#include #include #include #include #include #include #include #include "misc.h" #include "mpconfig.h" #include "qstr.h" #include "lexer.h" #include "parse.h" #define RULE_ACT_KIND_MASK (0xf0) #define RULE_ACT_ARG_MASK (0x0f) #define RULE_ACT_OR (0x10) #define RULE_ACT_AND (0x20) #define RULE_ACT_LIST (0x30) #define RULE_ARG_BLANK (0x0000) #define RULE_ARG_KIND_MASK (0xf000) #define RULE_ARG_ARG_MASK (0x0fff) #define RULE_ARG_TOK (0x1000) #define RULE_ARG_RULE (0x2000) #define RULE_ARG_OPT_TOK (0x3000) #define RULE_ARG_OPT_RULE (0x4000) // (un)comment to use rule names; for debugging //#define USE_RULE_NAME (1) typedef struct _rule_t { byte rule_id; byte act; #ifdef USE_RULE_NAME const char *rule_name; #endif uint16_t arg[]; } rule_t; enum { RULE_none = 0, #define DEF_RULE(rule, comp, kind, ...) RULE_##rule, #include "grammar.h" #undef DEF_RULE RULE_maximum_number_of, }; #define or(n) (RULE_ACT_OR | n) #define and(n) (RULE_ACT_AND | n) #define one_or_more (RULE_ACT_LIST | 2) #define list (RULE_ACT_LIST | 1) #define list_with_end (RULE_ACT_LIST | 3) #define tok(t) (RULE_ARG_TOK | MP_TOKEN_##t) #define rule(r) (RULE_ARG_RULE | RULE_##r) #define opt_tok(t) (RULE_ARG_OPT_TOK | MP_TOKEN_##t) #define opt_rule(r) (RULE_ARG_OPT_RULE | RULE_##r) #ifdef USE_RULE_NAME #define DEF_RULE(rule, comp, kind, ...) static const rule_t rule_##rule = { RULE_##rule, kind, #rule, { __VA_ARGS__ } }; #else #define DEF_RULE(rule, comp, kind, ...) static const rule_t rule_##rule = { RULE_##rule, kind, { __VA_ARGS__ } }; #endif #include "grammar.h" #undef or #undef and #undef list #undef list_with_end #undef tok #undef rule #undef opt_tok #undef opt_rule #undef one_or_more #undef DEF_RULE static const rule_t *rules[] = { NULL, #define DEF_RULE(rule, comp, kind, ...) &rule_##rule, #include "grammar.h" #undef DEF_RULE }; typedef struct _rule_stack_t { unsigned int src_line : 24; unsigned int rule_id : 8; int32_t arg_i; // what should be the size and signedness? } rule_stack_t; typedef struct _parser_t { uint rule_stack_alloc; uint rule_stack_top; rule_stack_t *rule_stack; uint result_stack_alloc; uint result_stack_top; mp_parse_node_t *result_stack; mp_lexer_t *lexer; } parser_t; static void push_rule(parser_t *parser, int src_line, const rule_t *rule, int arg_i) { if (parser->rule_stack_top >= parser->rule_stack_alloc) { parser->rule_stack = m_renew(rule_stack_t, parser->rule_stack, parser->rule_stack_alloc, parser->rule_stack_alloc * 2); parser->rule_stack_alloc *= 2; } rule_stack_t *rs = &parser->rule_stack[parser->rule_stack_top++]; rs->src_line = src_line; rs->rule_id = rule->rule_id; rs->arg_i = arg_i; } static void push_rule_from_arg(parser_t *parser, uint arg) { assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE || (arg & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE); uint rule_id = arg & RULE_ARG_ARG_MASK; assert(rule_id < RULE_maximum_number_of); push_rule(parser, mp_lexer_cur(parser->lexer)->src_line, rules[rule_id], 0); } static void pop_rule(parser_t *parser, const rule_t **rule, uint *arg_i, uint *src_line) { parser->rule_stack_top -= 1; *rule = rules[parser->rule_stack[parser->rule_stack_top].rule_id]; *arg_i = parser->rule_stack[parser->rule_stack_top].arg_i; *src_line = parser->rule_stack[parser->rule_stack_top].src_line; } mp_parse_node_t mp_parse_node_new_leaf(machine_int_t kind, machine_int_t arg) { return (mp_parse_node_t)(kind | (arg << 4)); } //int num_parse_nodes_allocated = 0; mp_parse_node_struct_t *parse_node_new_struct(int src_line, int rule_id, int num_args) { mp_parse_node_struct_t *pn = m_new_obj_var(mp_parse_node_struct_t, mp_parse_node_t, num_args); pn->source_line = src_line; pn->kind_num_nodes = (rule_id & 0xff) | (num_args << 8); //num_parse_nodes_allocated += 1; return pn; } int parse_node_free_struct(mp_parse_node_t pn_in) { int cnt = 0; if (MP_PARSE_NODE_IS_STRUCT(pn_in)) { mp_parse_node_struct_t *pn = (mp_parse_node_struct_t *)pn_in; int n = pn->kind_num_nodes >> 8; for (int i = 0; i < n; i++) { cnt += parse_node_free_struct(pn->nodes[i]); } m_del_var(mp_parse_node_struct_t, mp_parse_node_t, n, pn); cnt++; } return cnt; } #if MICROPY_DEBUG_PRINTERS void mp_parse_node_print(mp_parse_node_t pn, int indent) { if (MP_PARSE_NODE_IS_STRUCT(pn)) { printf("[% 4d] ", (int)((mp_parse_node_struct_t*)pn)->source_line); } else { printf(" "); } for (int i = 0; i < indent; i++) { printf(" "); } if (MP_PARSE_NODE_IS_NULL(pn)) { printf("NULL\n"); } else if (MP_PARSE_NODE_IS_LEAF(pn)) { int arg = MP_PARSE_NODE_LEAF_ARG(pn); switch (MP_PARSE_NODE_LEAF_KIND(pn)) { case MP_PARSE_NODE_ID: printf("id(%s)\n", qstr_str(arg)); break; case MP_PARSE_NODE_SMALL_INT: printf("int(%d)\n", arg); break; case MP_PARSE_NODE_INTEGER: printf("int(%s)\n", qstr_str(arg)); break; case MP_PARSE_NODE_DECIMAL: printf("dec(%s)\n", qstr_str(arg)); break; case MP_PARSE_NODE_STRING: printf("str(%s)\n", qstr_str(arg)); break; case MP_PARSE_NODE_BYTES: printf("bytes(%s)\n", qstr_str(arg)); break; case MP_PARSE_NODE_TOKEN: printf("tok(%d)\n", arg); break; default: assert(0); } } else { mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pn; int n = pns2->kind_num_nodes >> 8; #ifdef USE_RULE_NAME printf("%s(%d) (n=%d)\n", rules[MP_PARSE_NODE_STRUCT_KIND(pns2)]->rule_name, MP_PARSE_NODE_STRUCT_KIND(pns2), n); #else printf("rule(%u) (n=%d)\n", (uint)MP_PARSE_NODE_STRUCT_KIND(pns2), n); #endif for (int i = 0; i < n; i++) { mp_parse_node_print(pns2->nodes[i], indent + 2); } } } #endif // MICROPY_DEBUG_PRINTERS /* static void result_stack_show(parser_t *parser) { printf("result stack, most recent first\n"); for (int i = parser->result_stack_top - 1; i >= 0; i--) { mp_parse_node_print(parser->result_stack[i], 0); } } */ static mp_parse_node_t pop_result(parser_t *parser) { assert(parser->result_stack_top > 0); return parser->result_stack[--parser->result_stack_top]; } static mp_parse_node_t peek_result(parser_t *parser, int pos) { assert(parser->result_stack_top > pos); return parser->result_stack[parser->result_stack_top - 1 - pos]; } static void push_result_node(parser_t *parser, mp_parse_node_t pn) { if (parser->result_stack_top >= parser->result_stack_alloc) { parser->result_stack = m_renew(mp_parse_node_t, parser->result_stack, parser->result_stack_alloc, parser->result_stack_alloc * 2); parser->result_stack_alloc *= 2; } parser->result_stack[parser->result_stack_top++] = pn; } static void push_result_token(parser_t *parser, const mp_lexer_t *lex) { const mp_token_t *tok = mp_lexer_cur(lex); mp_parse_node_t pn; if (tok->kind == MP_TOKEN_NAME) { pn = mp_parse_node_new_leaf(MP_PARSE_NODE_ID, qstr_from_strn(tok->str, tok->len)); } else if (tok->kind == MP_TOKEN_NUMBER) { bool dec = false; bool small_int = true; machine_int_t int_val = 0; int len = tok->len; const char *str = tok->str; int base = 10; int i = 0; if (len >= 3 && str[0] == '0') { if (str[1] == 'o' || str[1] == 'O') { // octal base = 8; i = 2; } else if (str[1] == 'x' || str[1] == 'X') { // hexadecimal base = 16; i = 2; } else if (str[1] == 'b' || str[1] == 'B') { // binary base = 2; i = 2; } } bool overflow = false; for (; i < len; i++) { machine_int_t old_val = int_val; if (unichar_isdigit(str[i]) && str[i] - '0' < base) { int_val = base * int_val + str[i] - '0'; } else if (base == 16 && 'a' <= str[i] && str[i] <= 'f') { int_val = base * int_val + str[i] - 'a' + 10; } else if (base == 16 && 'A' <= str[i] && str[i] <= 'F') { int_val = base * int_val + str[i] - 'A' + 10; } else if (str[i] == '.' || str[i] == 'e' || str[i] == 'E' || str[i] == 'j' || str[i] == 'J') { dec = true; break; } else { small_int = false; break; } if (int_val < old_val) { // If new value became less than previous, it's overflow overflow = true; } else if ((old_val ^ int_val) & WORD_MSBIT_HIGH) { // If signed number changed sign - it's overflow overflow = true; } } if (dec) { pn = mp_parse_node_new_leaf(MP_PARSE_NODE_DECIMAL, qstr_from_strn(str, len)); } else if (small_int && !overflow && MP_FIT_SMALL_INT(int_val)) { pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, int_val); } else { pn = mp_parse_node_new_leaf(MP_PARSE_NODE_INTEGER, qstr_from_strn(str, len)); } } else if (tok->kind == MP_TOKEN_STRING) { pn = mp_parse_node_new_leaf(MP_PARSE_NODE_STRING, qstr_from_strn(tok->str, tok->len)); } else if (tok->kind == MP_TOKEN_BYTES) { pn = mp_parse_node_new_leaf(MP_PARSE_NODE_BYTES, qstr_from_strn(tok->str, tok->len)); } else { pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, tok->kind); } push_result_node(parser, pn); } static void push_result_rule(parser_t *parser, int src_line, const rule_t *rule, int num_args) { mp_parse_node_struct_t *pn = parse_node_new_struct(src_line, rule->rule_id, num_args); for (int i = num_args; i > 0; i--) { pn->nodes[i - 1] = pop_result(parser); } push_result_node(parser, (mp_parse_node_t)pn); } mp_parse_node_t mp_parse(mp_lexer_t *lex, mp_parse_input_kind_t input_kind, qstr *exc_id_out, const char **exc_msg_out) { // allocate memory for the parser and its stacks parser_t *parser = m_new_obj(parser_t); parser->rule_stack_alloc = 64; parser->rule_stack_top = 0; parser->rule_stack = m_new(rule_stack_t, parser->rule_stack_alloc); parser->result_stack_alloc = 64; parser->result_stack_top = 0; parser->result_stack = m_new(mp_parse_node_t, parser->result_stack_alloc); parser->lexer = lex; // work out the top-level rule to use, and push it on the stack int top_level_rule; switch (input_kind) { case MP_PARSE_SINGLE_INPUT: top_level_rule = RULE_single_input; break; case MP_PARSE_EVAL_INPUT: top_level_rule = RULE_eval_input; break; default: top_level_rule = RULE_file_input; } push_rule(parser, mp_lexer_cur(lex)->src_line, rules[top_level_rule], 0); // parse! uint n, i; // state for the current rule uint rule_src_line; // source line for the first token matched by the current rule bool backtrack = false; const rule_t *rule = NULL; mp_token_kind_t tok_kind; bool emit_rule; bool had_trailing_sep; for (;;) { next_rule: if (parser->rule_stack_top == 0) { break; } pop_rule(parser, &rule, &i, &rule_src_line); n = rule->act & RULE_ACT_ARG_MASK; /* // debugging printf("depth=%d ", parser->rule_stack_top); for (int j = 0; j < parser->rule_stack_top; ++j) { printf(" "); } printf("%s n=%d i=%d bt=%d\n", rule->rule_name, n, i, backtrack); */ switch (rule->act & RULE_ACT_KIND_MASK) { case RULE_ACT_OR: if (i > 0 && !backtrack) { goto next_rule; } else { backtrack = false; } for (; i < n - 1; ++i) { switch (rule->arg[i] & RULE_ARG_KIND_MASK) { case RULE_ARG_TOK: if (mp_lexer_is_kind(lex, rule->arg[i] & RULE_ARG_ARG_MASK)) { push_result_token(parser, lex); mp_lexer_to_next(lex); goto next_rule; } break; case RULE_ARG_RULE: push_rule(parser, rule_src_line, rule, i + 1); // save this or-rule push_rule_from_arg(parser, rule->arg[i]); // push child of or-rule goto next_rule; default: assert(0); } } if ((rule->arg[i] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { if (mp_lexer_is_kind(lex, rule->arg[i] & RULE_ARG_ARG_MASK)) { push_result_token(parser, lex); mp_lexer_to_next(lex); } else { backtrack = true; goto next_rule; } } else { push_rule_from_arg(parser, rule->arg[i]); } break; case RULE_ACT_AND: // failed, backtrack if we can, else syntax error if (backtrack) { assert(i > 0); if ((rule->arg[i - 1] & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE) { // an optional rule that failed, so continue with next arg push_result_node(parser, MP_PARSE_NODE_NULL); backtrack = false; } else { // a mandatory rule that failed, so propagate backtrack if (i > 1) { // already eaten tokens so can't backtrack goto syntax_error; } else { goto next_rule; } } } // progress through the rule for (; i < n; ++i) { switch (rule->arg[i] & RULE_ARG_KIND_MASK) { case RULE_ARG_TOK: // need to match a token tok_kind = rule->arg[i] & RULE_ARG_ARG_MASK; if (mp_lexer_is_kind(lex, tok_kind)) { // matched token if (tok_kind == MP_TOKEN_NAME) { push_result_token(parser, lex); } mp_lexer_to_next(lex); } else { // failed to match token if (i > 0) { // already eaten tokens so can't backtrack goto syntax_error; } else { // this rule failed, so backtrack backtrack = true; goto next_rule; } } break; case RULE_ARG_RULE: case RULE_ARG_OPT_RULE: push_rule(parser, rule_src_line, rule, i + 1); // save this and-rule push_rule_from_arg(parser, rule->arg[i]); // push child of and-rule goto next_rule; default: assert(0); } } assert(i == n); // matched the rule, so now build the corresponding parse_node // count number of arguments for the parse_node i = 0; emit_rule = false; for (int x = 0; x < n; ++x) { if ((rule->arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { tok_kind = rule->arg[x] & RULE_ARG_ARG_MASK; if (tok_kind >= MP_TOKEN_NAME) { emit_rule = true; } if (tok_kind == MP_TOKEN_NAME) { // only tokens which were names are pushed to stack i += 1; } } else { // rules are always pushed i += 1; } } // always emit these rules, even if they have only 1 argument if (rule->rule_id == RULE_expr_stmt || rule->rule_id == RULE_yield_stmt) { emit_rule = true; } // never emit these rules if they have only 1 argument // NOTE: can't put atom_paren here because we need it to distinguisg, for example, [a,b] from [(a,b)] // TODO possibly put varargslist_name, varargslist_equal here as well if (rule->rule_id == RULE_else_stmt || rule->rule_id == RULE_testlist_comp_3b || rule->rule_id == RULE_import_as_names_paren || rule->rule_id == RULE_typedargslist_name || rule->rule_id == RULE_typedargslist_colon || rule->rule_id == RULE_typedargslist_equal || rule->rule_id == RULE_dictorsetmaker_colon || rule->rule_id == RULE_classdef_2 || rule->rule_id == RULE_with_item_as || rule->rule_id == RULE_assert_stmt_extra || rule->rule_id == RULE_as_name || rule->rule_id == RULE_raise_stmt_from || rule->rule_id == RULE_vfpdef) { emit_rule = false; } // always emit these rules, and add an extra blank node at the end (to be used by the compiler to store data) if (rule->rule_id == RULE_funcdef || rule->rule_id == RULE_classdef || rule->rule_id == RULE_comp_for || rule->rule_id == RULE_lambdef || rule->rule_id == RULE_lambdef_nocond) { emit_rule = true; push_result_node(parser, MP_PARSE_NODE_NULL); i += 1; } int num_not_nil = 0; for (int x = 0; x < i; ++x) { if (peek_result(parser, x) != MP_PARSE_NODE_NULL) { num_not_nil += 1; } } //printf("done and %s n=%d i=%d notnil=%d\n", rule->rule_name, n, i, num_not_nil); if (emit_rule) { push_result_rule(parser, rule_src_line, rule, i); } else if (num_not_nil == 0) { push_result_rule(parser, rule_src_line, rule, i); // needed for, eg, atom_paren, testlist_comp_3b //result_stack_show(parser); //assert(0); } else if (num_not_nil == 1) { // single result, leave it on stack mp_parse_node_t pn = MP_PARSE_NODE_NULL; for (int x = 0; x < i; ++x) { mp_parse_node_t pn2 = pop_result(parser); if (pn2 != MP_PARSE_NODE_NULL) { pn = pn2; } } push_result_node(parser, pn); } else { push_result_rule(parser, rule_src_line, rule, i); } break; case RULE_ACT_LIST: // n=2 is: item item* // n=1 is: item (sep item)* // n=3 is: item (sep item)* [sep] if (backtrack) { list_backtrack: had_trailing_sep = false; if (n == 2) { if (i == 1) { // fail on item, first time round; propagate backtrack goto next_rule; } else { // fail on item, in later rounds; finish with this rule backtrack = false; } } else { if (i == 1) { // fail on item, first time round; propagate backtrack goto next_rule; } else if ((i & 1) == 1) { // fail on item, in later rounds; have eaten tokens so can't backtrack if (n == 3) { // list allows trailing separator; finish parsing list had_trailing_sep = true; backtrack = false; } else { // list doesn't allowing trailing separator; fail goto syntax_error; } } else { // fail on separator; finish parsing list backtrack = false; } } } else { for (;;) { uint arg = rule->arg[i & 1 & n]; switch (arg & RULE_ARG_KIND_MASK) { case RULE_ARG_TOK: if (mp_lexer_is_kind(lex, arg & RULE_ARG_ARG_MASK)) { if (i & 1 & n) { // separators which are tokens are not pushed to result stack } else { push_result_token(parser, lex); } mp_lexer_to_next(lex); // got element of list, so continue parsing list i += 1; } else { // couldn't get element of list i += 1; backtrack = true; goto list_backtrack; } break; case RULE_ARG_RULE: push_rule(parser, rule_src_line, rule, i + 1); // save this list-rule push_rule_from_arg(parser, arg); // push child of list-rule goto next_rule; default: assert(0); } } } assert(i >= 1); // compute number of elements in list, result in i i -= 1; if ((n & 1) && (rule->arg[1] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { // don't count separators when they are tokens i = (i + 1) / 2; } if (i == 1) { // list matched single item if (had_trailing_sep) { // if there was a trailing separator, make a list of a single item push_result_rule(parser, rule_src_line, rule, i); } else { // just leave single item on stack (ie don't wrap in a list) } } else { //printf("done list %s %d %d\n", rule->rule_name, n, i); push_result_rule(parser, rule_src_line, rule, i); } break; default: assert(0); } } // check we are at the end of the token stream if (!mp_lexer_is_kind(lex, MP_TOKEN_END)) { goto syntax_error; } //printf("--------------\n"); //result_stack_show(parser); //printf("rule stack alloc: %d\n", parser->rule_stack_alloc); //printf("result stack alloc: %d\n", parser->result_stack_alloc); //printf("number of parse nodes allocated: %d\n", num_parse_nodes_allocated); // get the root parse node that we created assert(parser->result_stack_top == 1); mp_parse_node_t result = parser->result_stack[0]; finished: // free the memory that we don't need anymore m_del(rule_stack_t, parser->rule_stack, parser->rule_stack_alloc); m_del(mp_parse_node_t, parser->result_stack, parser->result_stack_alloc); m_del_obj(parser_t, parser); // return the result return result; syntax_error: if (mp_lexer_is_kind(lex, MP_TOKEN_INDENT)) { *exc_id_out = MP_QSTR_IndentationError; *exc_msg_out = "unexpected indent"; } else if (mp_lexer_is_kind(lex, MP_TOKEN_DEDENT_MISMATCH)) { *exc_id_out = MP_QSTR_IndentationError; *exc_msg_out = "unindent does not match any outer indentation level"; } else { *exc_id_out = MP_QSTR_SyntaxError; *exc_msg_out = "invalid syntax"; #ifdef USE_RULE_NAME // debugging: print the rule name that failed and the token mp_lexer_show_error_pythonic(lex, rule->rule_name); mp_token_show(mp_lexer_cur(lex)); #endif } result = MP_PARSE_NODE_NULL; goto finished; }