif const byte *code_info = fun->bytecode; return mp_obj_code_get_name(code_info); } #if MICROPY_CPYTHON_COMPAT STATIC void fun_bc_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t o_in, mp_print_kind_t kind) { (void)kind; mp_obj_fun_bc_t *o = o_in; print(env, "", qstr_str(mp_obj_fun_get_name(o)), o); } #endif #if DEBUG_PRINT STATIC void dump_args(const mp_obj_t *a, mp_uint_t sz) { DEBUG_printf("%p: ", a); for (mp_uint_t i = 0; i < sz; i++) { DEBUG_printf("%p ", a[i]); } DEBUG_printf("\n"); } #else #define dump_args(...) (void)0 #endif // With this macro you can tune the maximum number of function state bytes // that will be allocated on the stack. Any function that needs more // than this will use the heap. #define VM_MAX_STATE_ON_STACK (11 * sizeof(mp_uint_t)) // Set this to enable a simple stack overflow check. #define VM_DETECT_STACK_OVERFLOW (0) #if MICROPY_STACKLESS mp_code_state *mp_obj_fun_bc_prepare_codestate(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { MP_STACK_CHECK(); mp_obj_fun_bc_t *self = self_in; // skip code-info block const byte *code_info = self->bytecode; mp_uint_t code_info_size = mp_decode_uint(&code_info); const byte *ip = self->bytecode + code_info_size; // bytecode prelude: skip arg names ip += (self->n_pos_args + self->n_kwonly_args) * sizeof(mp_obj_t); // bytecode prelude: state size and exception stack size mp_uint_t n_state = mp_decode_uint(&ip); mp_uint_t n_exc_stack = mp_decode_uint(&ip); // allocate state for locals and stack mp_uint_t state_size = n_state * sizeof(mp_obj_t) + n_exc_stack * sizeof(mp_exc_stack_t); mp_code_state *code_state; code_state = m_new_obj_var_maybe(mp_code_state, byte, state_size); if (!code_state) { return NULL; } code_state->n_state = n_state; code_state->code_info = 0; // offset to code-info code_state->ip = ip - self->bytecode; // offset to prelude mp_setup_code_state(code_state, self_in, n_args, n_kw, args); // execute the byte code with the correct globals context code_state->old_globals = mp_globals_get(); mp_globals_set(self->globals); return code_state; } #endif STATIC mp_obj_t fun_bc_call(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { MP_STACK_CHECK(); DEBUG_printf("Input n_args: " UINT_FMT ", n_kw: " UINT_FMT "\n", n_args, n_kw); DEBUG_printf("Input pos args: "); dump_args(args, n_args); DEBUG_printf("Input kw args: "); dump_args(args + n_args, n_kw * 2); mp_obj_fun_bc_t *self = self_in; DEBUG_printf("Func n_def_args: %d\n", self->n_def_args); // skip code-info block const byte *code_info = self->bytecode; mp_uint_t code_info_size = mp_decode_uint(&code_info); const byte *ip = self->bytecode + code_info_size; // bytecode prelude: skip arg names ip += (self->n_pos_args + self->n_kwonly_args) * sizeof(mp_obj_t); // bytecode prelude: state size and exception stack size mp_uint_t n_state = mp_decode_uint(&ip); mp_uint_t n_exc_stack = mp_decode_uint(&ip); #if VM_DETECT_STACK_OVERFLOW n_state += 1; #endif // allocate state for locals and stack mp_uint_t state_size = n_state * sizeof(mp_obj_t) + n_exc_stack * sizeof(mp_exc_stack_t); mp_code_state *code_state; if (state_size > VM_MAX_STATE_ON_STACK) { code_state = m_new_obj_var(mp_code_state, byte, state_size); } else { code_state = alloca(sizeof(mp_code_state) + state_size); } code_state->n_state = n_state; code_state->code_info = 0; // offset to code-info code_state->ip = (byte*)(ip - self->bytecode); // offset to prelude mp_setup_code_state(code_state, self_in, n_args, n_kw, args); // execute the byte code with the correct globals context code_state->old_globals = mp_globals_get(); mp_globals_set(self->globals); mp_vm_return_kind_t vm_return_kind = mp_execute_bytecode(code_state, MP_OBJ_NULL); mp_globals_set(code_state->old_globals); #if VM_DETECT_STACK_OVERFLOW if (vm_return_kind == MP_VM_RETURN_NORMAL) { if (code_state->sp < code_state->state) { printf("VM stack underflow: " INT_FMT "\n", code_state->sp - code_state->state); assert(0); } } // We can't check the case when an exception is returned in state[n_state - 1] // and there are no arguments, because in this case our detection slot may have // been overwritten by the returned exception (which is allowed). if (!(vm_return_kind == MP_VM_RETURN_EXCEPTION && self->n_pos_args + self->n_kwonly_args == 0)) { // Just check to see that we have at least 1 null object left in the state. bool overflow = true; for (mp_uint_t i = 0; i < n_state - self->n_pos_args - self->n_kwonly_args; i++) { if (code_state->state[i] == MP_OBJ_NULL) { overflow = false; break; } } if (overflow) { printf("VM stack overflow state=%p n_state+1=" UINT_FMT "\n", code_state->state, n_state); assert(0); } } #endif mp_obj_t result; switch (vm_return_kind) { case MP_VM_RETURN_NORMAL: // return value is in *sp result = *code_state->sp; break; case MP_VM_RETURN_EXCEPTION: // return value is in state[n_state - 1] result = code_state->state[n_state - 1]; break; case MP_VM_RETURN_YIELD: // byte-code shouldn't yield default: assert(0); result = mp_const_none; vm_return_kind = MP_VM_RETURN_NORMAL; break; } // free the state if it was allocated on the heap if (state_size > VM_MAX_STATE_ON_STACK) { m_del_var(mp_code_state, byte, state_size, code_state); } if (vm_return_kind == MP_VM_RETURN_NORMAL) { return result; } else { // MP_VM_RETURN_EXCEPTION nlr_raise(result); } } #if MICROPY_PY_FUNCTION_ATTRS STATIC void fun_bc_load_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { if (attr == MP_QSTR___name__) { dest[0] = MP_OBJ_NEW_QSTR(mp_obj_fun_get_name(self_in)); } } #endif const mp_obj_type_t mp_type_fun_bc = { { &mp_type_type }, .name = MP_QSTR_function, #if MICROPY_CPYTHON_COMPAT .print = fun_bc_print, #endif .call = fun_bc_call, #if MICROPY_PY_FUNCTION_ATTRS .load_attr = fun_bc_load_attr, #endif }; mp_obj_t mp_obj_new_fun_bc(mp_uint_t scope_flags, mp_uint_t n_pos_args, mp_uint_t n_kwonly_args, mp_obj_t def_args_in, mp_obj_t def_kw_args, const byte *code) { mp_uint_t n_def_args = 0; mp_uint_t n_extra_args = 0; mp_obj_tuple_t *def_args = def_args_in; if (def_args != MP_OBJ_NULL) { assert(MP_OBJ_IS_TYPE(def_args, &mp_type_tuple)); n_def_args = def_args->len; n_extra_args = def_args->len; } if (def_kw_args != MP_OBJ_NULL) { n_extra_args += 1; } mp_obj_fun_bc_t *o = m_new_obj_var(mp_obj_fun_bc_t, mp_obj_t, n_extra_args); o->base.type = &mp_type_fun_bc; o->globals = mp_globals_get(); o->n_pos_args = n_pos_args; o->n_kwonly_args = n_kwonly_args; o->n_def_args = n_def_args; o->has_def_kw_args = def_kw_args != MP_OBJ_NULL; o->takes_var_args = (scope_flags & MP_SCOPE_FLAG_VARARGS) != 0; o->takes_kw_args = (scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0; o->bytecode = code; if (def_args != MP_OBJ_NULL) { memcpy(o->extra_args, def_args->items, n_def_args * sizeof(mp_obj_t)); } if (def_kw_args != MP_OBJ_NULL) { o->extra_args[n_def_args] = def_kw_args; } return o; } /******************************************************************************/ /* native functions */ #if MICROPY_EMIT_NATIVE STATIC mp_obj_t fun_native_call(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { MP_STACK_CHECK(); mp_obj_fun_bc_t *self = self_in; mp_call_fun_t fun = MICROPY_MAKE_POINTER_CALLABLE((void*)self->bytecode); return fun(self_in, n_args, n_kw, args); } STATIC const mp_obj_type_t mp_type_fun_native = { { &mp_type_type }, .name = MP_QSTR_function, .call = fun_native_call, }; mp_obj_t mp_obj_new_fun_native(mp_uint_t scope_flags, mp_uint_t n_pos_args, mp_uint_t n_kwonly_args, mp_obj_t def_args_in, mp_obj_t def_kw_args, const void *fun_data) { mp_obj_fun_bc_t *o = mp_obj_new_fun_bc(scope_flags, n_pos_args, n_kwonly_args, def_args_in, def_kw_args, (const byte*)fun_data); o->base.type = &mp_type_fun_native; return o; } #endif // MICROPY_EMIT_NATIVE /******************************************************************************/ /* viper functions */ #if MICROPY_EMIT_NATIVE typedef struct _mp_obj_fun_viper_t { mp_obj_base_t base; mp_uint_t n_args; void *fun_data; // GC must be able to trace this pointer mp_uint_t type_sig; } mp_obj_fun_viper_t; typedef mp_uint_t (*viper_fun_0_t)(void); typedef mp_uint_t (*viper_fun_1_t)(mp_uint_t); typedef mp_uint_t (*viper_fun_2_t)(mp_uint_t, mp_uint_t); typedef mp_uint_t (*viper_fun_3_t)(mp_uint_t, mp_uint_t, mp_uint_t); STATIC mp_obj_t fun_viper_call(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { mp_obj_fun_viper_t *self = self_in; mp_arg_check_num(n_args, n_kw, self->n_args, self->n_args, false); void *fun = MICROPY_MAKE_POINTER_CALLABLE(self->fun_data); mp_uint_t ret; if (n_args == 0) { ret = ((viper_fun_0_t)fun)(); } else if (n_args == 1) { ret = ((viper_fun_1_t)fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 2)); } else if (n_args == 2) { ret = ((viper_fun_2_t)fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 2), mp_convert_obj_to_native(args[1], self->type_sig >> 4)); } else if (n_args == 3) { ret = ((viper_fun_3_t)fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 2), mp_convert_obj_to_native(args[1], self->type_sig >> 4), mp_convert_obj_to_native(args[2], self->type_sig >> 6)); } else { assert(0); ret = 0; } return mp_convert_native_to_obj(ret, self->type_sig); } STATIC const mp_obj_type_t mp_type_fun_viper = { { &mp_type_type }, .name = MP_QSTR_function, .call = fun_viper_call, }; mp_obj_t mp_obj_new_fun_viper(mp_uint_t n_args, void *fun_data, mp_uint_t type_sig) { mp_obj_fun_viper_t *o = m_new_obj(mp_obj_fun_viper_t); o->base.type = &mp_type_fun_viper; o->n_args = n_args; o->fun_data = fun_data; o->type_sig = type_sig; return o; } #endif // MICROPY_EMIT_NATIVE /******************************************************************************/ /* inline assembler functions */ #if MICROPY_EMIT_INLINE_THUMB typedef struct _mp_obj_fun_asm_t { mp_obj_base_t base; mp_uint_t n_args; void *fun_data; // GC must be able to trace this pointer } mp_obj_fun_asm_t; typedef mp_uint_t (*inline_asm_fun_0_t)(void); typedef mp_uint_t (*inline_asm_fun_1_t)(mp_uint_t); typedef mp_uint_t (*inline_asm_fun_2_t)(mp_uint_t, mp_uint_t); typedef mp_uint_t (*inline_asm_fun_3_t)(mp_uint_t, mp_uint_t, mp_uint_t); // convert a Micro Python object to a sensible value for inline asm STATIC mp_uint_t convert_obj_for_inline_asm(mp_obj_t obj) { // TODO for byte_array, pass pointer to the array if (MP_OBJ_IS_SMALL_INT(obj)) { return MP_OBJ_SMALL_INT_VALUE(obj); } else if (obj == mp_const_none) { return 0; } else if (obj == mp_const_false) { return 0; } else if (obj == mp_const_true) { return 1; } else if (MP_OBJ_IS_TYPE(obj, &mp_type_int)) { return mp_obj_int_get_truncated(obj); } else if (MP_OBJ_IS_STR(obj)) { // pointer to the string (it's probably constant though!) mp_uint_t l; return (mp_uint_t)mp_obj_str_get_data(obj, &l); } else { mp_obj_type_t *type = mp_obj_get_type(obj); if (0) { #if MICROPY_PY_BUILTINS_FLOAT } else if (type == &mp_type_float) { // convert float to int (could also pass in float registers) return (mp_int_t)mp_obj_float_get(obj); #endif } else if (type == &mp_type_tuple) { // pointer to start of tuple (could pass length, but then could use len(x) for that) mp_uint_t len; mp_obj_t *items; mp_obj_tuple_get(obj, &len, &items); return (mp_uint_t)items; } else if (type == &mp_type_list) { // pointer to start of list (could pass length, but then could use len(x) for that) mp_uint_t len; mp_obj_t *items; mp_obj_list_get(obj, &len, &items); return (mp_uint_t)items; } else { mp_buffer_info_t bufinfo; if (mp_get_buffer(obj, &bufinfo, MP_BUFFER_WRITE)) { // supports the buffer protocol, return a pointer to the data return (mp_uint_t)bufinfo.buf; } else { // just pass along a pointer to the object return (mp_uint_t)obj; } } } } // convert a return value from inline asm to a sensible Micro Python object STATIC mp_obj_t convert_val_from_inline_asm(mp_uint_t val) { return MP_OBJ_NEW_SMALL_INT(val); } STATIC mp_obj_t fun_asm_call(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { mp_obj_fun_asm_t *self = self_in; mp_arg_check_num(n_args, n_kw, self->n_args, self->n_args, false); void *fun = MICROPY_MAKE_POINTER_CALLABLE(self->fun_data); mp_uint_t ret; if (n_args == 0) { ret = ((inline_asm_fun_0_t)fun)(); } else if (n_args == 1) { ret = ((inline_asm_fun_1_t)fun)(convert_obj_for_inline_asm(args[0])); } else if (n_args == 2) { ret = ((inline_asm_fun_2_t)fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1])); } else if (n_args == 3) { ret = ((inline_asm_fun_3_t)fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]), convert_obj_for_inline_asm(args[2])); } else { assert(0); ret = 0; } return convert_val_from_inline_asm(ret); } STATIC const mp_obj_type_t mp_type_fun_asm = { { &mp_type_type }, .name = MP_QSTR_function, .call = fun_asm_call, }; mp_obj_t mp_obj_new_fun_asm(mp_uint_t n_args, void *fun_data) { mp_obj_fun_asm_t *o = m_new_obj(mp_obj_fun_asm_t); o->base.type = &mp_type_fun_asm; o->n_args = n_args; o->fun_data = fun_data; return o; } #endif // MICROPY_EMIT_INLINE_THUMB