/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2015-2019 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/obj.h" #include "py/mphal.h" #include "systick.h" #include "dma.h" #include "irq.h" #define DMA_IDLE_ENABLED() (dma_idle.enabled != 0) #define DMA_SYSTICK_LOG2 (3) #define DMA_SYSTICK_MASK ((1 << DMA_SYSTICK_LOG2) - 1) #define DMA_IDLE_TICK_MAX (8) // 8*8 = 64 msec #define DMA_IDLE_TICK(tick) (((tick) & ~(SYSTICK_DISPATCH_NUM_SLOTS - 1) & DMA_SYSTICK_MASK) == 0) #define ENABLE_SDIO (MICROPY_HW_ENABLE_SDCARD || MICROPY_HW_ENABLE_MMCARD) typedef enum { dma_id_not_defined=-1, dma_id_0, dma_id_1, dma_id_2, dma_id_3, dma_id_4, dma_id_5, dma_id_6, dma_id_7, dma_id_8, dma_id_9, dma_id_10, dma_id_11, dma_id_12, dma_id_13, dma_id_14, dma_id_15, } dma_id_t; typedef union { uint16_t enabled; // Used to test if both counters are == 0 uint8_t counter[2]; } dma_idle_count_t; struct _dma_descr_t { #if defined(STM32F4) || defined(STM32F7) || defined(STM32H7) DMA_Stream_TypeDef *instance; #elif defined(STM32F0) || defined(STM32L0) || defined(STM32L4) DMA_Channel_TypeDef *instance; #else #error "Unsupported Processor" #endif uint32_t sub_instance; dma_id_t id; const DMA_InitTypeDef *init; }; // Default parameters to dma_init() shared by spi and i2c; Channel and Direction // vary depending on the peripheral instance so they get passed separately static const DMA_InitTypeDef dma_init_struct_spi_i2c = { #if defined(STM32F4) || defined(STM32F7) .Channel = 0, #elif defined(STM32H7) || defined(STM32L4) .Request = 0, #endif .Direction = 0, .PeriphInc = DMA_PINC_DISABLE, .MemInc = DMA_MINC_ENABLE, .PeriphDataAlignment = DMA_PDATAALIGN_BYTE, .MemDataAlignment = DMA_MDATAALIGN_BYTE, .Mode = DMA_NORMAL, .Priority = DMA_PRIORITY_LOW, #if defined(STM32F4) || defined(STM32F7) || defined(STM32H7) .FIFOMode = DMA_FIFOMODE_DISABLE, .FIFOThreshold = DMA_FIFO_THRESHOLD_FULL, .MemBurst = DMA_MBURST_INC4, .PeriphBurst = DMA_PBURST_INC4 #endif }; #if ENABLE_SDIO && !defined(STM32H7) // Parameters to dma_init() for SDIO tx and rx. static const DMA_InitTypeDef dma_init_struct_sdio = { #if defined(STM32F4) || defined(STM32F7) .Channel = 0, #elif defined(STM32L4) .Request = 0, #endif .Direction = 0, .PeriphInc = DMA_PINC_DISABLE, .MemInc = DMA_MINC_ENABLE, .PeriphDataAlignment = DMA_PDATAALIGN_WORD, .MemDataAlignment = DMA_MDATAALIGN_WORD, #if defined(STM32F4) || defined(STM32F7) .Mode = DMA_PFCTRL, #elif defined(STM32L4) .Mode = DMA_NORMAL, #endif .Priority = DMA_PRIORITY_VERY_HIGH, #if defined(STM32F4) || defined(STM32F7) .FIFOMode = DMA_FIFOMODE_ENABLE, .FIFOThreshold = DMA_FIFO_THRESHOLD_FULL, .MemBurst = DMA_MBURST_INC4, .PeriphBurst = DMA_PBURST_INC4, #endif }; #endif #if defined(MICROPY_HW_ENABLE_DAC) && MICROPY_HW_ENABLE_DAC // Default parameters to dma_init() for DAC tx static const DMA_InitTypeDef dma_init_struct_dac = { #if defined(STM32F4) || defined(STM32F7) .Channel = 0, #elif defined(STM32H7) || defined(STM32L4) .Request = 0, #endif .Direction = 0, .PeriphInc = DMA_PINC_DISABLE, .MemInc = DMA_MINC_ENABLE, .PeriphDataAlignment = DMA_PDATAALIGN_BYTE, .MemDataAlignment = DMA_MDATAALIGN_BYTE, .Mode = DMA_NORMAL, .Priority = DMA_PRIORITY_HIGH, #if defined(STM32F4) || defined(STM32F7) || defined(STM32H7) .FIFOMode = DMA_FIFOMODE_DISABLE, .FIFOThreshold = DMA_FIFO_THRESHOLD_HALFFULL, .MemBurst = DMA_MBURST_SINGLE, .PeriphBurst = DMA_PBURST_SINGLE, #endif }; #endif #if MICROPY_HW_ENABLE_DCMI static const DMA_InitTypeDef dma_init_struct_dcmi = { #if defined(STM32H7) .Request = DMA_REQUEST_DCMI, #else .Channel = DMA_CHANNEL_1, #endif .Direction = DMA_PERIPH_TO_MEMORY, .PeriphInc = DMA_PINC_DISABLE, .MemInc = DMA_MINC_ENABLE, .PeriphDataAlignment = DMA_PDATAALIGN_WORD, .MemDataAlignment = DMA_MDATAALIGN_WORD, .Mode = DMA_NORMAL, .Priority = DMA_PRIORITY_HIGH, .FIFOMode = DMA_FIFOMODE_ENABLE, .FIFOThreshold = DMA_FIFO_THRESHOLD_FULL, .MemBurst = DMA_MBURST_INC4, .PeriphBurst = DMA_PBURST_SINGLE }; #endif #if defined(STM32F0) #define NCONTROLLERS (2) #define NSTREAMS_PER_CONTROLLER (7) #define NSTREAM (NCONTROLLERS * NSTREAMS_PER_CONTROLLER) #define DMA_SUB_INSTANCE_AS_UINT8(dma_channel) ((dma_channel) >> ((dma_channel >> 28) * 4)) #define DMA1_ENABLE_MASK (0x007f) // Bits in dma_enable_mask corresponding to DMA1 (7 channels) #define DMA2_ENABLE_MASK (0x0f80) // Bits in dma_enable_mask corresponding to DMA2 (only 5 channels) // DMA1 streams #if MICROPY_HW_ENABLE_DAC const dma_descr_t dma_DAC_1_TX = { DMA1_Channel3, HAL_DMA1_CH3_DAC_CH1, dma_id_2, &dma_init_struct_dac }; const dma_descr_t dma_DAC_2_TX = { DMA1_Channel4, HAL_DMA1_CH4_DAC_CH2, dma_id_3, &dma_init_struct_dac }; #endif const dma_descr_t dma_SPI_2_TX = { DMA1_Channel5, HAL_DMA1_CH5_SPI2_TX, dma_id_4, &dma_init_struct_spi_i2c}; const dma_descr_t dma_SPI_2_RX = { DMA1_Channel6, HAL_DMA1_CH6_SPI2_RX, dma_id_5, &dma_init_struct_spi_i2c}; const dma_descr_t dma_SPI_1_RX = { DMA2_Channel3, HAL_DMA2_CH3_SPI1_RX, dma_id_9, &dma_init_struct_spi_i2c}; const dma_descr_t dma_SPI_1_TX = { DMA2_Channel4, HAL_DMA2_CH4_SPI1_TX, dma_id_10, &dma_init_struct_spi_i2c}; static const uint8_t dma_irqn[NSTREAM] = { DMA1_Ch1_IRQn, DMA1_Ch2_3_DMA2_Ch1_2_IRQn, DMA1_Ch2_3_DMA2_Ch1_2_IRQn, DMA1_Ch4_7_DMA2_Ch3_5_IRQn, DMA1_Ch4_7_DMA2_Ch3_5_IRQn, DMA1_Ch4_7_DMA2_Ch3_5_IRQn, DMA1_Ch4_7_DMA2_Ch3_5_IRQn, DMA1_Ch2_3_DMA2_Ch1_2_IRQn, DMA1_Ch2_3_DMA2_Ch1_2_IRQn, DMA1_Ch4_7_DMA2_Ch3_5_IRQn, DMA1_Ch4_7_DMA2_Ch3_5_IRQn, DMA1_Ch4_7_DMA2_Ch3_5_IRQn, 0, 0, }; #elif defined(STM32F4) || defined(STM32F7) #define NCONTROLLERS (2) #define NSTREAMS_PER_CONTROLLER (8) #define NSTREAM (NCONTROLLERS * NSTREAMS_PER_CONTROLLER) #define DMA_SUB_INSTANCE_AS_UINT8(dma_channel) (((dma_channel) & DMA_SxCR_CHSEL) >> 25) #define DMA1_ENABLE_MASK (0x00ff) // Bits in dma_enable_mask corresponding to DMA1 #define DMA2_ENABLE_MASK (0xff00) // Bits in dma_enable_mask corresponding to DMA2 // These descriptors are ordered by DMAx_Stream number, and within a stream by channel // number. The duplicate streams are ok as long as they aren't used at the same time. // // Currently I2C and SPI are synchronous and they call dma_init/dma_deinit // around each transfer. // DMA1 streams const dma_descr_t dma_I2C_1_RX = { DMA1_Stream0, DMA_CHANNEL_1, dma_id_0, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_3_RX = { DMA1_Stream2, DMA_CHANNEL_0, dma_id_2, &dma_init_struct_spi_i2c }; #if defined(STM32F7) const dma_descr_t dma_I2C_4_RX = { DMA1_Stream2, DMA_CHANNEL_2, dma_id_2, &dma_init_struct_spi_i2c }; #endif const dma_descr_t dma_I2C_3_RX = { DMA1_Stream2, DMA_CHANNEL_3, dma_id_2, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_2_RX = { DMA1_Stream2, DMA_CHANNEL_7, dma_id_2, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_2_RX = { DMA1_Stream3, DMA_CHANNEL_0, dma_id_3, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_2_TX = { DMA1_Stream4, DMA_CHANNEL_0, dma_id_4, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_3_TX = { DMA1_Stream4, DMA_CHANNEL_3, dma_id_4, &dma_init_struct_spi_i2c }; #if defined(STM32F7) const dma_descr_t dma_I2C_4_TX = { DMA1_Stream5, DMA_CHANNEL_2, dma_id_5, &dma_init_struct_spi_i2c }; #endif #if defined(MICROPY_HW_ENABLE_DAC) && MICROPY_HW_ENABLE_DAC const dma_descr_t dma_DAC_1_TX = { DMA1_Stream5, DMA_CHANNEL_7, dma_id_5, &dma_init_struct_dac }; const dma_descr_t dma_DAC_2_TX = { DMA1_Stream6, DMA_CHANNEL_7, dma_id_6, &dma_init_struct_dac }; #endif const dma_descr_t dma_SPI_3_TX = { DMA1_Stream7, DMA_CHANNEL_0, dma_id_7, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_1_TX = { DMA1_Stream7, DMA_CHANNEL_1, dma_id_7, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_2_TX = { DMA1_Stream7, DMA_CHANNEL_7, dma_id_7, &dma_init_struct_spi_i2c }; /* not preferred streams const dma_descr_t dma_SPI_3_RX = { DMA1_Stream0, DMA_CHANNEL_0, dma_id_0, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_1_TX = { DMA1_Stream6, DMA_CHANNEL_1, dma_id_6, &dma_init_struct_spi_i2c }; */ // DMA2 streams #if defined(STM32F7) && defined(SDMMC2) && ENABLE_SDIO const dma_descr_t dma_SDMMC_2 = { DMA2_Stream0, DMA_CHANNEL_11, dma_id_8, &dma_init_struct_sdio }; #endif #if MICROPY_HW_ENABLE_DCMI const dma_descr_t dma_DCMI_0 = { DMA2_Stream1, DMA_CHANNEL_1, dma_id_9, &dma_init_struct_dcmi }; #endif const dma_descr_t dma_SPI_1_RX = { DMA2_Stream2, DMA_CHANNEL_3, dma_id_10, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_5_RX = { DMA2_Stream3, DMA_CHANNEL_2, dma_id_11, &dma_init_struct_spi_i2c }; #if ENABLE_SDIO const dma_descr_t dma_SDIO_0 = { DMA2_Stream3, DMA_CHANNEL_4, dma_id_11, &dma_init_struct_sdio }; #endif const dma_descr_t dma_SPI_4_RX = { DMA2_Stream3, DMA_CHANNEL_5, dma_id_11, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_5_TX = { DMA2_Stream4, DMA_CHANNEL_2, dma_id_12, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_4_TX = { DMA2_Stream4, DMA_CHANNEL_5, dma_id_12, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_6_TX = { DMA2_Stream5, DMA_CHANNEL_1, dma_id_13, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_1_TX = { DMA2_Stream5, DMA_CHANNEL_3, dma_id_13, &dma_init_struct_spi_i2c }; //#if defined(STM32F7) && defined(SDMMC2) && ENABLE_SDIO //const dma_descr_t dma_SDMMC_2 = { DMA2_Stream5, DMA_CHANNEL_11, dma_id_13, &dma_init_struct_sdio }; //#endif const dma_descr_t dma_SPI_6_RX = { DMA2_Stream6, DMA_CHANNEL_1, dma_id_14, &dma_init_struct_spi_i2c }; //#if ENABLE_SDIO //const dma_descr_t dma_SDIO_0 = { DMA2_Stream6, DMA_CHANNEL_4, dma_id_14, &dma_init_struct_sdio }; //#endif /* not preferred streams const dma_descr_t dma_SPI_1_TX = { DMA2_Stream3, DMA_CHANNEL_3, dma_id_11, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_1_RX = { DMA2_Stream0, DMA_CHANNEL_3, dma_id_8, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_4_RX = { DMA2_Stream0, DMA_CHANNEL_4, dma_id_8, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_4_TX = { DMA2_Stream1, DMA_CHANNEL_4, dma_id_9, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_5_RX = { DMA2_Stream5, DMA_CHANNEL_7, dma_id_13, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_5_TX = { DMA2_Stream6, DMA_CHANNEL_7, dma_id_14, &dma_init_struct_spi_i2c }; */ static const uint8_t dma_irqn[NSTREAM] = { DMA1_Stream0_IRQn, DMA1_Stream1_IRQn, DMA1_Stream2_IRQn, DMA1_Stream3_IRQn, DMA1_Stream4_IRQn, DMA1_Stream5_IRQn, DMA1_Stream6_IRQn, DMA1_Stream7_IRQn, DMA2_Stream0_IRQn, DMA2_Stream1_IRQn, DMA2_Stream2_IRQn, DMA2_Stream3_IRQn, DMA2_Stream4_IRQn, DMA2_Stream5_IRQn, DMA2_Stream6_IRQn, DMA2_Stream7_IRQn, }; #elif defined(STM32L0) #define NCONTROLLERS (1) #define NSTREAMS_PER_CONTROLLER (7) #define NSTREAM (NCONTROLLERS * NSTREAMS_PER_CONTROLLER) #define DMA_SUB_INSTANCE_AS_UINT8(dma_request) (dma_request) #define DMA1_ENABLE_MASK (0x007f) // Bits in dma_enable_mask corresponding to DMA1 // These descriptors are ordered by DMAx_Channel number, and within a channel by request // number. The duplicate streams are ok as long as they aren't used at the same time. // DMA1 streams const dma_descr_t dma_SPI_1_RX = { DMA1_Channel2, DMA_REQUEST_1, dma_id_1, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_3_TX = { DMA1_Channel2, DMA_REQUEST_3, dma_id_1, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_1_TX = { DMA1_Channel3, DMA_REQUEST_1, dma_id_2, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_3_RX = { DMA1_Channel3, DMA_REQUEST_3, dma_id_2, &dma_init_struct_spi_i2c }; #if MICROPY_HW_ENABLE_DAC const dma_descr_t dma_DAC_1_TX = { DMA1_Channel3, DMA_REQUEST_6, dma_id_2, &dma_init_struct_dac }; #endif const dma_descr_t dma_SPI_2_RX = { DMA1_Channel4, DMA_REQUEST_1, dma_id_3, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_2_TX = { DMA1_Channel4, DMA_REQUEST_3, dma_id_3, &dma_init_struct_spi_i2c }; #if MICROPY_HW_ENABLE_DAC const dma_descr_t dma_DAC_2_TX = { DMA1_Channel4, DMA_REQUEST_5, dma_id_3, &dma_init_struct_dac }; #endif const dma_descr_t dma_SPI_2_TX = { DMA1_Channel5, DMA_REQUEST_1, dma_id_4, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_2_RX = { DMA1_Channel5, DMA_REQUEST_3, dma_id_4, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_1_TX = { DMA1_Channel6, DMA_REQUEST_3, dma_id_5, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_1_RX = { DMA1_Channel7, DMA_REQUEST_3, dma_id_6, &dma_init_struct_spi_i2c }; static const uint8_t dma_irqn[NSTREAM] = { DMA1_Channel1_IRQn, DMA1_Channel2_3_IRQn, DMA1_Channel4_5_6_7_IRQn, 0, 0, 0, 0, }; #elif defined(STM32L4) #define NCONTROLLERS (2) #define NSTREAMS_PER_CONTROLLER (7) #define NSTREAM (NCONTROLLERS * NSTREAMS_PER_CONTROLLER) #define DMA_SUB_INSTANCE_AS_UINT8(dma_request) (dma_request) #define DMA1_ENABLE_MASK (0x007f) // Bits in dma_enable_mask corresponding to DMA1 #define DMA2_ENABLE_MASK (0x3f80) // Bits in dma_enable_mask corresponding to DMA2 // These descriptors are ordered by DMAx_Channel number, and within a channel by request // number. The duplicate streams are ok as long as they aren't used at the same time. // DMA1 streams //const dma_descr_t dma_ADC_1_RX = { DMA1_Channel1, DMA_REQUEST_0, dma_id_0, NULL }; // unused //const dma_descr_t dma_ADC_2_RX = { DMA1_Channel2, DMA_REQUEST_0, dma_id_1, NULL }; // unused const dma_descr_t dma_SPI_1_RX = { DMA1_Channel2, DMA_REQUEST_1, dma_id_1, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_3_TX = { DMA1_Channel2, DMA_REQUEST_3, dma_id_1, &dma_init_struct_spi_i2c }; //const dma_descr_t dma_ADC_3_RX = { DMA1_Channel3, DMA_REQUEST_0, dma_id_2, NULL }; // unused const dma_descr_t dma_SPI_1_TX = { DMA1_Channel3, DMA_REQUEST_1, dma_id_2, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_3_RX = { DMA1_Channel3, DMA_REQUEST_3, dma_id_2, &dma_init_struct_spi_i2c }; #if MICROPY_HW_ENABLE_DAC const dma_descr_t dma_DAC_1_TX = { DMA1_Channel3, DMA_REQUEST_6, dma_id_2, &dma_init_struct_dac }; #endif const dma_descr_t dma_SPI_2_RX = { DMA1_Channel4, DMA_REQUEST_1, dma_id_3, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_2_TX = { DMA1_Channel4, DMA_REQUEST_3, dma_id_3, &dma_init_struct_spi_i2c }; #if MICROPY_HW_ENABLE_DAC const dma_descr_t dma_DAC_2_TX = { DMA1_Channel4, DMA_REQUEST_5, dma_id_3, &dma_init_struct_dac }; #endif const dma_descr_t dma_SPI_2_TX = { DMA1_Channel5, DMA_REQUEST_1, dma_id_4, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_2_RX = { DMA1_Channel5, DMA_REQUEST_3, dma_id_4, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_1_TX = { DMA1_Channel6, DMA_REQUEST_3, dma_id_5, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_1_RX = { DMA1_Channel7, DMA_REQUEST_3, dma_id_6, &dma_init_struct_spi_i2c }; // DMA2 streams const dma_descr_t dma_I2C_4_RX = { DMA2_Channel1, DMA_REQUEST_0, dma_id_0, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_3_RX = { DMA2_Channel1, DMA_REQUEST_3, dma_id_7, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_4_TX = { DMA2_Channel2, DMA_REQUEST_0, dma_id_1, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_3_TX = { DMA2_Channel2, DMA_REQUEST_3, dma_id_8, &dma_init_struct_spi_i2c }; /* not preferred streams const dma_descr_t dma_ADC_1_RX = { DMA2_Channel3, DMA_REQUEST_0, dma_id_9, NULL }; const dma_descr_t dma_SPI_1_RX = { DMA2_Channel3, DMA_REQUEST_4, dma_id_9, &dma_init_struct_spi_i2c }; const dma_descr_t dma_ADC_2_RX = { DMA2_Channel4, DMA_REQUEST_0, dma_id_10, NULL }; const dma_descr_t dma_DAC_1_TX = { DMA2_Channel4, DMA_REQUEST_3, dma_id_10, &dma_init_struct_dac }; const dma_descr_t dma_SPI_1_TX = { DMA2_Channel4, DMA_REQUEST_4, dma_id_10, &dma_init_struct_spi_i2c }; */ #if ENABLE_SDIO const dma_descr_t dma_SDIO_0 = { DMA2_Channel4, DMA_REQUEST_7, dma_id_10, &dma_init_struct_sdio }; #endif /* not preferred streams const dma_descr_t dma_ADC_3_RX = { DMA2_Channel5, DMA_REQUEST_0, dma_id_11, NULL }; const dma_descr_t dma_DAC_2_TX = { DMA2_Channel5, DMA_REQUEST_3, dma_id_11, &dma_init_struct_dac }; const dma_descr_t dma_SDIO_0_TX= { DMA2_Channel5, DMA_REQUEST_7, dma_id_11, &dma_init_struct_sdio }; const dma_descr_t dma_I2C_1_RX = { DMA2_Channel6, DMA_REQUEST_5, dma_id_12, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_1_TX = { DMA2_Channel7, DMA_REQUEST_5, dma_id_13, &dma_init_struct_spi_i2c }; */ static const uint8_t dma_irqn[NSTREAM] = { DMA1_Channel1_IRQn, DMA1_Channel2_IRQn, DMA1_Channel3_IRQn, DMA1_Channel4_IRQn, DMA1_Channel5_IRQn, DMA1_Channel6_IRQn, DMA1_Channel7_IRQn, DMA2_Channel1_IRQn, DMA2_Channel2_IRQn, DMA2_Channel3_IRQn, DMA2_Channel4_IRQn, DMA2_Channel5_IRQn, DMA2_Channel6_IRQn, DMA2_Channel7_IRQn, }; #elif defined(STM32H7) #define NCONTROLLERS (2) #define NSTREAMS_PER_CONTROLLER (8) #define NSTREAM (NCONTROLLERS * NSTREAMS_PER_CONTROLLER) #define DMA_SUB_INSTANCE_AS_UINT8(dma_channel) (dma_channel) #define DMA1_ENABLE_MASK (0x00ff) // Bits in dma_enable_mask corresponding to DMA1 #define DMA2_ENABLE_MASK (0xff00) // Bits in dma_enable_mask corresponding to DMA2 // These descriptors are ordered by DMAx_Stream number, and within a stream by channel // number. The duplicate streams are ok as long as they aren't used at the same time. // // Currently I2C and SPI are synchronous and they call dma_init/dma_deinit // around each transfer. // DMA1 streams const dma_descr_t dma_I2C_1_RX = { DMA1_Stream0, DMA_REQUEST_I2C1_RX, dma_id_0, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_3_RX = { DMA1_Stream2, DMA_REQUEST_SPI3_RX, dma_id_2, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_4_RX = { DMA1_Stream2, BDMA_REQUEST_I2C4_RX, dma_id_2, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_3_RX = { DMA1_Stream2, DMA_REQUEST_I2C3_RX, dma_id_2, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_2_RX = { DMA1_Stream2, DMA_REQUEST_I2C2_RX, dma_id_2, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_2_RX = { DMA1_Stream3, DMA_REQUEST_SPI2_RX, dma_id_3, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_2_TX = { DMA1_Stream4, DMA_REQUEST_SPI2_TX, dma_id_4, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_3_TX = { DMA1_Stream4, DMA_REQUEST_I2C3_TX, dma_id_4, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_4_TX = { DMA1_Stream5, BDMA_REQUEST_I2C4_TX, dma_id_5, &dma_init_struct_spi_i2c }; #if defined(MICROPY_HW_ENABLE_DAC) && MICROPY_HW_ENABLE_DAC const dma_descr_t dma_DAC_1_TX = { DMA1_Stream5, DMA_REQUEST_DAC1_CH1, dma_id_5, &dma_init_struct_dac }; const dma_descr_t dma_DAC_2_TX = { DMA1_Stream6, DMA_REQUEST_DAC1_CH2, dma_id_6, &dma_init_struct_dac }; #endif const dma_descr_t dma_SPI_3_TX = { DMA1_Stream7, DMA_REQUEST_SPI3_TX, dma_id_7, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_1_TX = { DMA1_Stream7, DMA_REQUEST_I2C1_TX, dma_id_7, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_2_TX = { DMA1_Stream7, DMA_REQUEST_I2C2_TX, dma_id_7, &dma_init_struct_spi_i2c }; // DMA2 streams #if MICROPY_HW_ENABLE_DCMI const dma_descr_t dma_DCMI_0 = { DMA2_Stream1, DMA_REQUEST_DCMI, dma_id_9, &dma_init_struct_dcmi }; #endif const dma_descr_t dma_SPI_1_RX = { DMA2_Stream2, DMA_REQUEST_SPI1_RX, dma_id_10, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_5_RX = { DMA2_Stream3, DMA_REQUEST_SPI5_RX, dma_id_11, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_4_RX = { DMA2_Stream3, DMA_REQUEST_SPI4_RX, dma_id_11, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_5_TX = { DMA2_Stream4, DMA_REQUEST_SPI5_TX, dma_id_12, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_4_TX = { DMA2_Stream4, DMA_REQUEST_SPI4_TX, dma_id_12, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_6_TX = { DMA2_Stream5, BDMA_REQUEST_SPI6_TX, dma_id_13, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_1_TX = { DMA2_Stream5, DMA_REQUEST_SPI1_TX, dma_id_13, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_6_RX = { DMA2_Stream6, BDMA_REQUEST_SPI6_RX, dma_id_14, &dma_init_struct_spi_i2c }; static const uint8_t dma_irqn[NSTREAM] = { DMA1_Stream0_IRQn, DMA1_Stream1_IRQn, DMA1_Stream2_IRQn, DMA1_Stream3_IRQn, DMA1_Stream4_IRQn, DMA1_Stream5_IRQn, DMA1_Stream6_IRQn, DMA1_Stream7_IRQn, DMA2_Stream0_IRQn, DMA2_Stream1_IRQn, DMA2_Stream2_IRQn, DMA2_Stream3_IRQn, DMA2_Stream4_IRQn, DMA2_Stream5_IRQn, DMA2_Stream6_IRQn, DMA2_Stream7_IRQn, }; #endif static DMA_HandleTypeDef *dma_handle[NSTREAM] = {NULL}; static uint8_t dma_last_sub_instance[NSTREAM]; static volatile uint32_t dma_enable_mask = 0; volatile dma_idle_count_t dma_idle; #define DMA_INVALID_CHANNEL 0xff // Value stored in dma_last_channel which means invalid #if defined(STM32F0) || defined(STM32L0) #define DMA1_IS_CLK_ENABLED() ((RCC->AHBENR & RCC_AHBENR_DMA1EN) != 0) #if defined(DMA2) #define DMA2_IS_CLK_ENABLED() ((RCC->AHBENR & RCC_AHBENR_DMA2EN) != 0) #endif #else #define DMA1_IS_CLK_ENABLED() ((RCC->AHB1ENR & RCC_AHB1ENR_DMA1EN) != 0) #define DMA2_IS_CLK_ENABLED() ((RCC->AHB1ENR & RCC_AHB1ENR_DMA2EN) != 0) #endif #if defined(STM32F0) void DMA1_Ch1_IRQHandler(void) { IRQ_ENTER(DMA1_Ch1_IRQn); if (dma_handle[dma_id_0] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_0]); } } void DMA1_Ch2_3_DMA2_Ch1_2_IRQHandler(void) { IRQ_ENTER(DMA1_Ch2_3_DMA2_Ch1_2_IRQn); if (dma_handle[dma_id_1] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_1]); } if (dma_handle[dma_id_2] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_2]); } if (dma_handle[dma_id_7] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_7]); } if (dma_handle[dma_id_8] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_8]); } IRQ_EXIT(DMA1_Ch2_3_DMA2_Ch1_2_IRQn); } void DMA1_Ch4_7_DMA2_Ch3_5_IRQHandler(void) { IRQ_ENTER(DMA1_Ch4_7_DMA2_Ch3_5_IRQn); for (unsigned int i = 0; i < 4; ++i) { if (dma_handle[dma_id_3 + i] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_3 + i]); } // When i==3 this will check an invalid handle, but it will always be NULL if (dma_handle[dma_id_9 + i] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_9 + i]); } } IRQ_EXIT(DMA1_Ch4_7_DMA2_Ch3_5_IRQn); } #elif defined(STM32F4) || defined(STM32F7) || defined(STM32H7) void DMA1_Stream0_IRQHandler(void) { IRQ_ENTER(DMA1_Stream0_IRQn); if (dma_handle[dma_id_0] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_0]); } IRQ_EXIT(DMA1_Stream0_IRQn); } void DMA1_Stream1_IRQHandler(void) { IRQ_ENTER(DMA1_Stream1_IRQn); if (dma_handle[dma_id_1] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_1]); } IRQ_EXIT(DMA1_Stream1_IRQn); } void DMA1_Stream2_IRQHandler(void) { IRQ_ENTER(DMA1_Stream2_IRQn); if (dma_handle[dma_id_2] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_2]); } IRQ_EXIT(DMA1_Stream2_IRQn); } void DMA1_Stream3_IRQHandler(void) { IRQ_ENTER(DMA1_Stream3_IRQn); if (dma_handle[dma_id_3] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_3]); } IRQ_EXIT(DMA1_Stream3_IRQn); } void DMA1_Stream4_IRQHandler(void) { IRQ_ENTER(DMA1_Stream4_IRQn); if (dma_handle[dma_id_4] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_4]); } IRQ_EXIT(DMA1_Stream4_IRQn); } void DMA1_Stream5_IRQHandler(void) { IRQ_ENTER(DMA1_Stream5_IRQn); if (dma_handle[dma_id_5] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_5]); } IRQ_EXIT(DMA1_Stream5_IRQn); } void DMA1_Stream6_IRQHandler(void) { IRQ_ENTER(DMA1_Stream6_IRQn); if (dma_handle[dma_id_6] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_6]); } IRQ_EXIT(DMA1_Stream6_IRQn); } void DMA1_Stream7_IRQHandler(void) { IRQ_ENTER(DMA1_Stream7_IRQn); if (dma_handle[dma_id_7] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_7]); } IRQ_EXIT(DMA1_Stream7_IRQn); } void DMA2_Stream0_IRQHandler(void) { IRQ_ENTER(DMA2_Stream0_IRQn); if (dma_handle[dma_id_8] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_8]); } IRQ_EXIT(DMA2_Stream0_IRQn); } void DMA2_Stream1_IRQHandler(void) { IRQ_ENTER(DMA2_Stream1_IRQn); if (dma_handle[dma_id_9] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_9]); } IRQ_EXIT(DMA2_Stream1_IRQn); } void DMA2_Stream2_IRQHandler(void) { IRQ_ENTER(DMA2_Stream2_IRQn); if (dma_handle[dma_id_10] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_10]); } IRQ_EXIT(DMA2_Stream2_IRQn); } void DMA2_Stream3_IRQHandler(void) { IRQ_ENTER(DMA2_Stream3_IRQn); if (dma_handle[dma_id_11] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_11]); } IRQ_EXIT(DMA2_Stream3_IRQn); } void DMA2_Stream4_IRQHandler(void) { IRQ_ENTER(DMA2_Stream4_IRQn); if (dma_handle[dma_id_12] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_12]); } IRQ_EXIT(DMA2_Stream4_IRQn); } void DMA2_Stream5_IRQHandler(void) { IRQ_ENTER(DMA2_Stream5_IRQn); if (dma_handle[dma_id_13] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_13]); } IRQ_EXIT(DMA2_Stream5_IRQn); } void DMA2_Stream6_IRQHandler(void) { IRQ_ENTER(DMA2_Stream6_IRQn); if (dma_handle[dma_id_14] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_14]); } IRQ_EXIT(DMA2_Stream6_IRQn); } void DMA2_Stream7_IRQHandler(void) { IRQ_ENTER(DMA2_Stream7_IRQn); if (dma_handle[dma_id_15] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_15]); } IRQ_EXIT(DMA2_Stream7_IRQn); } #elif defined(STM32L0) void DMA1_Channel1_IRQHandler(void) { IRQ_ENTER(DMA1_Channel1_IRQn); if (dma_handle[dma_id_0] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_0]); } IRQ_EXIT(DMA1_Channel1_IRQn); } void DMA1_Channel2_3_IRQHandler(void) { IRQ_ENTER(DMA1_Channel2_3_IRQn); if (dma_handle[dma_id_1] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_1]); } if (dma_handle[dma_id_2] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_2]); } IRQ_EXIT(DMA1_Channel2_3_IRQn); } void DMA1_Channel4_5_6_7_IRQHandler(void) { IRQ_ENTER(DMA1_Channel4_5_6_7_IRQn); if (dma_handle[dma_id_3] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_3]); } if (dma_handle[dma_id_4] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_4]); } if (dma_handle[dma_id_5] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_5]); } if (dma_handle[dma_id_6] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_6]); } IRQ_EXIT(DMA1_Channel4_5_6_7_IRQn); } #elif defined(STM32L4) void DMA1_Channel1_IRQHandler(void) { IRQ_ENTER(DMA1_Channel1_IRQn); if (dma_handle[dma_id_0] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_0]); } IRQ_EXIT(DMA1_Channel1_IRQn); } void DMA1_Channel2_IRQHandler(void) { IRQ_ENTER(DMA1_Channel2_IRQn); if (dma_handle[dma_id_1] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_1]); } IRQ_EXIT(DMA1_Channel2_IRQn); } void DMA1_Channel3_IRQHandler(void) { IRQ_ENTER(DMA1_Channel3_IRQn); if (dma_handle[dma_id_2] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_2]); } IRQ_EXIT(DMA1_Channel3_IRQn); } void DMA1_Channel4_IRQHandler(void) { IRQ_ENTER(DMA1_Channel4_IRQn); if (dma_handle[dma_id_3] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_3]); } IRQ_EXIT(DMA1_Channel4_IRQn); } void DMA1_Channel5_IRQHandler(void) { IRQ_ENTER(DMA1_Channel5_IRQn); if (dma_handle[dma_id_4] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_4]); } IRQ_EXIT(DMA1_Channel5_IRQn); } void DMA1_Channel6_IRQHandler(void) { IRQ_ENTER(DMA1_Channel6_IRQn); if (dma_handle[dma_id_5] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_5]); } IRQ_EXIT(DMA1_Channel6_IRQn); } void DMA1_Channel7_IRQHandler(void) { IRQ_ENTER(DMA1_Channel7_IRQn); if (dma_handle[dma_id_6] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_6]); } IRQ_EXIT(DMA1_Channel7_IRQn); } void DMA2_Channel1_IRQHandler(void) { IRQ_ENTER(DMA2_Channel1_IRQn); if (dma_handle[dma_id_7] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_7]); } IRQ_EXIT(DMA2_Channel1_IRQn); } void DMA2_Channel2_IRQHandler(void) { IRQ_ENTER(DMA2_Channel2_IRQn); if (dma_handle[dma_id_8] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_8]); } IRQ_EXIT(DMA2_Channel2_IRQn); } void DMA2_Channel3_IRQHandler(void) { IRQ_ENTER(DMA2_Channel3_IRQn); if (dma_handle[dma_id_9] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_9]); } IRQ_EXIT(DMA2_Channel3_IRQn); } void DMA2_Channel4_IRQHandler(void) { IRQ_ENTER(DMA2_Channel4_IRQn); if (dma_handle[dma_id_10] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_10]);} IRQ_EXIT(DMA2_Channel4_IRQn); } void DMA2_Channel5_IRQHandler(void) { IRQ_ENTER(DMA2_Channel5_IRQn); if (dma_handle[dma_id_11] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_11]);} IRQ_EXIT(DMA2_Channel5_IRQn); } void DMA2_Channel6_IRQHandler(void) { IRQ_ENTER(DMA2_Channel6_IRQn); if (dma_handle[dma_id_12] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_12]);} IRQ_EXIT(DMA2_Channel6_IRQn); } void DMA2_Channel7_IRQHandler(void) { IRQ_ENTER(DMA2_Channel7_IRQn); if (dma_handle[dma_id_13] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_13]);} IRQ_EXIT(DMA2_Channel7_IRQn); } #endif static void dma_idle_handler(uint32_t tick); // Resets the idle counter for the DMA controller associated with dma_id. static void dma_tickle(dma_id_t dma_id) { dma_idle.counter[(dma_id < NSTREAMS_PER_CONTROLLER) ? 0 : 1] = 1; systick_enable_dispatch(SYSTICK_DISPATCH_DMA, dma_idle_handler); } static void dma_enable_clock(dma_id_t dma_id) { // We don't want dma_tick_handler() to turn off the clock right after we // enable it, so we need to mark the channel in use in an atomic fashion. mp_uint_t irq_state = MICROPY_BEGIN_ATOMIC_SECTION(); uint32_t old_enable_mask = dma_enable_mask; dma_enable_mask |= (1 << dma_id); MICROPY_END_ATOMIC_SECTION(irq_state); if (dma_id < NSTREAMS_PER_CONTROLLER) { if (((old_enable_mask & DMA1_ENABLE_MASK) == 0) && !DMA1_IS_CLK_ENABLED()) { __HAL_RCC_DMA1_CLK_ENABLE(); // We just turned on the clock. This means that anything stored // in dma_last_channel (for DMA1) needs to be invalidated. for (int channel = 0; channel < NSTREAMS_PER_CONTROLLER; channel++) { dma_last_sub_instance[channel] = DMA_INVALID_CHANNEL; } } } #if defined(DMA2) else { if (((old_enable_mask & DMA2_ENABLE_MASK) == 0) && !DMA2_IS_CLK_ENABLED()) { __HAL_RCC_DMA2_CLK_ENABLE(); // We just turned on the clock. This means that anything stored // in dma_last_channel (for DMA2) needs to be invalidated. for (int channel = NSTREAMS_PER_CONTROLLER; channel < NSTREAM; channel++) { dma_last_sub_instance[channel] = DMA_INVALID_CHANNEL; } } } #endif } static void dma_disable_clock(dma_id_t dma_id) { // We just mark the clock as disabled here, but we don't actually disable it. // We wait for the timer to expire first, which means that back-to-back // transfers don't have to initialize as much. dma_tickle(dma_id); dma_enable_mask &= ~(1 << dma_id); } void dma_init_handle(DMA_HandleTypeDef *dma, const dma_descr_t *dma_descr, uint32_t dir, void *data) { // initialise parameters dma->Instance = dma_descr->instance; dma->Init = *dma_descr->init; dma->Init.Direction = dir; #if defined(STM32L0) || defined(STM32L4) || defined(STM32H7) dma->Init.Request = dma_descr->sub_instance; #else #if !defined(STM32F0) dma->Init.Channel = dma_descr->sub_instance; #endif #endif // half of __HAL_LINKDMA(data, xxx, *dma) // caller must implement other half by doing: data->xxx = dma dma->Parent = data; } void dma_init(DMA_HandleTypeDef *dma, const dma_descr_t *dma_descr, uint32_t dir, void *data){ // Some drivers allocate the DMA_HandleTypeDef from the stack // (i.e. dac, i2c, spi) and for those cases we need to clear the // structure so we don't get random values from the stack) memset(dma, 0, sizeof(*dma)); if (dma_descr != NULL) { dma_id_t dma_id = dma_descr->id; dma_init_handle(dma, dma_descr, dir, data); // set global pointer for IRQ handler dma_handle[dma_id] = dma; dma_enable_clock(dma_id); #if defined(STM32H7) || defined(STM32L4) // Always reset and configure the H7 and L4 DMA peripheral // (dma->State is set to HAL_DMA_STATE_RESET by memset above) // TODO: understand how L4 DMA works so this is not needed HAL_DMA_DeInit(dma); HAL_DMA_Init(dma); NVIC_SetPriority(IRQn_NONNEG(dma_irqn[dma_id]), IRQ_PRI_DMA); #else // if this stream was previously configured for this channel/request and direction then we // can skip most of the initialisation uint8_t sub_inst = DMA_SUB_INSTANCE_AS_UINT8(dma_descr->sub_instance) | (dir == DMA_PERIPH_TO_MEMORY) << 7; if (dma_last_sub_instance[dma_id] != sub_inst) { dma_last_sub_instance[dma_id] = sub_inst; // reset and configure DMA peripheral // (dma->State is set to HAL_DMA_STATE_RESET by memset above) HAL_DMA_DeInit(dma); HAL_DMA_Init(dma); NVIC_SetPriority(IRQn_NONNEG(dma_irqn[dma_id]), IRQ_PRI_DMA); #if defined(STM32F0) if (dma->Instance < DMA2_Channel1) { __HAL_DMA1_REMAP(dma_descr->sub_instance); } else { __HAL_DMA2_REMAP(dma_descr->sub_instance); } #endif } else { // only necessary initialization dma->State = HAL_DMA_STATE_READY; #if defined(STM32F0) // These variables are used to access the relevant 4 bits in ISR and IFCR if (dma_id < NSTREAMS_PER_CONTROLLER) { dma->DmaBaseAddress = DMA1; dma->ChannelIndex = dma_id * 4; } else { dma->DmaBaseAddress = DMA2; dma->ChannelIndex = (dma_id - NSTREAMS_PER_CONTROLLER) * 4; } #elif defined(STM32F4) || defined(STM32F7) // calculate DMA base address and bitshift to be used in IRQ handler extern uint32_t DMA_CalcBaseAndBitshift(DMA_HandleTypeDef *hdma); DMA_CalcBaseAndBitshift(dma); #endif } #endif HAL_NVIC_EnableIRQ(dma_irqn[dma_id]); } } void dma_deinit(const dma_descr_t *dma_descr) { if (dma_descr != NULL) { #if !defined(STM32F0) HAL_NVIC_DisableIRQ(dma_irqn[dma_descr->id]); #endif dma_handle[dma_descr->id] = NULL; dma_disable_clock(dma_descr->id); } } void dma_invalidate_channel(const dma_descr_t *dma_descr) { if (dma_descr != NULL) { dma_id_t dma_id = dma_descr->id; // Only compare the sub-instance, not the direction bit (MSB) if ((dma_last_sub_instance[dma_id] & 0x7f) == DMA_SUB_INSTANCE_AS_UINT8(dma_descr->sub_instance) ) { dma_last_sub_instance[dma_id] = DMA_INVALID_CHANNEL; } } } // Called from the SysTick handler // We use LSB of tick to select which controller to process static void dma_idle_handler(uint32_t tick) { if (!DMA_IDLE_ENABLED() || !DMA_IDLE_TICK(tick)) { return; } static const uint32_t controller_mask[] = { DMA1_ENABLE_MASK, #if defined(DMA2) DMA2_ENABLE_MASK, #endif }; { int controller = (tick >> DMA_SYSTICK_LOG2) & 1; if (dma_idle.counter[controller] == 0) { return; } if (++dma_idle.counter[controller] > DMA_IDLE_TICK_MAX) { if ((dma_enable_mask & controller_mask[controller]) == 0) { // Nothing is active and we've reached our idle timeout, // Now we'll really disable the clock. dma_idle.counter[controller] = 0; if (controller == 0) { __HAL_RCC_DMA1_CLK_DISABLE(); } #if defined(DMA2) else { __HAL_RCC_DMA2_CLK_DISABLE(); } #endif } else { // Something is still active, but the counter never got // reset, so we'll reset the counter here. dma_idle.counter[controller] = 1; } } } } #if defined(STM32F0) || defined(STM32L0) || defined(STM32L4) void dma_nohal_init(const dma_descr_t *descr, uint32_t config) { DMA_Channel_TypeDef *dma = descr->instance; // Enable the DMA peripheral dma_enable_clock(descr->id); // Set main configuration register dma->CCR = descr->init->Priority // PL | descr->init->MemInc // MINC | descr->init->PeriphInc // PINC | config // MSIZE | PSIZE | CIRC | DIR ; // Select channel that the DMA stream uses #if defined(STM32F0) if (dma < DMA2_Channel1) { __HAL_DMA1_REMAP(descr->sub_instance); } else { __HAL_DMA2_REMAP(descr->sub_instance); } #else DMA_Request_TypeDef *dma_ctrl = (void*)(((uint32_t)dma & ~0xff) + (DMA1_CSELR_BASE - DMA1_BASE)); // DMA1_CSELR or DMA2_CSELR uint32_t channel_number = (((uint32_t)dma & 0xff) - 0x08) / 20; // 0 through 6 uint32_t channel_pos = channel_number * 4; dma_ctrl->CSELR = (dma_ctrl->CSELR & ~(0xf << channel_pos)) | (descr->sub_instance << channel_pos); #endif } void dma_nohal_deinit(const dma_descr_t *descr) { DMA_Channel_TypeDef *dma = descr->instance; dma->CCR &= ~DMA_CCR_EN; dma->CCR = 0; dma->CNDTR = 0; dma_deinit(descr); } void dma_nohal_start(const dma_descr_t *descr, uint32_t src_addr, uint32_t dst_addr, uint16_t len) { DMA_Channel_TypeDef *dma = descr->instance; dma->CNDTR = len; dma->CPAR = dst_addr; dma->CMAR = src_addr; dma->CCR |= DMA_CCR_EN; } #else void dma_nohal_init(const dma_descr_t *descr, uint32_t config) { DMA_Stream_TypeDef *dma = descr->instance; // Enable the DMA peripheral dma_enable_clock(descr->id); // Set main configuration register const DMA_InitTypeDef *init = descr->init; dma->CR = descr->sub_instance // CHSEL | init->MemBurst // MBURST | init->PeriphBurst // PBURST | init->Priority // PL | init->MemInc // MINC | init->PeriphInc // PINC | config // MSIZE | PSIZE | CIRC | DIR ; // Set FIFO control register dma->FCR = init->FIFOMode // DMDIS | init->FIFOThreshold // FTH ; } void dma_nohal_deinit(const dma_descr_t *descr) { DMA_Stream_TypeDef *dma = descr->instance; dma->CR &= ~DMA_SxCR_EN; uint32_t t0 = mp_hal_ticks_ms(); while ((dma->CR & DMA_SxCR_EN) && mp_hal_ticks_ms() - t0 < 100) { } dma->CR = 0; dma->NDTR = 0; dma->FCR = 0x21; dma_deinit(descr); } void dma_nohal_start(const dma_descr_t *descr, uint32_t src_addr, uint32_t dst_addr, uint16_t len) { DMA_Stream_TypeDef *dma = descr->instance; dma->CR &= ~DMA_SxCR_DBM; dma->NDTR = len; dma->PAR = dst_addr; dma->M0AR = src_addr; dma->CR |= DMA_SxCR_EN; } #endif