/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/mpconfig.h" // wrapper around everything in this file #if MICROPY_EMIT_THUMB || MICROPY_EMIT_INLINE_THUMB #include "py/asmthumb.h" #define UNSIGNED_FIT8(x) (((x) & 0xffffff00) == 0) #define UNSIGNED_FIT16(x) (((x) & 0xffff0000) == 0) #define SIGNED_FIT8(x) (((x) & 0xffffff80) == 0) || (((x) & 0xffffff80) == 0xffffff80) #define SIGNED_FIT9(x) (((x) & 0xffffff00) == 0) || (((x) & 0xffffff00) == 0xffffff00) #define SIGNED_FIT12(x) (((x) & 0xfffff800) == 0) || (((x) & 0xfffff800) == 0xfffff800) #define SIGNED_FIT23(x) (((x) & 0xffc00000) == 0) || (((x) & 0xffc00000) == 0xffc00000) struct _asm_thumb_t { mp_uint_t pass; mp_uint_t code_offset; mp_uint_t code_size; byte *code_base; byte dummy_data[4]; mp_uint_t max_num_labels; mp_uint_t *label_offsets; mp_uint_t push_reglist; mp_uint_t stack_adjust; }; asm_thumb_t *asm_thumb_new(uint max_num_labels) { asm_thumb_t *as; as = m_new0(asm_thumb_t, 1); as->max_num_labels = max_num_labels; as->label_offsets = m_new(mp_uint_t, max_num_labels); return as; } void asm_thumb_free(asm_thumb_t *as, bool free_code) { if (free_code) { MP_PLAT_FREE_EXEC(as->code_base, as->code_size); } m_del(mp_uint_t, as->label_offsets, as->max_num_labels); m_del_obj(asm_thumb_t, as); } void asm_thumb_start_pass(asm_thumb_t *as, uint pass) { if (pass == ASM_THUMB_PASS_COMPUTE) { memset(as->label_offsets, -1, as->max_num_labels * sizeof(mp_uint_t)); } else if (pass == ASM_THUMB_PASS_EMIT) { MP_PLAT_ALLOC_EXEC(as->code_offset, (void**)&as->code_base, &as->code_size); if (as->code_base == NULL) { assert(0); } //printf("code_size: %u\n", as->code_size); } as->pass = pass; as->code_offset = 0; } void asm_thumb_end_pass(asm_thumb_t *as) { // could check labels are resolved... } // all functions must go through this one to emit bytes // if as->pass < ASM_THUMB_PASS_EMIT, then this function only returns a buffer of 4 bytes length STATIC byte *asm_thumb_get_cur_to_write_bytes(asm_thumb_t *as, int num_bytes_to_write) { //printf("emit %d\n", num_bytes_to_write); if (as->pass < ASM_THUMB_PASS_EMIT) { as->code_offset += num_bytes_to_write; return as->dummy_data; } else { assert(as->code_offset + num_bytes_to_write <= as->code_size); byte *c = as->code_base + as->code_offset; as->code_offset += num_bytes_to_write; return c; } } uint asm_thumb_get_code_size(asm_thumb_t *as) { return as->code_size; } void *asm_thumb_get_code(asm_thumb_t *as) { return as->code_base; } /* STATIC void asm_thumb_write_byte_1(asm_thumb_t *as, byte b1) { byte *c = asm_thumb_get_cur_to_write_bytes(as, 1); c[0] = b1; } */ /* #define IMM32_L0(x) ((x) & 0xff) #define IMM32_L1(x) (((x) >> 8) & 0xff) #define IMM32_L2(x) (((x) >> 16) & 0xff) #define IMM32_L3(x) (((x) >> 24) & 0xff) STATIC void asm_thumb_write_word32(asm_thumb_t *as, int w32) { byte *c = asm_thumb_get_cur_to_write_bytes(as, 4); c[0] = IMM32_L0(w32); c[1] = IMM32_L1(w32); c[2] = IMM32_L2(w32); c[3] = IMM32_L3(w32); } */ // rlolist is a bit map indicating desired lo-registers #define OP_PUSH_RLIST(rlolist) (0xb400 | (rlolist)) #define OP_PUSH_RLIST_LR(rlolist) (0xb400 | 0x0100 | (rlolist)) #define OP_POP_RLIST(rlolist) (0xbc00 | (rlolist)) #define OP_POP_RLIST_PC(rlolist) (0xbc00 | 0x0100 | (rlolist)) #define OP_ADD_SP(num_words) (0xb000 | (num_words)) #define OP_SUB_SP(num_words) (0xb080 | (num_words)) // locals: // - stored on the stack in ascending order // - numbered 0 through num_locals-1 // - SP points to first local // // | SP // v // l0 l1 l2 ... l(n-1) // ^ ^ // | low address | high address in RAM void asm_thumb_entry(asm_thumb_t *as, int num_locals) { // work out what to push and how many extra spaces to reserve on stack // so that we have enough for all locals and it's aligned an 8-byte boundary // we push extra regs (r1, r2, r3) to help do the stack adjustment // we probably should just always subtract from sp, since this would be more efficient // for push rlist, lowest numbered register at the lowest address uint reglist; uint stack_adjust; if (num_locals < 0) { num_locals = 0; } // don't pop r0 because it's used for return value switch (num_locals) { case 0: reglist = 0xf2; stack_adjust = 0; break; case 1: reglist = 0xf2; stack_adjust = 0; break; case 2: reglist = 0xfe; stack_adjust = 0; break; case 3: reglist = 0xfe; stack_adjust = 0; break; default: reglist = 0xfe; stack_adjust = ((num_locals - 3) + 1) & (~1); break; } asm_thumb_op16(as, OP_PUSH_RLIST_LR(reglist)); if (stack_adjust > 0) { asm_thumb_op16(as, OP_SUB_SP(stack_adjust)); } as->push_reglist = reglist; as->stack_adjust = stack_adjust; } void asm_thumb_exit(asm_thumb_t *as) { if (as->stack_adjust > 0) { asm_thumb_op16(as, OP_ADD_SP(as->stack_adjust)); } asm_thumb_op16(as, OP_POP_RLIST_PC(as->push_reglist)); } void asm_thumb_label_assign(asm_thumb_t *as, uint label) { assert(label < as->max_num_labels); if (as->pass < ASM_THUMB_PASS_EMIT) { // assign label offset assert(as->label_offsets[label] == -1); as->label_offsets[label] = as->code_offset; } else { // ensure label offset has not changed from PASS_COMPUTE to PASS_EMIT //printf("l%d: (at %d=%ld)\n", label, as->label_offsets[label], as->code_offset); assert(as->label_offsets[label] == as->code_offset); } } void asm_thumb_align(asm_thumb_t* as, uint align) { // TODO fill unused data with NOPs? as->code_offset = (as->code_offset + align - 1) & (~(align - 1)); } void asm_thumb_data(asm_thumb_t* as, uint bytesize, uint val) { byte *c = asm_thumb_get_cur_to_write_bytes(as, bytesize); // only write to the buffer in the emit pass (otherwise we overflow dummy_data) if (as->pass == ASM_THUMB_PASS_EMIT) { // little endian for (uint i = 0; i < bytesize; i++) { *c++ = val; val >>= 8; } } } STATIC mp_uint_t get_label_dest(asm_thumb_t *as, uint label) { assert(label < as->max_num_labels); return as->label_offsets[label]; } void asm_thumb_op16(asm_thumb_t *as, uint op) { byte *c = asm_thumb_get_cur_to_write_bytes(as, 2); // little endian c[0] = op; c[1] = op >> 8; } void asm_thumb_op32(asm_thumb_t *as, uint op1, uint op2) { byte *c = asm_thumb_get_cur_to_write_bytes(as, 4); // little endian, op1 then op2 c[0] = op1; c[1] = op1 >> 8; c[2] = op2; c[3] = op2 >> 8; } #define OP_FORMAT_2(op, rlo_dest, rlo_src, src_b) ((op) | ((src_b) << 6) | ((rlo_src) << 3) | (rlo_dest)) void asm_thumb_format_2(asm_thumb_t *as, uint op, uint rlo_dest, uint rlo_src, int src_b) { assert(rlo_dest < ASM_THUMB_REG_R8); assert(rlo_src < ASM_THUMB_REG_R8); asm_thumb_op16(as, OP_FORMAT_2(op, rlo_dest, rlo_src, src_b)); } #define OP_FORMAT_3(op, rlo, i8) ((op) | ((rlo) << 8) | (i8)) void asm_thumb_format_3(asm_thumb_t *as, uint op, uint rlo, int i8) { assert(rlo < ASM_THUMB_REG_R8); asm_thumb_op16(as, OP_FORMAT_3(op, rlo, i8)); } #define OP_FORMAT_4(op, rlo_dest, rlo_src) ((op) | ((rlo_src) << 3) | (rlo_dest)) void asm_thumb_format_4(asm_thumb_t *as, uint op, uint rlo_dest, uint rlo_src) { assert(rlo_dest < ASM_THUMB_REG_R8); assert(rlo_src < ASM_THUMB_REG_R8); asm_thumb_op16(as, OP_FORMAT_4(op, rlo_dest, rlo_src)); } #define OP_FORMAT_9_10(op, rlo_dest, rlo_base, offset) ((op) | (((offset) << 6) & 0x07c0) | ((rlo_base) << 3) | (rlo_dest)) void asm_thumb_format_9_10(asm_thumb_t *as, uint op, uint rlo_dest, uint rlo_base, uint offset) { asm_thumb_op16(as, OP_FORMAT_9_10(op, rlo_dest, rlo_base, offset)); } void asm_thumb_mov_reg_reg(asm_thumb_t *as, uint reg_dest, uint reg_src) { uint op_lo; if (reg_src < 8) { op_lo = reg_src << 3; } else { op_lo = 0x40 | ((reg_src - 8) << 3); } if (reg_dest < 8) { op_lo |= reg_dest; } else { op_lo |= 0x80 | (reg_dest - 8); } // mov reg_dest, reg_src asm_thumb_op16(as, 0x4600 | op_lo); } #define OP_MOVW (0xf240) #define OP_MOVT (0xf2c0) // if loading lo half with movw, the i16 value will be zero extended into the r32 register! STATIC void asm_thumb_mov_reg_i16(asm_thumb_t *as, uint mov_op, uint reg_dest, int i16_src) { assert(reg_dest < ASM_THUMB_REG_R15); // mov[wt] reg_dest, #i16_src asm_thumb_op32(as, mov_op | ((i16_src >> 1) & 0x0400) | ((i16_src >> 12) & 0xf), ((i16_src << 4) & 0x7000) | (reg_dest << 8) | (i16_src & 0xff)); } // the i16_src value will be zero extended into the r32 register! void asm_thumb_movw_reg_i16(asm_thumb_t *as, uint reg_dest, int i16_src) { asm_thumb_mov_reg_i16(as, OP_MOVW, reg_dest, i16_src); } // the i16_src value will be zero extended into the r32 register! void asm_thumb_movt_reg_i16(asm_thumb_t *as, uint reg_dest, int i16_src) { asm_thumb_mov_reg_i16(as, OP_MOVT, reg_dest, i16_src); } #define OP_B_N(byte_offset) (0xe000 | (((byte_offset) >> 1) & 0x07ff)) void asm_thumb_b_n(asm_thumb_t *as, uint label) { mp_uint_t dest = get_label_dest(as, label); mp_int_t rel = dest - as->code_offset; rel -= 4; // account for instruction prefetch, PC is 4 bytes ahead of this instruction if (SIGNED_FIT12(rel)) { asm_thumb_op16(as, OP_B_N(rel)); } else { printf("asm_thumb_b_n: branch does not fit in 12 bits\n"); } } #define OP_BCC_N(cond, byte_offset) (0xd000 | ((cond) << 8) | (((byte_offset) >> 1) & 0x00ff)) void asm_thumb_bcc_n(asm_thumb_t *as, int cond, uint label) { mp_uint_t dest = get_label_dest(as, label); mp_int_t rel = dest - as->code_offset; rel -= 4; // account for instruction prefetch, PC is 4 bytes ahead of this instruction if (SIGNED_FIT9(rel)) { asm_thumb_op16(as, OP_BCC_N(cond, rel)); } else { printf("asm_thumb_bcc_n: branch does not fit in 9 bits\n"); } } void asm_thumb_mov_reg_i32(asm_thumb_t *as, uint reg_dest, mp_uint_t i32) { // movw, movt does it in 8 bytes // ldr [pc, #], dw does it in 6 bytes, but we might not reach to end of code for dw asm_thumb_mov_reg_i16(as, OP_MOVW, reg_dest, i32); asm_thumb_mov_reg_i16(as, OP_MOVT, reg_dest, i32 >> 16); } void asm_thumb_mov_reg_i32_optimised(asm_thumb_t *as, uint reg_dest, int i32) { if (reg_dest < 8 && UNSIGNED_FIT8(i32)) { asm_thumb_mov_rlo_i8(as, reg_dest, i32); } else if (UNSIGNED_FIT16(i32)) { asm_thumb_mov_reg_i16(as, OP_MOVW, reg_dest, i32); } else { asm_thumb_mov_reg_i32(as, reg_dest, i32); } } // i32 is stored as a full word in the code, and aligned to machine-word boundary // TODO this is very inefficient, improve it! void asm_thumb_mov_reg_i32_aligned(asm_thumb_t *as, uint reg_dest, int i32) { // align on machine-word + 2 if ((as->code_offset & 3) == 0) { asm_thumb_op16(as, ASM_THUMB_OP_NOP); } // jump over the i32 value (instruction prefetch adds 2 to PC) asm_thumb_op16(as, OP_B_N(2)); // store i32 on machine-word aligned boundary asm_thumb_data(as, 4, i32); // do the actual load of the i32 value asm_thumb_mov_reg_i32_optimised(as, reg_dest, i32); } #define OP_STR_TO_SP_OFFSET(rlo_dest, word_offset) (0x9000 | ((rlo_dest) << 8) | ((word_offset) & 0x00ff)) #define OP_LDR_FROM_SP_OFFSET(rlo_dest, word_offset) (0x9800 | ((rlo_dest) << 8) | ((word_offset) & 0x00ff)) void asm_thumb_mov_local_reg(asm_thumb_t *as, int local_num, uint rlo_src) { assert(rlo_src < ASM_THUMB_REG_R8); int word_offset = local_num; assert(as->pass < ASM_THUMB_PASS_EMIT || word_offset >= 0); asm_thumb_op16(as, OP_STR_TO_SP_OFFSET(rlo_src, word_offset)); } void asm_thumb_mov_reg_local(asm_thumb_t *as, uint rlo_dest, int local_num) { assert(rlo_dest < ASM_THUMB_REG_R8); int word_offset = local_num; assert(as->pass < ASM_THUMB_PASS_EMIT || word_offset >= 0); asm_thumb_op16(as, OP_LDR_FROM_SP_OFFSET(rlo_dest, word_offset)); } #define OP_ADD_REG_SP_OFFSET(rlo_dest, word_offset) (0xa800 | ((rlo_dest) << 8) | ((word_offset) & 0x00ff)) void asm_thumb_mov_reg_local_addr(asm_thumb_t *as, uint rlo_dest, int local_num) { assert(rlo_dest < ASM_THUMB_REG_R8); int word_offset = local_num; assert(as->pass < ASM_THUMB_PASS_EMIT || word_offset >= 0); asm_thumb_op16(as, OP_ADD_REG_SP_OFFSET(rlo_dest, word_offset)); } // this could be wrong, because it should have a range of +/- 16MiB... #define OP_BW_HI(byte_offset) (0xf000 | (((byte_offset) >> 12) & 0x07ff)) #define OP_BW_LO(byte_offset) (0xb800 | (((byte_offset) >> 1) & 0x07ff)) void asm_thumb_b_label(asm_thumb_t *as, uint label) { mp_uint_t dest = get_label_dest(as, label); mp_int_t rel = dest - as->code_offset; rel -= 4; // account for instruction prefetch, PC is 4 bytes ahead of this instruction if (dest != -1 && rel <= -4) { // is a backwards jump, so we know the size of the jump on the first pass // calculate rel assuming 12 bit relative jump if (SIGNED_FIT12(rel)) { asm_thumb_op16(as, OP_B_N(rel)); } else { goto large_jump; } } else { // is a forwards jump, so need to assume it's large large_jump: asm_thumb_op32(as, OP_BW_HI(rel), OP_BW_LO(rel)); } } // all these bit arithmetics need coverage testing! #define OP_BCC_W_HI(cond, byte_offset) (0xf000 | ((cond) << 6) | (((byte_offset) >> 10) & 0x0400) | (((byte_offset) >> 14) & 0x003f)) #define OP_BCC_W_LO(byte_offset) (0x8000 | ((byte_offset) & 0x2000) | (((byte_offset) >> 1) & 0x0fff)) void asm_thumb_bcc_label(asm_thumb_t *as, int cond, uint label) { mp_uint_t dest = get_label_dest(as, label); mp_int_t rel = dest - as->code_offset; rel -= 4; // account for instruction prefetch, PC is 4 bytes ahead of this instruction if (dest != -1 && rel <= -4) { // is a backwards jump, so we know the size of the jump on the first pass // calculate rel assuming 9 bit relative jump if (SIGNED_FIT9(rel)) { asm_thumb_op16(as, OP_BCC_N(cond, rel)); } else { goto large_jump; } } else { // is a forwards jump, so need to assume it's large large_jump: asm_thumb_op32(as, OP_BCC_W_HI(cond, rel), OP_BCC_W_LO(rel)); } } #define OP_BL_HI(byte_offset) (0xf000 | (((byte_offset) >> 12) & 0x07ff)) #define OP_BL_LO(byte_offset) (0xf800 | (((byte_offset) >> 1) & 0x07ff)) void asm_thumb_bl(asm_thumb_t *as, uint label) { mp_uint_t dest = get_label_dest(as, label); mp_int_t rel = dest - as->code_offset; rel -= 4; // account for instruction prefetch, PC is 4 bytes ahead of this instruction if (SIGNED_FIT23(rel)) { asm_thumb_op32(as, OP_BL_HI(rel), OP_BL_LO(rel)); } else { printf("asm_thumb_bl: branch does not fit in 23 bits\n"); } } #define OP_BLX(reg) (0x4780 | ((reg) << 3)) #define OP_SVC(arg) (0xdf00 | (arg)) void asm_thumb_bl_ind(asm_thumb_t *as, void *fun_ptr, uint fun_id, uint reg_temp) { /* TODO make this use less bytes uint rlo_base = ASM_THUMB_REG_R3; uint rlo_dest = ASM_THUMB_REG_R7; uint word_offset = 4; asm_thumb_op16(as, 0x0000); asm_thumb_op16(as, 0x6800 | (word_offset << 6) | (rlo_base << 3) | rlo_dest); // ldr rlo_dest, [rlo_base, #offset] asm_thumb_op16(as, 0x4780 | (ASM_THUMB_REG_R9 << 3)); // blx reg */ if (fun_id < 32) { // load ptr to function from table, indexed by fun_id (must be in range 0-31); 4 bytes asm_thumb_op16(as, OP_FORMAT_9_10(ASM_THUMB_FORMAT_9_LDR | ASM_THUMB_FORMAT_9_WORD_TRANSFER, reg_temp, ASM_THUMB_REG_R7, fun_id)); asm_thumb_op16(as, OP_BLX(reg_temp)); } else { // load ptr to function into register using immediate; 6 bytes asm_thumb_mov_reg_i32(as, reg_temp, (mp_uint_t)fun_ptr); asm_thumb_op16(as, OP_BLX(reg_temp)); } } #endif // MICROPY_EMIT_THUMB || MICROPY_EMIT_INLINE_THUMB