#include #include #include #include #include #include #include "misc.h" #include "mpconfig.h" #include "qstr.h" #include "lexer.h" #include "parse.h" #include "scope.h" #include "runtime0.h" #include "emit.h" #include "obj.h" #include "compile.h" #include "runtime.h" // TODO need to mangle __attr names #define MICROPY_EMIT_NATIVE (MICROPY_EMIT_X64 || MICROPY_EMIT_THUMB) typedef enum { PN_none = 0, #define DEF_RULE(rule, comp, kind, ...) PN_##rule, #include "grammar.h" #undef DEF_RULE PN_maximum_number_of, } pn_kind_t; #define EMIT(fun) (comp->emit_method_table->fun(comp->emit)) #define EMIT_ARG(fun, ...) (comp->emit_method_table->fun(comp->emit, __VA_ARGS__)) #define EMIT_INLINE_ASM(fun) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm)) #define EMIT_INLINE_ASM_ARG(fun, ...) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm, __VA_ARGS__)) #define EMIT_OPT_NONE (0) #define EMIT_OPT_BYTE_CODE (1) #define EMIT_OPT_NATIVE_PYTHON (2) #define EMIT_OPT_VIPER (3) #define EMIT_OPT_ASM_THUMB (4) typedef struct _compiler_t { qstr source_file; bool is_repl; pass_kind_t pass; bool had_error; // try to keep compiler clean from nlr int next_label; int break_label; int continue_label; int break_continue_except_level; int cur_except_level; // increased for SETUP_EXCEPT, SETUP_FINALLY; decreased for POP_BLOCK, POP_EXCEPT int n_arg_keyword; bool have_star_arg; bool have_dbl_star_arg; bool have_bare_star; int param_pass; int param_pass_num_dict_params; int param_pass_num_default_params; scope_t *scope_head; scope_t *scope_cur; emit_t *emit; // current emitter const emit_method_table_t *emit_method_table; // current emit method table emit_inline_asm_t *emit_inline_asm; // current emitter for inline asm const emit_inline_asm_method_table_t *emit_inline_asm_method_table; // current emit method table for inline asm } compiler_t; mp_parse_node_t fold_constants(mp_parse_node_t pn) { if (MP_PARSE_NODE_IS_STRUCT(pn)) { mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); // fold arguments first for (int i = 0; i < n; i++) { pns->nodes[i] = fold_constants(pns->nodes[i]); } switch (MP_PARSE_NODE_STRUCT_KIND(pns)) { case PN_shift_expr: if (n == 3 && MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[0]) && MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[2])) { int arg0 = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); int arg1 = MP_PARSE_NODE_LEAF_ARG(pns->nodes[2]); if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_DBL_LESS)) { #if MICROPY_EMIT_CPYTHON // can overflow; enabled only to compare with CPython pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, arg0 << arg1); #endif } else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_DBL_MORE)) { pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, arg0 >> arg1); } else { // shouldn't happen assert(0); } } break; case PN_arith_expr: // overflow checking here relies on SMALL_INT being strictly smaller than machine_int_t if (n == 3 && MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[0]) && MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[2])) { machine_int_t arg0 = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); machine_int_t arg1 = MP_PARSE_NODE_LEAF_ARG(pns->nodes[2]); machine_int_t res; if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_PLUS)) { res = arg0 + arg1; } else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_MINUS)) { res = arg0 - arg1; } else { // shouldn't happen assert(0); res = 0; } if (MP_FIT_SMALL_INT(res)) { pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, res); } } break; case PN_term: if (n == 3 && MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[0]) && MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[2])) { int arg0 = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); int arg1 = MP_PARSE_NODE_LEAF_ARG(pns->nodes[2]); if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_STAR)) { #if MICROPY_EMIT_CPYTHON // can overflow; enabled only to compare with CPython pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, arg0 * arg1); #endif } else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_SLASH)) { ; // pass } else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_PERCENT)) { // XXX implement this properly as Python's % operator acts differently to C's pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, arg0 % arg1); } else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_DBL_SLASH)) { // XXX implement this properly as Python's // operator acts differently to C's pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, arg0 / arg1); } else { // shouldn't happen assert(0); } } break; case PN_factor_2: if (MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[1])) { machine_int_t arg = MP_PARSE_NODE_LEAF_ARG(pns->nodes[1]); if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[0], MP_TOKEN_OP_PLUS)) { pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, arg); } else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[0], MP_TOKEN_OP_MINUS)) { pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, -arg); } else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[0], MP_TOKEN_OP_TILDE)) { pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, ~arg); } else { // shouldn't happen assert(0); } } break; #if MICROPY_EMIT_CPYTHON case PN_power: // can overflow; enabled only to compare with CPython if (MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[0]) && MP_PARSE_NODE_IS_NULL(pns->nodes[1]) && !MP_PARSE_NODE_IS_NULL(pns->nodes[2])) { mp_parse_node_struct_t* pns2 = (mp_parse_node_struct_t*)pns->nodes[2]; if (MP_PARSE_NODE_IS_SMALL_INT(pns2->nodes[0])) { int power = MP_PARSE_NODE_LEAF_ARG(pns2->nodes[0]); if (power >= 0) { int ans = 1; int base = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); for (; power > 0; power--) { ans *= base; } pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, ans); } } } break; #endif } } return pn; } void compile_node(compiler_t *comp, mp_parse_node_t pn); static int comp_next_label(compiler_t *comp) { return comp->next_label++; } static scope_t *scope_new_and_link(compiler_t *comp, scope_kind_t kind, mp_parse_node_t pn, uint emit_options) { scope_t *scope = scope_new(kind, pn, comp->source_file, rt_get_unique_code_id(), emit_options); scope->parent = comp->scope_cur; scope->next = NULL; if (comp->scope_head == NULL) { comp->scope_head = scope; } else { scope_t *s = comp->scope_head; while (s->next != NULL) { s = s->next; } s->next = scope; } return scope; } static int list_len(mp_parse_node_t pn, int pn_kind) { if (MP_PARSE_NODE_IS_NULL(pn)) { return 0; } else if (MP_PARSE_NODE_IS_LEAF(pn)) { return 1; } else { mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; if (MP_PARSE_NODE_STRUCT_KIND(pns) != pn_kind) { return 1; } else { return MP_PARSE_NODE_STRUCT_NUM_NODES(pns); } } } static void apply_to_single_or_list(compiler_t *comp, mp_parse_node_t pn, int pn_list_kind, void (*f)(compiler_t*, mp_parse_node_t)) { if (MP_PARSE_NODE_IS_STRUCT(pn) && MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn) == pn_list_kind) { mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); for (int i = 0; i < num_nodes; i++) { f(comp, pns->nodes[i]); } } else if (!MP_PARSE_NODE_IS_NULL(pn)) { f(comp, pn); } } static int list_get(mp_parse_node_t *pn, int pn_kind, mp_parse_node_t **nodes) { if (MP_PARSE_NODE_IS_NULL(*pn)) { *nodes = NULL; return 0; } else if (MP_PARSE_NODE_IS_LEAF(*pn)) { *nodes = pn; return 1; } else { mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)(*pn); if (MP_PARSE_NODE_STRUCT_KIND(pns) != pn_kind) { *nodes = pn; return 1; } else { *nodes = pns->nodes; return MP_PARSE_NODE_STRUCT_NUM_NODES(pns); } } } void compile_do_nothing(compiler_t *comp, mp_parse_node_struct_t *pns) { } void compile_generic_all_nodes(compiler_t *comp, mp_parse_node_struct_t *pns) { int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); for (int i = 0; i < num_nodes; i++) { compile_node(comp, pns->nodes[i]); } } #if MICROPY_EMIT_CPYTHON static bool cpython_c_tuple_is_const(mp_parse_node_t pn) { if (!MP_PARSE_NODE_IS_LEAF(pn)) { return false; } if (MP_PARSE_NODE_IS_ID(pn)) { return false; } return true; } static void cpython_c_print_quoted_str(vstr_t *vstr, qstr qstr, bool bytes) { uint len; const byte *str = qstr_data(qstr, &len); bool has_single_quote = false; bool has_double_quote = false; for (int i = 0; i < len; i++) { if (str[i] == '\'') { has_single_quote = true; } else if (str[i] == '"') { has_double_quote = true; } } if (bytes) { vstr_printf(vstr, "b"); } bool quote_single = false; if (has_single_quote && !has_double_quote) { vstr_printf(vstr, "\""); } else { quote_single = true; vstr_printf(vstr, "'"); } for (int i = 0; i < len; i++) { if (str[i] == '\n') { vstr_printf(vstr, "\\n"); } else if (str[i] == '\\') { vstr_printf(vstr, "\\\\"); } else if (str[i] == '\'' && quote_single) { vstr_printf(vstr, "\\'"); } else { vstr_printf(vstr, "%c", str[i]); } } if (has_single_quote && !has_double_quote) { vstr_printf(vstr, "\""); } else { vstr_printf(vstr, "'"); } } static void cpython_c_tuple_emit_const(compiler_t *comp, mp_parse_node_t pn, vstr_t *vstr) { assert(MP_PARSE_NODE_IS_LEAF(pn)); int arg = MP_PARSE_NODE_LEAF_ARG(pn); switch (MP_PARSE_NODE_LEAF_KIND(pn)) { case MP_PARSE_NODE_ID: assert(0); case MP_PARSE_NODE_SMALL_INT: vstr_printf(vstr, "%d", arg); break; case MP_PARSE_NODE_INTEGER: vstr_printf(vstr, "%s", qstr_str(arg)); break; case MP_PARSE_NODE_DECIMAL: vstr_printf(vstr, "%s", qstr_str(arg)); break; case MP_PARSE_NODE_STRING: cpython_c_print_quoted_str(vstr, arg, false); break; case MP_PARSE_NODE_BYTES: cpython_c_print_quoted_str(vstr, arg, true); break; case MP_PARSE_NODE_TOKEN: switch (arg) { case MP_TOKEN_KW_FALSE: vstr_printf(vstr, "False"); break; case MP_TOKEN_KW_NONE: vstr_printf(vstr, "None"); break; case MP_TOKEN_KW_TRUE: vstr_printf(vstr, "True"); break; default: assert(0); } break; default: assert(0); } } static void cpython_c_tuple(compiler_t *comp, mp_parse_node_t pn, mp_parse_node_struct_t *pns_list) { int n = 0; if (pns_list != NULL) { n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns_list); } int total = n; bool is_const = true; if (!MP_PARSE_NODE_IS_NULL(pn)) { total += 1; if (!cpython_c_tuple_is_const(pn)) { is_const = false; } } for (int i = 0; i < n; i++) { if (!cpython_c_tuple_is_const(pns_list->nodes[i])) { is_const = false; break; } } if (total > 0 && is_const) { bool need_comma = false; vstr_t *vstr = vstr_new(); vstr_printf(vstr, "("); if (!MP_PARSE_NODE_IS_NULL(pn)) { cpython_c_tuple_emit_const(comp, pn, vstr); need_comma = true; } for (int i = 0; i < n; i++) { if (need_comma) { vstr_printf(vstr, ", "); } cpython_c_tuple_emit_const(comp, pns_list->nodes[i], vstr); need_comma = true; } if (total == 1) { vstr_printf(vstr, ",)"); } else { vstr_printf(vstr, ")"); } EMIT_ARG(load_const_verbatim_str, vstr_str(vstr)); vstr_free(vstr); } else { if (!MP_PARSE_NODE_IS_NULL(pn)) { compile_node(comp, pn); } for (int i = 0; i < n; i++) { compile_node(comp, pns_list->nodes[i]); } EMIT_ARG(build_tuple, total); } } #endif // funnelling all tuple creations through this function is purely so we can optionally agree with CPython void c_tuple(compiler_t *comp, mp_parse_node_t pn, mp_parse_node_struct_t *pns_list) { #if MICROPY_EMIT_CPYTHON cpython_c_tuple(comp, pn, pns_list); #else int total = 0; if (!MP_PARSE_NODE_IS_NULL(pn)) { compile_node(comp, pn); total += 1; } if (pns_list != NULL) { int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns_list); for (int i = 0; i < n; i++) { compile_node(comp, pns_list->nodes[i]); } total += n; } EMIT_ARG(build_tuple, total); #endif } void compile_generic_tuple(compiler_t *comp, mp_parse_node_struct_t *pns) { // a simple tuple expression c_tuple(comp, MP_PARSE_NODE_NULL, pns); } static bool node_is_const_false(mp_parse_node_t pn) { return MP_PARSE_NODE_IS_TOKEN_KIND(pn, MP_TOKEN_KW_FALSE); // untested: || (MP_PARSE_NODE_IS_SMALL_INT(pn) && MP_PARSE_NODE_LEAF_ARG(pn) == 1); } static bool node_is_const_true(mp_parse_node_t pn) { return MP_PARSE_NODE_IS_TOKEN_KIND(pn, MP_TOKEN_KW_TRUE) || (MP_PARSE_NODE_IS_SMALL_INT(pn) && MP_PARSE_NODE_LEAF_ARG(pn) == 1); } #if MICROPY_EMIT_CPYTHON // the is_nested variable is purely to match with CPython, which doesn't fully optimise not's static void cpython_c_if_cond(compiler_t *comp, mp_parse_node_t pn, bool jump_if, int label, bool is_nested) { if (node_is_const_false(pn)) { if (jump_if == false) { EMIT_ARG(jump, label); } return; } else if (node_is_const_true(pn)) { if (jump_if == true) { EMIT_ARG(jump, label); } return; } else if (MP_PARSE_NODE_IS_STRUCT(pn)) { mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_or_test) { if (jump_if == false) { int label2 = comp_next_label(comp); for (int i = 0; i < n - 1; i++) { cpython_c_if_cond(comp, pns->nodes[i], true, label2, true); } cpython_c_if_cond(comp, pns->nodes[n - 1], false, label, true); EMIT_ARG(label_assign, label2); } else { for (int i = 0; i < n; i++) { cpython_c_if_cond(comp, pns->nodes[i], true, label, true); } } return; } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_and_test) { if (jump_if == false) { for (int i = 0; i < n; i++) { cpython_c_if_cond(comp, pns->nodes[i], false, label, true); } } else { int label2 = comp_next_label(comp); for (int i = 0; i < n - 1; i++) { cpython_c_if_cond(comp, pns->nodes[i], false, label2, true); } cpython_c_if_cond(comp, pns->nodes[n - 1], true, label, true); EMIT_ARG(label_assign, label2); } return; } else if (!is_nested && MP_PARSE_NODE_STRUCT_KIND(pns) == PN_not_test_2) { cpython_c_if_cond(comp, pns->nodes[0], !jump_if, label, true); return; } } // nothing special, fall back to default compiling for node and jump compile_node(comp, pn); if (jump_if == false) { EMIT_ARG(pop_jump_if_false, label); } else { EMIT_ARG(pop_jump_if_true, label); } } #endif static void c_if_cond(compiler_t *comp, mp_parse_node_t pn, bool jump_if, int label) { #if MICROPY_EMIT_CPYTHON cpython_c_if_cond(comp, pn, jump_if, label, false); #else if (node_is_const_false(pn)) { if (jump_if == false) { EMIT_ARG(jump, label); } return; } else if (node_is_const_true(pn)) { if (jump_if == true) { EMIT_ARG(jump, label); } return; } else if (MP_PARSE_NODE_IS_STRUCT(pn)) { mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_or_test) { if (jump_if == false) { int label2 = comp_next_label(comp); for (int i = 0; i < n - 1; i++) { c_if_cond(comp, pns->nodes[i], true, label2); } c_if_cond(comp, pns->nodes[n - 1], false, label); EMIT_ARG(label_assign, label2); } else { for (int i = 0; i < n; i++) { c_if_cond(comp, pns->nodes[i], true, label); } } return; } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_and_test) { if (jump_if == false) { for (int i = 0; i < n; i++) { c_if_cond(comp, pns->nodes[i], false, label); } } else { int label2 = comp_next_label(comp); for (int i = 0; i < n - 1; i++) { c_if_cond(comp, pns->nodes[i], false, label2); } c_if_cond(comp, pns->nodes[n - 1], true, label); EMIT_ARG(label_assign, label2); } return; } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_not_test_2) { c_if_cond(comp, pns->nodes[0], !jump_if, label); return; } } // nothing special, fall back to default compiling for node and jump compile_node(comp, pn); if (jump_if == false) { EMIT_ARG(pop_jump_if_false, label); } else { EMIT_ARG(pop_jump_if_true, label); } #endif } typedef enum { ASSIGN_STORE, ASSIGN_AUG_LOAD, ASSIGN_AUG_STORE } assign_kind_t; void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t kind); void c_assign_power(compiler_t *comp, mp_parse_node_struct_t *pns, assign_kind_t assign_kind) { if (assign_kind != ASSIGN_AUG_STORE) { compile_node(comp, pns->nodes[0]); } if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) { mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1]; if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_power_trailers) { int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1); if (assign_kind != ASSIGN_AUG_STORE) { for (int i = 0; i < n - 1; i++) { compile_node(comp, pns1->nodes[i]); } } assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1])); pns1 = (mp_parse_node_struct_t*)pns1->nodes[n - 1]; } if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_paren) { printf("SyntaxError: can't assign to function call\n"); return; } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) { if (assign_kind == ASSIGN_AUG_STORE) { EMIT(rot_three); EMIT(store_subscr); } else { compile_node(comp, pns1->nodes[0]); if (assign_kind == ASSIGN_AUG_LOAD) { EMIT(dup_top_two); EMIT_ARG(binary_op, RT_BINARY_OP_SUBSCR); } else { EMIT(store_subscr); } } } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) { assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0])); if (assign_kind == ASSIGN_AUG_LOAD) { EMIT(dup_top); EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0])); } else { if (assign_kind == ASSIGN_AUG_STORE) { EMIT(rot_two); } EMIT_ARG(store_attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0])); } } else { // shouldn't happen assert(0); } } else { // shouldn't happen assert(0); } if (!MP_PARSE_NODE_IS_NULL(pns->nodes[2])) { // SyntaxError, cannot assign assert(0); } } void c_assign_tuple(compiler_t *comp, int n, mp_parse_node_t *nodes) { assert(n >= 0); int have_star_index = -1; for (int i = 0; i < n; i++) { if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[i], PN_star_expr)) { if (have_star_index < 0) { EMIT_ARG(unpack_ex, i, n - i - 1); have_star_index = i; } else { printf("SyntaxError: two starred expressions in assignment\n"); return; } } } if (have_star_index < 0) { EMIT_ARG(unpack_sequence, n); } for (int i = 0; i < n; i++) { if (i == have_star_index) { c_assign(comp, ((mp_parse_node_struct_t*)nodes[i])->nodes[0], ASSIGN_STORE); } else { c_assign(comp, nodes[i], ASSIGN_STORE); } } } // assigns top of stack to pn void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t assign_kind) { tail_recursion: if (MP_PARSE_NODE_IS_NULL(pn)) { assert(0); } else if (MP_PARSE_NODE_IS_LEAF(pn)) { if (MP_PARSE_NODE_IS_ID(pn)) { int arg = MP_PARSE_NODE_LEAF_ARG(pn); switch (assign_kind) { case ASSIGN_STORE: case ASSIGN_AUG_STORE: EMIT_ARG(store_id, arg); break; case ASSIGN_AUG_LOAD: EMIT_ARG(load_id, arg); break; } } else { printf("SyntaxError: can't assign to literal\n"); return; } } else { mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; switch (MP_PARSE_NODE_STRUCT_KIND(pns)) { case PN_power: // lhs is an index or attribute c_assign_power(comp, pns, assign_kind); break; case PN_testlist_star_expr: case PN_exprlist: // lhs is a tuple if (assign_kind != ASSIGN_STORE) { goto bad_aug; } c_assign_tuple(comp, MP_PARSE_NODE_STRUCT_NUM_NODES(pns), pns->nodes); break; case PN_atom_paren: // lhs is something in parenthesis if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { // empty tuple printf("SyntaxError: can't assign to ()\n"); return; } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) { pns = (mp_parse_node_struct_t*)pns->nodes[0]; goto testlist_comp; } else { // parenthesis around 1 item, is just that item pn = pns->nodes[0]; goto tail_recursion; } break; case PN_atom_bracket: // lhs is something in brackets if (assign_kind != ASSIGN_STORE) { goto bad_aug; } if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { // empty list, assignment allowed c_assign_tuple(comp, 0, NULL); } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) { pns = (mp_parse_node_struct_t*)pns->nodes[0]; goto testlist_comp; } else { // brackets around 1 item c_assign_tuple(comp, 1, &pns->nodes[0]); } break; default: printf("unknown assign, %u\n", (uint)MP_PARSE_NODE_STRUCT_KIND(pns)); assert(0); } return; testlist_comp: // lhs is a sequence if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) { mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1]; if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3b) { // sequence of one item, with trailing comma assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[0])); c_assign_tuple(comp, 1, &pns->nodes[0]); } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3c) { // sequence of many items // TODO call c_assign_tuple instead int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns2); EMIT_ARG(unpack_sequence, 1 + n); c_assign(comp, pns->nodes[0], ASSIGN_STORE); for (int i = 0; i < n; i++) { c_assign(comp, pns2->nodes[i], ASSIGN_STORE); } } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_comp_for) { // TODO not implemented assert(0); } else { // sequence with 2 items goto sequence_with_2_items; } } else { // sequence with 2 items sequence_with_2_items: c_assign_tuple(comp, 2, pns->nodes); } return; } return; bad_aug: printf("SyntaxError: illegal expression for augmented assignment\n"); } // stuff for lambda and comprehensions and generators void close_over_variables_etc(compiler_t *comp, scope_t *this_scope, int n_dict_params, int n_default_params) { // make closed over variables, if any // ensure they are closed over in the order defined in the outer scope (mainly to agree with CPython) int nfree = 0; if (comp->scope_cur->kind != SCOPE_MODULE) { for (int i = 0; i < comp->scope_cur->id_info_len; i++) { id_info_t *id = &comp->scope_cur->id_info[i]; if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) { for (int j = 0; j < this_scope->id_info_len; j++) { id_info_t *id2 = &this_scope->id_info[j]; if (id2->kind == ID_INFO_KIND_FREE && id->qstr == id2->qstr) { #if MICROPY_EMIT_CPYTHON EMIT_ARG(load_closure, id->qstr, id->local_num); #else // in Micro Python we load closures using LOAD_FAST EMIT_ARG(load_fast, id->qstr, id->local_num); #endif nfree += 1; } } } } } if (nfree > 0) { EMIT_ARG(build_tuple, nfree); } // make the function/closure if (nfree == 0) { EMIT_ARG(make_function, this_scope, n_dict_params, n_default_params); } else { EMIT_ARG(make_closure, this_scope, n_dict_params, n_default_params); } } void compile_funcdef_param(compiler_t *comp, mp_parse_node_t pn) { if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_typedargslist_name)) { mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; if (!MP_PARSE_NODE_IS_NULL(pns->nodes[2])) { // this parameter has a default value // in CPython, None (and True, False?) as default parameters are loaded with LOAD_NAME; don't understandy why if (comp->have_bare_star) { comp->param_pass_num_dict_params += 1; if (comp->param_pass == 1) { EMIT_ARG(load_const_id, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0])); compile_node(comp, pns->nodes[2]); } } else { comp->param_pass_num_default_params += 1; if (comp->param_pass == 2) { compile_node(comp, pns->nodes[2]); } } } } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_typedargslist_star)) { mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { // bare star comp->have_bare_star = true; } } } // leaves function object on stack // returns function name qstr compile_funcdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) { if (comp->pass == PASS_1) { // create a new scope for this function scope_t *s = scope_new_and_link(comp, SCOPE_FUNCTION, (mp_parse_node_t)pns, emit_options); // store the function scope so the compiling function can use it at each pass pns->nodes[4] = (mp_parse_node_t)s; } // save variables (probably don't need to do this, since we can't have nested definitions..?) bool old_have_bare_star = comp->have_bare_star; int old_param_pass = comp->param_pass; int old_param_pass_num_dict_params = comp->param_pass_num_dict_params; int old_param_pass_num_default_params = comp->param_pass_num_default_params; // compile default parameters comp->have_bare_star = false; comp->param_pass = 1; // pass 1 does any default parameters after bare star comp->param_pass_num_dict_params = 0; comp->param_pass_num_default_params = 0; apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_funcdef_param); comp->have_bare_star = false; comp->param_pass = 2; // pass 2 does any default parameters before bare star comp->param_pass_num_dict_params = 0; comp->param_pass_num_default_params = 0; apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_funcdef_param); // get the scope for this function scope_t *fscope = (scope_t*)pns->nodes[4]; // make the function close_over_variables_etc(comp, fscope, comp->param_pass_num_dict_params, comp->param_pass_num_default_params); // restore variables comp->have_bare_star = old_have_bare_star; comp->param_pass = old_param_pass; comp->param_pass_num_dict_params = old_param_pass_num_dict_params; comp->param_pass_num_default_params = old_param_pass_num_default_params; // return its name (the 'f' in "def f(...):") return fscope->simple_name; } // leaves class object on stack // returns class name qstr compile_classdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) { if (comp->pass == PASS_1) { // create a new scope for this class scope_t *s = scope_new_and_link(comp, SCOPE_CLASS, (mp_parse_node_t)pns, emit_options); // store the class scope so the compiling function can use it at each pass pns->nodes[3] = (mp_parse_node_t)s; } EMIT(load_build_class); // scope for this class scope_t *cscope = (scope_t*)pns->nodes[3]; // compile the class close_over_variables_etc(comp, cscope, 0, 0); // get its name EMIT_ARG(load_const_id, cscope->simple_name); // nodes[1] has parent classes, if any if (MP_PARSE_NODE_IS_NULL(pns->nodes[1])) { // no parent classes EMIT_ARG(call_function, 2, 0, false, false); } else { // have a parent class or classes // TODO what if we have, eg, *a or **a in the parent list? compile_node(comp, pns->nodes[1]); EMIT_ARG(call_function, 2 + list_len(pns->nodes[1], PN_arglist), 0, false, false); } // return its name (the 'C' in class C(...):") return cscope->simple_name; } // returns true if it was a built-in decorator (even if the built-in had an error) static bool compile_built_in_decorator(compiler_t *comp, int name_len, mp_parse_node_t *name_nodes, uint *emit_options) { if (MP_PARSE_NODE_LEAF_ARG(name_nodes[0]) != MP_QSTR_micropython) { return false; } if (name_len != 2) { printf("SyntaxError: invalid micropython decorator\n"); return true; } qstr attr = MP_PARSE_NODE_LEAF_ARG(name_nodes[1]); if (attr == MP_QSTR_byte_code) { *emit_options = EMIT_OPT_BYTE_CODE; #if MICROPY_EMIT_NATIVE } else if (attr == MP_QSTR_native) { *emit_options = EMIT_OPT_NATIVE_PYTHON; } else if (attr == MP_QSTR_viper) { *emit_options = EMIT_OPT_VIPER; #endif #if MICROPY_EMIT_INLINE_THUMB } else if (attr == MP_QSTR_asm_thumb) { *emit_options = EMIT_OPT_ASM_THUMB; #endif } else { printf("SyntaxError: invalid micropython decorator '%s'\n", qstr_str(attr)); } return true; } void compile_decorated(compiler_t *comp, mp_parse_node_struct_t *pns) { // get the list of decorators mp_parse_node_t *nodes; int n = list_get(&pns->nodes[0], PN_decorators, &nodes); // inherit emit options for this function/class definition uint emit_options = comp->scope_cur->emit_options; // compile each decorator int num_built_in_decorators = 0; for (int i = 0; i < n; i++) { assert(MP_PARSE_NODE_IS_STRUCT_KIND(nodes[i], PN_decorator)); // should be mp_parse_node_struct_t *pns_decorator = (mp_parse_node_struct_t*)nodes[i]; // nodes[0] contains the decorator function, which is a dotted name mp_parse_node_t *name_nodes; int name_len = list_get(&pns_decorator->nodes[0], PN_dotted_name, &name_nodes); // check for built-in decorators if (compile_built_in_decorator(comp, name_len, name_nodes, &emit_options)) { // this was a built-in num_built_in_decorators += 1; } else { // not a built-in, compile normally // compile the decorator function compile_node(comp, name_nodes[0]); for (int i = 1; i < name_len; i++) { assert(MP_PARSE_NODE_IS_ID(name_nodes[i])); // should be EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(name_nodes[i])); } // nodes[1] contains arguments to the decorator function, if any if (!MP_PARSE_NODE_IS_NULL(pns_decorator->nodes[1])) { // call the decorator function with the arguments in nodes[1] compile_node(comp, pns_decorator->nodes[1]); } } } // compile the body (funcdef or classdef) and get its name mp_parse_node_struct_t *pns_body = (mp_parse_node_struct_t*)pns->nodes[1]; qstr body_name = 0; if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_funcdef) { body_name = compile_funcdef_helper(comp, pns_body, emit_options); } else if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_classdef) { body_name = compile_classdef_helper(comp, pns_body, emit_options); } else { // shouldn't happen assert(0); } // call each decorator for (int i = 0; i < n - num_built_in_decorators; i++) { EMIT_ARG(call_function, 1, 0, false, false); } // store func/class object into name EMIT_ARG(store_id, body_name); } void compile_funcdef(compiler_t *comp, mp_parse_node_struct_t *pns) { qstr fname = compile_funcdef_helper(comp, pns, comp->scope_cur->emit_options); // store function object into function name EMIT_ARG(store_id, fname); } void c_del_stmt(compiler_t *comp, mp_parse_node_t pn) { if (MP_PARSE_NODE_IS_ID(pn)) { EMIT_ARG(delete_id, MP_PARSE_NODE_LEAF_ARG(pn)); } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_power)) { mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; compile_node(comp, pns->nodes[0]); // base of the power node if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) { mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1]; if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_power_trailers) { int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1); for (int i = 0; i < n - 1; i++) { compile_node(comp, pns1->nodes[i]); } assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1])); pns1 = (mp_parse_node_struct_t*)pns1->nodes[n - 1]; } if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_paren) { // SyntaxError: can't delete a function call assert(0); } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) { compile_node(comp, pns1->nodes[0]); EMIT(delete_subscr); } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) { assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0])); EMIT_ARG(delete_attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0])); } else { // shouldn't happen assert(0); } } else { // shouldn't happen assert(0); } if (!MP_PARSE_NODE_IS_NULL(pns->nodes[2])) { // SyntaxError, cannot delete assert(0); } } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_paren)) { pn = ((mp_parse_node_struct_t*)pn)->nodes[0]; if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_testlist_comp)) { mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; // TODO perhaps factorise testlist_comp code with other uses of PN_testlist_comp if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) { mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1]; if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_testlist_comp_3b) { // sequence of one item, with trailing comma assert(MP_PARSE_NODE_IS_NULL(pns1->nodes[0])); c_del_stmt(comp, pns->nodes[0]); } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_testlist_comp_3c) { // sequence of many items int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1); c_del_stmt(comp, pns->nodes[0]); for (int i = 0; i < n; i++) { c_del_stmt(comp, pns1->nodes[i]); } } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_comp_for) { // TODO not implemented; can't del comprehension? assert(0); } else { // sequence with 2 items goto sequence_with_2_items; } } else { // sequence with 2 items sequence_with_2_items: c_del_stmt(comp, pns->nodes[0]); c_del_stmt(comp, pns->nodes[1]); } } else { // tuple with 1 element c_del_stmt(comp, pn); } } else { // not implemented assert(0); } } void compile_del_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { apply_to_single_or_list(comp, pns->nodes[0], PN_exprlist, c_del_stmt); } void compile_break_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { if (comp->break_label == 0) { printf("ERROR: cannot break from here\n"); } EMIT_ARG(break_loop, comp->break_label, comp->cur_except_level - comp->break_continue_except_level); } void compile_continue_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { if (comp->continue_label == 0) { printf("ERROR: cannot continue from here\n"); } EMIT_ARG(continue_loop, comp->continue_label, comp->cur_except_level - comp->break_continue_except_level); } void compile_return_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { if (comp->scope_cur->kind != SCOPE_FUNCTION) { printf("SyntaxError: 'return' outside function\n"); comp->had_error = true; return; } if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { // no argument to 'return', so return None EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_test_if_expr)) { // special case when returning an if-expression; to match CPython optimisation mp_parse_node_struct_t *pns_test_if_expr = (mp_parse_node_struct_t*)pns->nodes[0]; mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t*)pns_test_if_expr->nodes[1]; int l_fail = comp_next_label(comp); c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition compile_node(comp, pns_test_if_expr->nodes[0]); // success value EMIT(return_value); EMIT_ARG(label_assign, l_fail); compile_node(comp, pns_test_if_else->nodes[1]); // failure value } else { compile_node(comp, pns->nodes[0]); } EMIT(return_value); } void compile_yield_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { compile_node(comp, pns->nodes[0]); EMIT(pop_top); } void compile_raise_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { // raise EMIT_ARG(raise_varargs, 0); } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_raise_stmt_arg)) { // raise x from y pns = (mp_parse_node_struct_t*)pns->nodes[0]; compile_node(comp, pns->nodes[0]); compile_node(comp, pns->nodes[1]); EMIT_ARG(raise_varargs, 2); } else { // raise x compile_node(comp, pns->nodes[0]); EMIT_ARG(raise_varargs, 1); } } // q1 holds the base, q2 the full name // eg a -> q1=q2=a // a.b.c -> q1=a, q2=a.b.c void do_import_name(compiler_t *comp, mp_parse_node_t pn, qstr *q1, qstr *q2) { bool is_as = false; if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_dotted_as_name)) { mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; // a name of the form x as y; unwrap it *q1 = MP_PARSE_NODE_LEAF_ARG(pns->nodes[1]); pn = pns->nodes[0]; is_as = true; } if (MP_PARSE_NODE_IS_ID(pn)) { // just a simple name *q2 = MP_PARSE_NODE_LEAF_ARG(pn); if (!is_as) { *q1 = *q2; } EMIT_ARG(import_name, *q2); } else if (MP_PARSE_NODE_IS_STRUCT(pn)) { mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dotted_name) { // a name of the form a.b.c if (!is_as) { *q1 = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); } int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); int len = n - 1; for (int i = 0; i < n; i++) { len += qstr_len(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i])); } byte *q_ptr; byte *str_dest = qstr_build_start(len, &q_ptr); for (int i = 0; i < n; i++) { if (i > 0) { *str_dest++ = '.'; } uint str_src_len; const byte *str_src = qstr_data(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]), &str_src_len); memcpy(str_dest, str_src, str_src_len); str_dest += str_src_len; } *q2 = qstr_build_end(q_ptr); EMIT_ARG(import_name, *q2); if (is_as) { for (int i = 1; i < n; i++) { EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(pns->nodes[i])); } } } else { // TODO not implemented assert(0); } } else { // TODO not implemented assert(0); } } void compile_dotted_as_name(compiler_t *comp, mp_parse_node_t pn) { EMIT_ARG(load_const_small_int, 0); // ?? EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); qstr q1, q2; do_import_name(comp, pn, &q1, &q2); EMIT_ARG(store_id, q1); } void compile_import_name(compiler_t *comp, mp_parse_node_struct_t *pns) { apply_to_single_or_list(comp, pns->nodes[0], PN_dotted_as_names, compile_dotted_as_name); } void compile_import_from(compiler_t *comp, mp_parse_node_struct_t *pns) { if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_STAR)) { EMIT_ARG(load_const_small_int, 0); // level 0 for __import__ // build the "fromlist" tuple #if MICROPY_EMIT_CPYTHON EMIT_ARG(load_const_verbatim_str, "('*',)"); #else EMIT_ARG(load_const_str, QSTR_FROM_STR_STATIC("*"), false); EMIT_ARG(build_tuple, 1); #endif // do the import qstr dummy_q, id1; do_import_name(comp, pns->nodes[0], &dummy_q, &id1); EMIT(import_star); } else { EMIT_ARG(load_const_small_int, 0); // level 0 for __import__ // build the "fromlist" tuple mp_parse_node_t *pn_nodes; int n = list_get(&pns->nodes[1], PN_import_as_names, &pn_nodes); #if MICROPY_EMIT_CPYTHON { vstr_t *vstr = vstr_new(); vstr_printf(vstr, "("); for (int i = 0; i < n; i++) { assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name)); mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pn_nodes[i]; qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id if (i > 0) { vstr_printf(vstr, ", "); } vstr_printf(vstr, "'"); uint len; const byte *str = qstr_data(id2, &len); vstr_add_strn(vstr, (const char*)str, len); vstr_printf(vstr, "'"); } if (n == 1) { vstr_printf(vstr, ","); } vstr_printf(vstr, ")"); EMIT_ARG(load_const_verbatim_str, vstr_str(vstr)); vstr_free(vstr); } #else for (int i = 0; i < n; i++) { assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name)); mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pn_nodes[i]; qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id EMIT_ARG(load_const_str, id2, false); } EMIT_ARG(build_tuple, n); #endif // do the import qstr dummy_q, id1; do_import_name(comp, pns->nodes[0], &dummy_q, &id1); for (int i = 0; i < n; i++) { assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name)); mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pn_nodes[i]; qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id EMIT_ARG(import_from, id2); if (MP_PARSE_NODE_IS_NULL(pns3->nodes[1])) { EMIT_ARG(store_id, id2); } else { EMIT_ARG(store_id, MP_PARSE_NODE_LEAF_ARG(pns3->nodes[1])); } } EMIT(pop_top); } } void compile_global_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { if (comp->pass == PASS_1) { if (MP_PARSE_NODE_IS_LEAF(pns->nodes[0])) { scope_declare_global(comp->scope_cur, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0])); } else { pns = (mp_parse_node_struct_t*)pns->nodes[0]; int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); for (int i = 0; i < num_nodes; i++) { scope_declare_global(comp->scope_cur, MP_PARSE_NODE_LEAF_ARG(pns->nodes[i])); } } } } void compile_nonlocal_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { if (comp->pass == PASS_1) { if (MP_PARSE_NODE_IS_LEAF(pns->nodes[0])) { scope_declare_nonlocal(comp->scope_cur, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0])); } else { pns = (mp_parse_node_struct_t*)pns->nodes[0]; int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); for (int i = 0; i < num_nodes; i++) { scope_declare_nonlocal(comp->scope_cur, MP_PARSE_NODE_LEAF_ARG(pns->nodes[i])); } } } } void compile_assert_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { int l_end = comp_next_label(comp); c_if_cond(comp, pns->nodes[0], true, l_end); EMIT_ARG(load_global, MP_QSTR_AssertionError); // we load_global instead of load_id, to be consistent with CPython if (!MP_PARSE_NODE_IS_NULL(pns->nodes[1])) { // assertion message compile_node(comp, pns->nodes[1]); EMIT_ARG(call_function, 1, 0, false, false); } EMIT_ARG(raise_varargs, 1); EMIT_ARG(label_assign, l_end); } void compile_if_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { // TODO proper and/or short circuiting int l_end = comp_next_label(comp); int l_fail = comp_next_label(comp); c_if_cond(comp, pns->nodes[0], false, l_fail); // if condition compile_node(comp, pns->nodes[1]); // if block //if (!(MP_PARSE_NODE_IS_NULL(pns->nodes[2]) && MP_PARSE_NODE_IS_NULL(pns->nodes[3]))) { // optimisation; doesn't align with CPython // jump over elif/else blocks if they exist if (!EMIT(last_emit_was_return_value)) { // simple optimisation to align with CPython EMIT_ARG(jump, l_end); } //} EMIT_ARG(label_assign, l_fail); if (!MP_PARSE_NODE_IS_NULL(pns->nodes[2])) { // compile elif blocks mp_parse_node_struct_t *pns_elif = (mp_parse_node_struct_t*)pns->nodes[2]; if (MP_PARSE_NODE_STRUCT_KIND(pns_elif) == PN_if_stmt_elif_list) { // multiple elif blocks int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns_elif); for (int i = 0; i < n; i++) { mp_parse_node_struct_t *pns_elif2 = (mp_parse_node_struct_t*)pns_elif->nodes[i]; l_fail = comp_next_label(comp); c_if_cond(comp, pns_elif2->nodes[0], false, l_fail); // elif condition compile_node(comp, pns_elif2->nodes[1]); // elif block if (!EMIT(last_emit_was_return_value)) { // simple optimisation to align with CPython EMIT_ARG(jump, l_end); } EMIT_ARG(label_assign, l_fail); } } else { // a single elif block l_fail = comp_next_label(comp); c_if_cond(comp, pns_elif->nodes[0], false, l_fail); // elif condition compile_node(comp, pns_elif->nodes[1]); // elif block if (!EMIT(last_emit_was_return_value)) { // simple optimisation to align with CPython EMIT_ARG(jump, l_end); } EMIT_ARG(label_assign, l_fail); } } // compile else block compile_node(comp, pns->nodes[3]); // can be null EMIT_ARG(label_assign, l_end); } #define START_BREAK_CONTINUE_BLOCK \ int old_break_label = comp->break_label; \ int old_continue_label = comp->continue_label; \ int break_label = comp_next_label(comp); \ int continue_label = comp_next_label(comp); \ comp->break_label = break_label; \ comp->continue_label = continue_label; \ comp->break_continue_except_level = comp->cur_except_level; #define END_BREAK_CONTINUE_BLOCK \ comp->break_label = old_break_label; \ comp->continue_label = old_continue_label; \ comp->break_continue_except_level = comp->cur_except_level; void compile_while_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { START_BREAK_CONTINUE_BLOCK // compared to CPython, we have an optimised version of while loops #if MICROPY_EMIT_CPYTHON int done_label = comp_next_label(comp); EMIT_ARG(setup_loop, break_label); EMIT_ARG(label_assign, continue_label); c_if_cond(comp, pns->nodes[0], false, done_label); // condition compile_node(comp, pns->nodes[1]); // body if (!EMIT(last_emit_was_return_value)) { EMIT_ARG(jump, continue_label); } EMIT_ARG(label_assign, done_label); // CPython does not emit POP_BLOCK if the condition was a constant; don't undertand why // this is a small hack to agree with CPython if (!node_is_const_true(pns->nodes[0])) { EMIT(pop_block); } #else int top_label = comp_next_label(comp); EMIT_ARG(jump, continue_label); EMIT_ARG(label_assign, top_label); compile_node(comp, pns->nodes[1]); // body EMIT_ARG(label_assign, continue_label); c_if_cond(comp, pns->nodes[0], true, top_label); // condition #endif // break/continue apply to outer loop (if any) in the else block END_BREAK_CONTINUE_BLOCK compile_node(comp, pns->nodes[2]); // else EMIT_ARG(label_assign, break_label); } // TODO preload end and step onto stack if they are not constants // TODO check if step is negative and do opposite test void compile_for_stmt_optimised_range(compiler_t *comp, mp_parse_node_t pn_var, mp_parse_node_t pn_start, mp_parse_node_t pn_end, mp_parse_node_t pn_step, mp_parse_node_t pn_body, mp_parse_node_t pn_else) { START_BREAK_CONTINUE_BLOCK int top_label = comp_next_label(comp); int entry_label = comp_next_label(comp); // compile: var = start compile_node(comp, pn_start); c_assign(comp, pn_var, ASSIGN_STORE); EMIT_ARG(jump, entry_label); EMIT_ARG(label_assign, top_label); // compile body compile_node(comp, pn_body); EMIT_ARG(label_assign, continue_label); // compile: var += step c_assign(comp, pn_var, ASSIGN_AUG_LOAD); compile_node(comp, pn_step); EMIT_ARG(binary_op, RT_BINARY_OP_INPLACE_ADD); c_assign(comp, pn_var, ASSIGN_AUG_STORE); EMIT_ARG(label_assign, entry_label); // compile: if var end: goto top compile_node(comp, pn_var); compile_node(comp, pn_end); if (MP_PARSE_NODE_LEAF_ARG(pn_step) >= 0) { EMIT_ARG(binary_op, RT_COMPARE_OP_LESS); } else { EMIT_ARG(binary_op, RT_COMPARE_OP_MORE); } EMIT_ARG(pop_jump_if_true, top_label); // break/continue apply to outer loop (if any) in the else block END_BREAK_CONTINUE_BLOCK compile_node(comp, pn_else); EMIT_ARG(label_assign, break_label); } void compile_for_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { #if !MICROPY_EMIT_CPYTHON // this bit optimises: for in range(...), turning it into an explicitly incremented variable // this is actually slower, but uses no heap memory // for viper it will be much, much faster if (/*comp->scope_cur->emit_options == EMIT_OPT_VIPER &&*/ MP_PARSE_NODE_IS_ID(pns->nodes[0]) && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_power)) { mp_parse_node_struct_t *pns_it = (mp_parse_node_struct_t*)pns->nodes[1]; if (MP_PARSE_NODE_IS_ID(pns_it->nodes[0]) && MP_PARSE_NODE_LEAF_ARG(pns_it->nodes[0]) == MP_QSTR_range && MP_PARSE_NODE_IS_STRUCT_KIND(pns_it->nodes[1], PN_trailer_paren) && MP_PARSE_NODE_IS_NULL(pns_it->nodes[2])) { mp_parse_node_t pn_range_args = ((mp_parse_node_struct_t*)pns_it->nodes[1])->nodes[0]; mp_parse_node_t *args; int n_args = list_get(&pn_range_args, PN_arglist, &args); mp_parse_node_t pn_range_start; mp_parse_node_t pn_range_end; mp_parse_node_t pn_range_step; bool optimize = false; if (1 <= n_args && n_args <= 3) { optimize = true; if (n_args == 1) { pn_range_start = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, 0); pn_range_end = args[0]; pn_range_step = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, 1); } else if (n_args == 2) { pn_range_start = args[0]; pn_range_end = args[1]; pn_range_step = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, 1); } else { pn_range_start = args[0]; pn_range_end = args[1]; pn_range_step = args[2]; // We need to know sign of step. This is possible only if it's constant if (!MP_PARSE_NODE_IS_SMALL_INT(pn_range_step)) { optimize = false; } } } if (optimize) { compile_for_stmt_optimised_range(comp, pns->nodes[0], pn_range_start, pn_range_end, pn_range_step, pns->nodes[2], pns->nodes[3]); return; } } } #endif START_BREAK_CONTINUE_BLOCK int pop_label = comp_next_label(comp); int end_label = comp_next_label(comp); // I don't think our implementation needs SETUP_LOOP/POP_BLOCK for for-statements #if MICROPY_EMIT_CPYTHON EMIT_ARG(setup_loop, end_label); #endif compile_node(comp, pns->nodes[1]); // iterator EMIT(get_iter); EMIT_ARG(label_assign, continue_label); EMIT_ARG(for_iter, pop_label); c_assign(comp, pns->nodes[0], ASSIGN_STORE); // variable compile_node(comp, pns->nodes[2]); // body if (!EMIT(last_emit_was_return_value)) { EMIT_ARG(jump, continue_label); } EMIT_ARG(label_assign, pop_label); EMIT(for_iter_end); // break/continue apply to outer loop (if any) in the else block END_BREAK_CONTINUE_BLOCK #if MICROPY_EMIT_CPYTHON EMIT(pop_block); #endif compile_node(comp, pns->nodes[3]); // else (not tested) EMIT_ARG(label_assign, break_label); EMIT_ARG(label_assign, end_label); } void compile_try_except(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_excepts, mp_parse_node_t pn_else) { // this function is a bit of a hack at the moment // don't understand how the stack works with exceptions, so we force it to return to the correct value // setup code int stack_size = EMIT(get_stack_size); int l1 = comp_next_label(comp); int success_label = comp_next_label(comp); EMIT_ARG(setup_except, l1); comp->cur_except_level += 1; compile_node(comp, pn_body); // body EMIT(pop_block); EMIT_ARG(jump, success_label); EMIT_ARG(label_assign, l1); int l2 = comp_next_label(comp); for (int i = 0; i < n_except; i++) { assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_excepts[i], PN_try_stmt_except)); // should be mp_parse_node_struct_t *pns_except = (mp_parse_node_struct_t*)pn_excepts[i]; qstr qstr_exception_local = 0; int end_finally_label = comp_next_label(comp); if (MP_PARSE_NODE_IS_NULL(pns_except->nodes[0])) { // this is a catch all exception handler if (i + 1 != n_except) { printf("SyntaxError: default 'except:' must be last\n"); return; } } else { // this exception handler requires a match to a certain type of exception mp_parse_node_t pns_exception_expr = pns_except->nodes[0]; if (MP_PARSE_NODE_IS_STRUCT(pns_exception_expr)) { mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pns_exception_expr; if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_try_stmt_as_name) { // handler binds the exception to a local pns_exception_expr = pns3->nodes[0]; qstr_exception_local = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[1]); } } EMIT(dup_top); compile_node(comp, pns_exception_expr); EMIT_ARG(binary_op, RT_COMPARE_OP_EXCEPTION_MATCH); EMIT_ARG(pop_jump_if_false, end_finally_label); } EMIT(pop_top); if (qstr_exception_local == 0) { EMIT(pop_top); } else { EMIT_ARG(store_id, qstr_exception_local); } EMIT(pop_top); int l3 = 0; if (qstr_exception_local != 0) { l3 = comp_next_label(comp); EMIT_ARG(setup_finally, l3); comp->cur_except_level += 1; } compile_node(comp, pns_except->nodes[1]); if (qstr_exception_local != 0) { EMIT(pop_block); } EMIT(pop_except); if (qstr_exception_local != 0) { EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT_ARG(label_assign, l3); EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT_ARG(store_id, qstr_exception_local); EMIT_ARG(delete_id, qstr_exception_local); comp->cur_except_level -= 1; EMIT(end_finally); } EMIT_ARG(jump, l2); EMIT_ARG(label_assign, end_finally_label); } comp->cur_except_level -= 1; EMIT(end_finally); EMIT_ARG(label_assign, success_label); compile_node(comp, pn_else); // else block, can be null EMIT_ARG(label_assign, l2); EMIT_ARG(set_stack_size, stack_size); } void compile_try_finally(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_except, mp_parse_node_t pn_else, mp_parse_node_t pn_finally) { // don't understand how the stack works with exceptions, so we force it to return to the correct value int stack_size = EMIT(get_stack_size); int l_finally_block = comp_next_label(comp); EMIT_ARG(setup_finally, l_finally_block); comp->cur_except_level += 1; if (n_except == 0) { assert(MP_PARSE_NODE_IS_NULL(pn_else)); compile_node(comp, pn_body); } else { compile_try_except(comp, pn_body, n_except, pn_except, pn_else); } EMIT(pop_block); EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT_ARG(label_assign, l_finally_block); compile_node(comp, pn_finally); comp->cur_except_level -= 1; EMIT(end_finally); EMIT_ARG(set_stack_size, stack_size); } void compile_try_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) { mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1]; if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_try_stmt_finally) { // just try-finally compile_try_finally(comp, pns->nodes[0], 0, NULL, MP_PARSE_NODE_NULL, pns2->nodes[0]); } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_try_stmt_except_and_more) { // try-except and possibly else and/or finally mp_parse_node_t *pn_excepts; int n_except = list_get(&pns2->nodes[0], PN_try_stmt_except_list, &pn_excepts); if (MP_PARSE_NODE_IS_NULL(pns2->nodes[2])) { // no finally compile_try_except(comp, pns->nodes[0], n_except, pn_excepts, pns2->nodes[1]); } else { // have finally compile_try_finally(comp, pns->nodes[0], n_except, pn_excepts, pns2->nodes[1], ((mp_parse_node_struct_t*)pns2->nodes[2])->nodes[0]); } } else { // just try-except mp_parse_node_t *pn_excepts; int n_except = list_get(&pns->nodes[1], PN_try_stmt_except_list, &pn_excepts); compile_try_except(comp, pns->nodes[0], n_except, pn_excepts, MP_PARSE_NODE_NULL); } } else { // shouldn't happen assert(0); } } void compile_with_stmt_helper(compiler_t *comp, int n, mp_parse_node_t *nodes, mp_parse_node_t body) { if (n == 0) { // no more pre-bits, compile the body of the with compile_node(comp, body); } else { int l_end = comp_next_label(comp); if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) { // this pre-bit is of the form "a as b" mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)nodes[0]; compile_node(comp, pns->nodes[0]); EMIT_ARG(setup_with, l_end); c_assign(comp, pns->nodes[1], ASSIGN_STORE); } else { // this pre-bit is just an expression compile_node(comp, nodes[0]); EMIT_ARG(setup_with, l_end); EMIT(pop_top); } // compile additional pre-bits and the body compile_with_stmt_helper(comp, n - 1, nodes + 1, body); // finish this with block EMIT(pop_block); EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT_ARG(label_assign, l_end); EMIT(with_cleanup); EMIT(end_finally); } } void compile_with_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { // get the nodes for the pre-bit of the with (the a as b, c as d, ... bit) mp_parse_node_t *nodes; int n = list_get(&pns->nodes[0], PN_with_stmt_list, &nodes); assert(n > 0); // compile in a nested fashion compile_with_stmt_helper(comp, n, nodes, pns->nodes[1]); } void compile_expr_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { if (MP_PARSE_NODE_IS_NULL(pns->nodes[1])) { if (comp->is_repl && comp->scope_cur->kind == SCOPE_MODULE) { // for REPL, evaluate then print the expression EMIT_ARG(load_id, MP_QSTR___repl_print__); compile_node(comp, pns->nodes[0]); EMIT_ARG(call_function, 1, 0, false, false); EMIT(pop_top); } else { // for non-REPL, evaluate then discard the expression if (MP_PARSE_NODE_IS_LEAF(pns->nodes[0]) && !MP_PARSE_NODE_IS_ID(pns->nodes[0])) { // do nothing with a lonely constant } else { compile_node(comp, pns->nodes[0]); // just an expression EMIT(pop_top); // discard last result since this is a statement and leaves nothing on the stack } } } else { mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1]; int kind = MP_PARSE_NODE_STRUCT_KIND(pns1); if (kind == PN_expr_stmt_augassign) { c_assign(comp, pns->nodes[0], ASSIGN_AUG_LOAD); // lhs load for aug assign compile_node(comp, pns1->nodes[1]); // rhs assert(MP_PARSE_NODE_IS_TOKEN(pns1->nodes[0])); // note that we don't really need to implement separate inplace ops, just normal binary ops will suffice switch (MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0])) { case MP_TOKEN_DEL_PIPE_EQUAL: EMIT_ARG(binary_op, RT_BINARY_OP_INPLACE_OR); break; case MP_TOKEN_DEL_CARET_EQUAL: EMIT_ARG(binary_op, RT_BINARY_OP_INPLACE_XOR); break; case MP_TOKEN_DEL_AMPERSAND_EQUAL: EMIT_ARG(binary_op, RT_BINARY_OP_INPLACE_AND); break; case MP_TOKEN_DEL_DBL_LESS_EQUAL: EMIT_ARG(binary_op, RT_BINARY_OP_INPLACE_LSHIFT); break; case MP_TOKEN_DEL_DBL_MORE_EQUAL: EMIT_ARG(binary_op, RT_BINARY_OP_INPLACE_RSHIFT); break; case MP_TOKEN_DEL_PLUS_EQUAL: EMIT_ARG(binary_op, RT_BINARY_OP_INPLACE_ADD); break; case MP_TOKEN_DEL_MINUS_EQUAL: EMIT_ARG(binary_op, RT_BINARY_OP_INPLACE_SUBTRACT); break; case MP_TOKEN_DEL_STAR_EQUAL: EMIT_ARG(binary_op, RT_BINARY_OP_INPLACE_MULTIPLY); break; case MP_TOKEN_DEL_DBL_SLASH_EQUAL: EMIT_ARG(binary_op, RT_BINARY_OP_INPLACE_FLOOR_DIVIDE); break; case MP_TOKEN_DEL_SLASH_EQUAL: EMIT_ARG(binary_op, RT_BINARY_OP_INPLACE_TRUE_DIVIDE); break; case MP_TOKEN_DEL_PERCENT_EQUAL: EMIT_ARG(binary_op, RT_BINARY_OP_INPLACE_MODULO); break; case MP_TOKEN_DEL_DBL_STAR_EQUAL: EMIT_ARG(binary_op, RT_BINARY_OP_INPLACE_POWER); break; default: assert(0); // shouldn't happen } c_assign(comp, pns->nodes[0], ASSIGN_AUG_STORE); // lhs store for aug assign } else if (kind == PN_expr_stmt_assign_list) { int rhs = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1) - 1; compile_node(comp, ((mp_parse_node_struct_t*)pns1->nodes[rhs])->nodes[0]); // rhs // following CPython, we store left-most first if (rhs > 0) { EMIT(dup_top); } c_assign(comp, pns->nodes[0], ASSIGN_STORE); // lhs store for (int i = 0; i < rhs; i++) { if (i + 1 < rhs) { EMIT(dup_top); } c_assign(comp, ((mp_parse_node_struct_t*)pns1->nodes[i])->nodes[0], ASSIGN_STORE); // middle store } } else if (kind == PN_expr_stmt_assign) { if (MP_PARSE_NODE_IS_STRUCT_KIND(pns1->nodes[0], PN_testlist_star_expr) && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr) && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns1->nodes[0]) == 2 && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[0]) == 2) { // optimisation for a, b = c, d; to match CPython's optimisation mp_parse_node_struct_t* pns10 = (mp_parse_node_struct_t*)pns1->nodes[0]; mp_parse_node_struct_t* pns0 = (mp_parse_node_struct_t*)pns->nodes[0]; compile_node(comp, pns10->nodes[0]); // rhs compile_node(comp, pns10->nodes[1]); // rhs EMIT(rot_two); c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns1->nodes[0], PN_testlist_star_expr) && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr) && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns1->nodes[0]) == 3 && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[0]) == 3) { // optimisation for a, b, c = d, e, f; to match CPython's optimisation mp_parse_node_struct_t* pns10 = (mp_parse_node_struct_t*)pns1->nodes[0]; mp_parse_node_struct_t* pns0 = (mp_parse_node_struct_t*)pns->nodes[0]; compile_node(comp, pns10->nodes[0]); // rhs compile_node(comp, pns10->nodes[1]); // rhs compile_node(comp, pns10->nodes[2]); // rhs EMIT(rot_three); EMIT(rot_two); c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store c_assign(comp, pns0->nodes[2], ASSIGN_STORE); // lhs store } else { compile_node(comp, pns1->nodes[0]); // rhs c_assign(comp, pns->nodes[0], ASSIGN_STORE); // lhs store } } else { // shouldn't happen assert(0); } } } void c_binary_op(compiler_t *comp, mp_parse_node_struct_t *pns, rt_binary_op_t binary_op) { int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); compile_node(comp, pns->nodes[0]); for (int i = 1; i < num_nodes; i += 1) { compile_node(comp, pns->nodes[i]); EMIT_ARG(binary_op, binary_op); } } void compile_test_if_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_test_if_else)); mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t*)pns->nodes[1]; int stack_size = EMIT(get_stack_size); int l_fail = comp_next_label(comp); int l_end = comp_next_label(comp); c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition compile_node(comp, pns->nodes[0]); // success value EMIT_ARG(jump, l_end); EMIT_ARG(label_assign, l_fail); EMIT_ARG(set_stack_size, stack_size); // force stack size reset compile_node(comp, pns_test_if_else->nodes[1]); // failure value EMIT_ARG(label_assign, l_end); } void compile_lambdef(compiler_t *comp, mp_parse_node_struct_t *pns) { // TODO default params etc for lambda; possibly just use funcdef code //mp_parse_node_t pn_params = pns->nodes[0]; //mp_parse_node_t pn_body = pns->nodes[1]; if (comp->pass == PASS_1) { // create a new scope for this lambda scope_t *s = scope_new_and_link(comp, SCOPE_LAMBDA, (mp_parse_node_t)pns, comp->scope_cur->emit_options); // store the lambda scope so the compiling function (this one) can use it at each pass pns->nodes[2] = (mp_parse_node_t)s; } // get the scope for this lambda scope_t *this_scope = (scope_t*)pns->nodes[2]; // make the lambda close_over_variables_etc(comp, this_scope, 0, 0); } void compile_or_test(compiler_t *comp, mp_parse_node_struct_t *pns) { int l_end = comp_next_label(comp); int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); for (int i = 0; i < n; i += 1) { compile_node(comp, pns->nodes[i]); if (i + 1 < n) { EMIT_ARG(jump_if_true_or_pop, l_end); } } EMIT_ARG(label_assign, l_end); } void compile_and_test(compiler_t *comp, mp_parse_node_struct_t *pns) { int l_end = comp_next_label(comp); int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); for (int i = 0; i < n; i += 1) { compile_node(comp, pns->nodes[i]); if (i + 1 < n) { EMIT_ARG(jump_if_false_or_pop, l_end); } } EMIT_ARG(label_assign, l_end); } void compile_not_test_2(compiler_t *comp, mp_parse_node_struct_t *pns) { compile_node(comp, pns->nodes[0]); #if MICROPY_EMIT_CPYTHON EMIT_ARG(unary_op, RT_UNARY_OP_NOT); #else // eliminate use of NOT byte code int l_load_false = comp_next_label(comp); int l_done = comp_next_label(comp); int stack_size = EMIT(get_stack_size); EMIT_ARG(pop_jump_if_true, l_load_false); EMIT_ARG(load_const_tok, MP_TOKEN_KW_TRUE); EMIT_ARG(jump, l_done); EMIT_ARG(label_assign, l_load_false); EMIT_ARG(load_const_tok, MP_TOKEN_KW_FALSE); EMIT_ARG(label_assign, l_done); EMIT_ARG(set_stack_size, stack_size); // force stack size since it counts 1 pop and 2 pushes statically, but really it's 1 pop and 1 push dynamically #endif } void compile_comparison(compiler_t *comp, mp_parse_node_struct_t *pns) { int stack_size = EMIT(get_stack_size); int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); compile_node(comp, pns->nodes[0]); bool multi = (num_nodes > 3); int l_fail = 0; if (multi) { l_fail = comp_next_label(comp); } for (int i = 1; i + 1 < num_nodes; i += 2) { compile_node(comp, pns->nodes[i + 1]); if (i + 2 < num_nodes) { EMIT(dup_top); EMIT(rot_three); } if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_LESS)) { EMIT_ARG(binary_op, RT_COMPARE_OP_LESS); } else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_MORE)) { EMIT_ARG(binary_op, RT_COMPARE_OP_MORE); } else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_DBL_EQUAL)) { EMIT_ARG(binary_op, RT_COMPARE_OP_EQUAL); } else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_LESS_EQUAL)) { EMIT_ARG(binary_op, RT_COMPARE_OP_LESS_EQUAL); } else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_MORE_EQUAL)) { EMIT_ARG(binary_op, RT_COMPARE_OP_MORE_EQUAL); } else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_NOT_EQUAL)) { EMIT_ARG(binary_op, RT_COMPARE_OP_NOT_EQUAL); } else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_KW_IN)) { EMIT_ARG(binary_op, RT_COMPARE_OP_IN); } else if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[i])) { mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[i]; int kind = MP_PARSE_NODE_STRUCT_KIND(pns2); if (kind == PN_comp_op_not_in) { EMIT_ARG(binary_op, RT_COMPARE_OP_NOT_IN); } else if (kind == PN_comp_op_is) { if (MP_PARSE_NODE_IS_NULL(pns2->nodes[0])) { EMIT_ARG(binary_op, RT_COMPARE_OP_IS); } else { EMIT_ARG(binary_op, RT_COMPARE_OP_IS_NOT); } } else { // shouldn't happen assert(0); } } else { // shouldn't happen assert(0); } if (i + 2 < num_nodes) { EMIT_ARG(jump_if_false_or_pop, l_fail); } } if (multi) { int l_end = comp_next_label(comp); EMIT_ARG(jump, l_end); EMIT_ARG(label_assign, l_fail); EMIT(rot_two); EMIT(pop_top); EMIT_ARG(label_assign, l_end); EMIT_ARG(set_stack_size, stack_size + 1); // force stack size } } void compile_star_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { // TODO assert(0); compile_node(comp, pns->nodes[0]); //EMIT_ARG(unary_op, "UNARY_STAR"); } void compile_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { c_binary_op(comp, pns, RT_BINARY_OP_OR); } void compile_xor_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { c_binary_op(comp, pns, RT_BINARY_OP_XOR); } void compile_and_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { c_binary_op(comp, pns, RT_BINARY_OP_AND); } void compile_shift_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); compile_node(comp, pns->nodes[0]); for (int i = 1; i + 1 < num_nodes; i += 2) { compile_node(comp, pns->nodes[i + 1]); if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_DBL_LESS)) { EMIT_ARG(binary_op, RT_BINARY_OP_LSHIFT); } else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_DBL_MORE)) { EMIT_ARG(binary_op, RT_BINARY_OP_RSHIFT); } else { // shouldn't happen assert(0); } } } void compile_arith_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); compile_node(comp, pns->nodes[0]); for (int i = 1; i + 1 < num_nodes; i += 2) { compile_node(comp, pns->nodes[i + 1]); if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_PLUS)) { EMIT_ARG(binary_op, RT_BINARY_OP_ADD); } else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_MINUS)) { EMIT_ARG(binary_op, RT_BINARY_OP_SUBTRACT); } else { // shouldn't happen assert(0); } } } void compile_term(compiler_t *comp, mp_parse_node_struct_t *pns) { int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); compile_node(comp, pns->nodes[0]); for (int i = 1; i + 1 < num_nodes; i += 2) { compile_node(comp, pns->nodes[i + 1]); if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_STAR)) { EMIT_ARG(binary_op, RT_BINARY_OP_MULTIPLY); } else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_DBL_SLASH)) { EMIT_ARG(binary_op, RT_BINARY_OP_FLOOR_DIVIDE); } else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_SLASH)) { EMIT_ARG(binary_op, RT_BINARY_OP_TRUE_DIVIDE); } else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_PERCENT)) { EMIT_ARG(binary_op, RT_BINARY_OP_MODULO); } else { // shouldn't happen assert(0); } } } void compile_factor_2(compiler_t *comp, mp_parse_node_struct_t *pns) { compile_node(comp, pns->nodes[1]); if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[0], MP_TOKEN_OP_PLUS)) { EMIT_ARG(unary_op, RT_UNARY_OP_POSITIVE); } else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[0], MP_TOKEN_OP_MINUS)) { EMIT_ARG(unary_op, RT_UNARY_OP_NEGATIVE); } else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[0], MP_TOKEN_OP_TILDE)) { EMIT_ARG(unary_op, RT_UNARY_OP_INVERT); } else { // shouldn't happen assert(0); } } void compile_trailer_paren_helper(compiler_t *comp, mp_parse_node_struct_t *pns, bool is_method_call) { // function to call is on top of stack int old_n_arg_keyword = comp->n_arg_keyword; bool old_have_star_arg = comp->have_star_arg; bool old_have_dbl_star_arg = comp->have_dbl_star_arg; comp->n_arg_keyword = 0; comp->have_star_arg = false; comp->have_dbl_star_arg = false; compile_node(comp, pns->nodes[0]); // arguments to function call; can be null // compute number of positional arguments int n_positional = list_len(pns->nodes[0], PN_arglist) - comp->n_arg_keyword; if (comp->have_star_arg) { n_positional -= 1; } if (comp->have_dbl_star_arg) { n_positional -= 1; } if (is_method_call) { EMIT_ARG(call_method, n_positional, comp->n_arg_keyword, comp->have_star_arg, comp->have_dbl_star_arg); } else { EMIT_ARG(call_function, n_positional, comp->n_arg_keyword, comp->have_star_arg, comp->have_dbl_star_arg); } comp->n_arg_keyword = old_n_arg_keyword; comp->have_star_arg = old_have_star_arg; comp->have_dbl_star_arg = old_have_dbl_star_arg; } void compile_power_trailers(compiler_t *comp, mp_parse_node_struct_t *pns) { int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); for (int i = 0; i < num_nodes; i++) { if (i + 1 < num_nodes && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[i], PN_trailer_period) && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[i + 1], PN_trailer_paren)) { // optimisation for method calls a.f(...), following PyPy mp_parse_node_struct_t *pns_period = (mp_parse_node_struct_t*)pns->nodes[i]; mp_parse_node_struct_t *pns_paren = (mp_parse_node_struct_t*)pns->nodes[i + 1]; EMIT_ARG(load_method, MP_PARSE_NODE_LEAF_ARG(pns_period->nodes[0])); // get the method compile_trailer_paren_helper(comp, pns_paren, true); i += 1; } else { compile_node(comp, pns->nodes[i]); } } } void compile_power_dbl_star(compiler_t *comp, mp_parse_node_struct_t *pns) { compile_node(comp, pns->nodes[0]); EMIT_ARG(binary_op, RT_BINARY_OP_POWER); } void compile_atom_string(compiler_t *comp, mp_parse_node_struct_t *pns) { // a list of strings // check type of list (string or bytes) and count total number of bytes int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); int n_bytes = 0; int string_kind = MP_PARSE_NODE_NULL; for (int i = 0; i < n; i++) { assert(MP_PARSE_NODE_IS_LEAF(pns->nodes[i])); int pn_kind = MP_PARSE_NODE_LEAF_KIND(pns->nodes[i]); assert(pn_kind == MP_PARSE_NODE_STRING || pn_kind == MP_PARSE_NODE_BYTES); if (i == 0) { string_kind = pn_kind; } else if (pn_kind != string_kind) { printf("SyntaxError: cannot mix bytes and nonbytes literals\n"); return; } n_bytes += qstr_len(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i])); } // concatenate string/bytes byte *q_ptr; byte *s_dest = qstr_build_start(n_bytes, &q_ptr); for (int i = 0; i < n; i++) { uint s_len; const byte *s = qstr_data(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]), &s_len); memcpy(s_dest, s, s_len); s_dest += s_len; } qstr q = qstr_build_end(q_ptr); EMIT_ARG(load_const_str, q, string_kind == MP_PARSE_NODE_BYTES); } // pns needs to have 2 nodes, first is lhs of comprehension, second is PN_comp_for node void compile_comprehension(compiler_t *comp, mp_parse_node_struct_t *pns, scope_kind_t kind) { assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2); assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for)); mp_parse_node_struct_t *pns_comp_for = (mp_parse_node_struct_t*)pns->nodes[1]; if (comp->pass == PASS_1) { // create a new scope for this comprehension scope_t *s = scope_new_and_link(comp, kind, (mp_parse_node_t)pns, comp->scope_cur->emit_options); // store the comprehension scope so the compiling function (this one) can use it at each pass pns_comp_for->nodes[3] = (mp_parse_node_t)s; } // get the scope for this comprehension scope_t *this_scope = (scope_t*)pns_comp_for->nodes[3]; // compile the comprehension close_over_variables_etc(comp, this_scope, 0, 0); compile_node(comp, pns_comp_for->nodes[1]); // source of the iterator EMIT(get_iter); EMIT_ARG(call_function, 1, 0, false, false); } void compile_atom_paren(compiler_t *comp, mp_parse_node_struct_t *pns) { if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { // an empty tuple c_tuple(comp, MP_PARSE_NODE_NULL, NULL); } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) { pns = (mp_parse_node_struct_t*)pns->nodes[0]; assert(!MP_PARSE_NODE_IS_NULL(pns->nodes[1])); if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) { mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1]; if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3b) { // tuple of one item, with trailing comma assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[0])); c_tuple(comp, pns->nodes[0], NULL); } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3c) { // tuple of many items c_tuple(comp, pns->nodes[0], pns2); } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_comp_for) { // generator expression compile_comprehension(comp, pns, SCOPE_GEN_EXPR); } else { // tuple with 2 items goto tuple_with_2_items; } } else { // tuple with 2 items tuple_with_2_items: c_tuple(comp, MP_PARSE_NODE_NULL, pns); } } else { // parenthesis around a single item, is just that item compile_node(comp, pns->nodes[0]); } } void compile_atom_bracket(compiler_t *comp, mp_parse_node_struct_t *pns) { if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { // empty list EMIT_ARG(build_list, 0); } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) { mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[0]; if (MP_PARSE_NODE_IS_STRUCT(pns2->nodes[1])) { mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pns2->nodes[1]; if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_testlist_comp_3b) { // list of one item, with trailing comma assert(MP_PARSE_NODE_IS_NULL(pns3->nodes[0])); compile_node(comp, pns2->nodes[0]); EMIT_ARG(build_list, 1); } else if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_testlist_comp_3c) { // list of many items compile_node(comp, pns2->nodes[0]); compile_generic_all_nodes(comp, pns3); EMIT_ARG(build_list, 1 + MP_PARSE_NODE_STRUCT_NUM_NODES(pns3)); } else if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_comp_for) { // list comprehension compile_comprehension(comp, pns2, SCOPE_LIST_COMP); } else { // list with 2 items goto list_with_2_items; } } else { // list with 2 items list_with_2_items: compile_node(comp, pns2->nodes[0]); compile_node(comp, pns2->nodes[1]); EMIT_ARG(build_list, 2); } } else { // list with 1 item compile_node(comp, pns->nodes[0]); EMIT_ARG(build_list, 1); } } void compile_atom_brace(compiler_t *comp, mp_parse_node_struct_t *pns) { mp_parse_node_t pn = pns->nodes[0]; if (MP_PARSE_NODE_IS_NULL(pn)) { // empty dict EMIT_ARG(build_map, 0); } else if (MP_PARSE_NODE_IS_STRUCT(pn)) { pns = (mp_parse_node_struct_t*)pn; if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker_item) { // dict with one element EMIT_ARG(build_map, 1); compile_node(comp, pn); EMIT(store_map); } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker) { assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should succeed mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1]; if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_dictorsetmaker_list) { // dict/set with multiple elements // get tail elements (2nd, 3rd, ...) mp_parse_node_t *nodes; int n = list_get(&pns1->nodes[0], PN_dictorsetmaker_list2, &nodes); // first element sets whether it's a dict or set bool is_dict; if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_dictorsetmaker_item)) { // a dictionary EMIT_ARG(build_map, 1 + n); compile_node(comp, pns->nodes[0]); EMIT(store_map); is_dict = true; } else { // a set compile_node(comp, pns->nodes[0]); // 1st value of set is_dict = false; } // process rest of elements for (int i = 0; i < n; i++) { mp_parse_node_t pn = nodes[i]; bool is_key_value = MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_dictorsetmaker_item); compile_node(comp, pn); if (is_dict) { if (!is_key_value) { printf("SyntaxError?: expecting key:value for dictionary"); return; } EMIT(store_map); } else { if (is_key_value) { printf("SyntaxError?: expecting just a value for set"); return; } } } // if it's a set, build it if (!is_dict) { EMIT_ARG(build_set, 1 + n); } } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_comp_for) { // dict/set comprehension if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_dictorsetmaker_item)) { // a dictionary comprehension compile_comprehension(comp, pns, SCOPE_DICT_COMP); } else { // a set comprehension compile_comprehension(comp, pns, SCOPE_SET_COMP); } } else { // shouldn't happen assert(0); } } else { // set with one element goto set_with_one_element; } } else { // set with one element set_with_one_element: compile_node(comp, pn); EMIT_ARG(build_set, 1); } } void compile_trailer_paren(compiler_t *comp, mp_parse_node_struct_t *pns) { compile_trailer_paren_helper(comp, pns, false); } void compile_trailer_bracket(compiler_t *comp, mp_parse_node_struct_t *pns) { // object who's index we want is on top of stack compile_node(comp, pns->nodes[0]); // the index EMIT_ARG(binary_op, RT_BINARY_OP_SUBSCR); } void compile_trailer_period(compiler_t *comp, mp_parse_node_struct_t *pns) { // object who's attribute we want is on top of stack EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0])); // attribute to get } void compile_subscript_3_helper(compiler_t *comp, mp_parse_node_struct_t *pns) { assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3); // should always be mp_parse_node_t pn = pns->nodes[0]; if (MP_PARSE_NODE_IS_NULL(pn)) { // [?:] EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT_ARG(build_slice, 2); } else if (MP_PARSE_NODE_IS_STRUCT(pn)) { pns = (mp_parse_node_struct_t*)pn; if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3c) { EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); pn = pns->nodes[0]; if (MP_PARSE_NODE_IS_NULL(pn)) { // [?::] EMIT_ARG(build_slice, 2); } else { // [?::x] compile_node(comp, pn); EMIT_ARG(build_slice, 3); } } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3d) { compile_node(comp, pns->nodes[0]); assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be pns = (mp_parse_node_struct_t*)pns->nodes[1]; assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_sliceop); // should always be if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { // [?:x:] EMIT_ARG(build_slice, 2); } else { // [?:x:x] compile_node(comp, pns->nodes[0]); EMIT_ARG(build_slice, 3); } } else { // [?:x] compile_node(comp, pn); EMIT_ARG(build_slice, 2); } } else { // [?:x] compile_node(comp, pn); EMIT_ARG(build_slice, 2); } } void compile_subscript_2(compiler_t *comp, mp_parse_node_struct_t *pns) { compile_node(comp, pns->nodes[0]); // start of slice assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be compile_subscript_3_helper(comp, (mp_parse_node_struct_t*)pns->nodes[1]); } void compile_subscript_3(compiler_t *comp, mp_parse_node_struct_t *pns) { EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); compile_subscript_3_helper(comp, pns); } void compile_dictorsetmaker_item(compiler_t *comp, mp_parse_node_struct_t *pns) { // if this is called then we are compiling a dict key:value pair compile_node(comp, pns->nodes[1]); // value compile_node(comp, pns->nodes[0]); // key } void compile_classdef(compiler_t *comp, mp_parse_node_struct_t *pns) { qstr cname = compile_classdef_helper(comp, pns, comp->scope_cur->emit_options); // store class object into class name EMIT_ARG(store_id, cname); } void compile_arglist_star(compiler_t *comp, mp_parse_node_struct_t *pns) { if (comp->have_star_arg) { printf("SyntaxError?: can't have multiple *x\n"); return; } comp->have_star_arg = true; compile_node(comp, pns->nodes[0]); } void compile_arglist_dbl_star(compiler_t *comp, mp_parse_node_struct_t *pns) { if (comp->have_dbl_star_arg) { printf("SyntaxError?: can't have multiple **x\n"); return; } comp->have_dbl_star_arg = true; compile_node(comp, pns->nodes[0]); } void compile_argument(compiler_t *comp, mp_parse_node_struct_t *pns) { assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1]; if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_argument_3) { if (!MP_PARSE_NODE_IS_ID(pns->nodes[0])) { printf("SyntaxError?: lhs of keyword argument must be an id\n"); return; } EMIT_ARG(load_const_id, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0])); compile_node(comp, pns2->nodes[0]); comp->n_arg_keyword += 1; } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_comp_for) { compile_comprehension(comp, pns, SCOPE_GEN_EXPR); } else { // shouldn't happen assert(0); } } void compile_yield_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { if (comp->scope_cur->kind != SCOPE_FUNCTION) { printf("SyntaxError: 'yield' outside function\n"); return; } if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT(yield_value); } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_yield_arg_from)) { pns = (mp_parse_node_struct_t*)pns->nodes[0]; compile_node(comp, pns->nodes[0]); EMIT(get_iter); EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT(yield_from); } else { compile_node(comp, pns->nodes[0]); EMIT(yield_value); } } typedef void (*compile_function_t)(compiler_t*, mp_parse_node_struct_t*); static compile_function_t compile_function[] = { NULL, #define nc NULL #define c(f) compile_##f #define DEF_RULE(rule, comp, kind, arg...) comp, #include "grammar.h" #undef nc #undef c #undef DEF_RULE }; void compile_node(compiler_t *comp, mp_parse_node_t pn) { if (MP_PARSE_NODE_IS_NULL(pn)) { // pass } else if (MP_PARSE_NODE_IS_LEAF(pn)) { machine_int_t arg = MP_PARSE_NODE_LEAF_ARG(pn); switch (MP_PARSE_NODE_LEAF_KIND(pn)) { case MP_PARSE_NODE_ID: EMIT_ARG(load_id, arg); break; case MP_PARSE_NODE_SMALL_INT: EMIT_ARG(load_const_small_int, arg); break; case MP_PARSE_NODE_INTEGER: EMIT_ARG(load_const_int, arg); break; case MP_PARSE_NODE_DECIMAL: EMIT_ARG(load_const_dec, arg); break; case MP_PARSE_NODE_STRING: EMIT_ARG(load_const_str, arg, false); break; case MP_PARSE_NODE_BYTES: EMIT_ARG(load_const_str, arg, true); break; case MP_PARSE_NODE_TOKEN: if (arg == MP_TOKEN_NEWLINE) { // this can occur when file_input lets through a NEWLINE (eg if file starts with a newline) // or when single_input lets through a NEWLINE (user enters a blank line) // do nothing } else { EMIT_ARG(load_const_tok, arg); } break; default: assert(0); } } else { mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; EMIT_ARG(set_line_number, pns->source_line); compile_function_t f = compile_function[MP_PARSE_NODE_STRUCT_KIND(pns)]; if (f == NULL) { printf("node %u cannot be compiled\n", (uint)MP_PARSE_NODE_STRUCT_KIND(pns)); #if MICROPY_DEBUG_PRINTERS mp_parse_node_print(pn, 0); #endif assert(0); } else { f(comp, pns); } } } void compile_scope_func_lambda_param(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_name, pn_kind_t pn_star, pn_kind_t pn_dbl_star, bool allow_annotations) { // TODO verify that *k and **k are last etc qstr param_name = 0; mp_parse_node_t pn_annotation = MP_PARSE_NODE_NULL; if (MP_PARSE_NODE_IS_ID(pn)) { param_name = MP_PARSE_NODE_LEAF_ARG(pn); if (comp->have_bare_star) { // comes after a bare star, so doesn't count as a parameter } else { comp->scope_cur->num_params += 1; } } else { assert(MP_PARSE_NODE_IS_STRUCT(pn)); mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_name) { param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); //int node_index = 1; unused if (allow_annotations) { if (!MP_PARSE_NODE_IS_NULL(pns->nodes[1])) { // this parameter has an annotation pn_annotation = pns->nodes[1]; } //node_index = 2; unused } /* this is obsolete now that num dict/default params are calculated in compile_funcdef_param if (!MP_PARSE_NODE_IS_NULL(pns->nodes[node_index])) { // this parameter has a default value if (comp->have_bare_star) { comp->scope_cur->num_dict_params += 1; } else { comp->scope_cur->num_default_params += 1; } } */ if (comp->have_bare_star) { // comes after a bare star, so doesn't count as a parameter } else { comp->scope_cur->num_params += 1; } } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_star) { if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { // bare star // TODO see http://www.python.org/dev/peps/pep-3102/ comp->have_bare_star = true; //assert(comp->scope_cur->num_dict_params == 0); } else if (MP_PARSE_NODE_IS_ID(pns->nodes[0])) { // named star comp->scope_cur->flags |= SCOPE_FLAG_VARARGS; param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); } else if (allow_annotations && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_tfpdef)) { // named star with annotation comp->scope_cur->flags |= SCOPE_FLAG_VARARGS; pns = (mp_parse_node_struct_t*)pns->nodes[0]; param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); pn_annotation = pns->nodes[1]; } else { // shouldn't happen assert(0); } } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_dbl_star) { param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); if (allow_annotations && !MP_PARSE_NODE_IS_NULL(pns->nodes[1])) { // this parameter has an annotation pn_annotation = pns->nodes[1]; } comp->scope_cur->flags |= SCOPE_FLAG_VARKEYWORDS; } else { // TODO anything to implement? assert(0); } } if (param_name != 0) { if (!MP_PARSE_NODE_IS_NULL(pn_annotation)) { // TODO this parameter has an annotation } bool added; id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, param_name, &added); if (!added) { printf("SyntaxError?: same name used for parameter; %s\n", qstr_str(param_name)); return; } id_info->param = true; id_info->kind = ID_INFO_KIND_LOCAL; } } void compile_scope_func_param(compiler_t *comp, mp_parse_node_t pn) { compile_scope_func_lambda_param(comp, pn, PN_typedargslist_name, PN_typedargslist_star, PN_typedargslist_dbl_star, true); } void compile_scope_lambda_param(compiler_t *comp, mp_parse_node_t pn) { compile_scope_func_lambda_param(comp, pn, PN_varargslist_name, PN_varargslist_star, PN_varargslist_dbl_star, false); } void compile_scope_comp_iter(compiler_t *comp, mp_parse_node_t pn_iter, mp_parse_node_t pn_inner_expr, int l_top, int for_depth) { tail_recursion: if (MP_PARSE_NODE_IS_NULL(pn_iter)) { // no more nested if/for; compile inner expression compile_node(comp, pn_inner_expr); if (comp->scope_cur->kind == SCOPE_LIST_COMP) { EMIT_ARG(list_append, for_depth + 2); } else if (comp->scope_cur->kind == SCOPE_DICT_COMP) { EMIT_ARG(map_add, for_depth + 2); } else if (comp->scope_cur->kind == SCOPE_SET_COMP) { EMIT_ARG(set_add, for_depth + 2); } else { EMIT(yield_value); EMIT(pop_top); } } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn_iter, PN_comp_if)) { // if condition mp_parse_node_struct_t *pns_comp_if = (mp_parse_node_struct_t*)pn_iter; c_if_cond(comp, pns_comp_if->nodes[0], false, l_top); pn_iter = pns_comp_if->nodes[1]; goto tail_recursion; } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn_iter, PN_comp_for)) { // for loop mp_parse_node_struct_t *pns_comp_for2 = (mp_parse_node_struct_t*)pn_iter; compile_node(comp, pns_comp_for2->nodes[1]); int l_end2 = comp_next_label(comp); int l_top2 = comp_next_label(comp); EMIT(get_iter); EMIT_ARG(label_assign, l_top2); EMIT_ARG(for_iter, l_end2); c_assign(comp, pns_comp_for2->nodes[0], ASSIGN_STORE); compile_scope_comp_iter(comp, pns_comp_for2->nodes[2], pn_inner_expr, l_top2, for_depth + 1); EMIT_ARG(jump, l_top2); EMIT_ARG(label_assign, l_end2); EMIT(for_iter_end); } else { // shouldn't happen assert(0); } } void check_for_doc_string(compiler_t *comp, mp_parse_node_t pn) { // see http://www.python.org/dev/peps/pep-0257/ // look for the first statement if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) { // a statement; fall through } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_file_input_2)) { // file input; find the first non-newline node mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); for (int i = 0; i < num_nodes; i++) { pn = pns->nodes[i]; if (!(MP_PARSE_NODE_IS_LEAF(pn) && MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN && MP_PARSE_NODE_LEAF_ARG(pn) == MP_TOKEN_NEWLINE)) { // not a newline, so this is the first statement; finish search break; } } // if we didn't find a non-newline then it's okay to fall through; pn will be a newline and so doc-string test below will fail gracefully } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_suite_block_stmts)) { // a list of statements; get the first one pn = ((mp_parse_node_struct_t*)pn)->nodes[0]; } else { return; } // check the first statement for a doc string if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) { mp_parse_node_struct_t* pns = (mp_parse_node_struct_t*)pn; if (MP_PARSE_NODE_IS_LEAF(pns->nodes[0])) { int kind = MP_PARSE_NODE_LEAF_KIND(pns->nodes[0]); if (kind == MP_PARSE_NODE_STRING) { compile_node(comp, pns->nodes[0]); // a doc string // store doc string EMIT_ARG(store_id, MP_QSTR___doc__); } } } } void compile_scope(compiler_t *comp, scope_t *scope, pass_kind_t pass) { comp->pass = pass; comp->scope_cur = scope; comp->next_label = 1; EMIT_ARG(start_pass, pass, scope); if (comp->pass == PASS_1) { scope->stack_size = 0; } #if MICROPY_EMIT_CPYTHON if (comp->pass == PASS_3) { scope_print_info(scope); } #endif // compile if (MP_PARSE_NODE_IS_STRUCT_KIND(scope->pn, PN_eval_input)) { assert(scope->kind == SCOPE_MODULE); mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn; compile_node(comp, pns->nodes[0]); // compile the expression EMIT(return_value); } else if (scope->kind == SCOPE_MODULE) { if (!comp->is_repl) { check_for_doc_string(comp, scope->pn); } compile_node(comp, scope->pn); EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT(return_value); } else if (scope->kind == SCOPE_FUNCTION) { assert(MP_PARSE_NODE_IS_STRUCT(scope->pn)); mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn; assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef); // work out number of parameters, keywords and default parameters, and add them to the id_info array // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc) if (comp->pass == PASS_1) { comp->have_bare_star = false; apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_scope_func_param); } assert(MP_PARSE_NODE_IS_NULL(pns->nodes[2])); // 2 is something... compile_node(comp, pns->nodes[3]); // 3 is function body // emit return if it wasn't the last opcode if (!EMIT(last_emit_was_return_value)) { EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT(return_value); } } else if (scope->kind == SCOPE_LAMBDA) { assert(MP_PARSE_NODE_IS_STRUCT(scope->pn)); mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn; assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 3); // work out number of parameters, keywords and default parameters, and add them to the id_info array // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc) if (comp->pass == PASS_1) { comp->have_bare_star = false; apply_to_single_or_list(comp, pns->nodes[0], PN_varargslist, compile_scope_lambda_param); } compile_node(comp, pns->nodes[1]); // 1 is lambda body EMIT(return_value); } else if (scope->kind == SCOPE_LIST_COMP || scope->kind == SCOPE_DICT_COMP || scope->kind == SCOPE_SET_COMP || scope->kind == SCOPE_GEN_EXPR) { // a bit of a hack at the moment assert(MP_PARSE_NODE_IS_STRUCT(scope->pn)); mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn; assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2); assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for)); mp_parse_node_struct_t *pns_comp_for = (mp_parse_node_struct_t*)pns->nodes[1]; qstr qstr_arg = QSTR_FROM_STR_STATIC(".0"); if (comp->pass == PASS_1) { bool added; id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qstr_arg, &added); assert(added); id_info->kind = ID_INFO_KIND_LOCAL; scope->num_params = 1; } if (scope->kind == SCOPE_LIST_COMP) { EMIT_ARG(build_list, 0); } else if (scope->kind == SCOPE_DICT_COMP) { EMIT_ARG(build_map, 0); } else if (scope->kind == SCOPE_SET_COMP) { EMIT_ARG(build_set, 0); } int l_end = comp_next_label(comp); int l_top = comp_next_label(comp); EMIT_ARG(load_id, qstr_arg); EMIT_ARG(label_assign, l_top); EMIT_ARG(for_iter, l_end); c_assign(comp, pns_comp_for->nodes[0], ASSIGN_STORE); compile_scope_comp_iter(comp, pns_comp_for->nodes[2], pns->nodes[0], l_top, 0); EMIT_ARG(jump, l_top); EMIT_ARG(label_assign, l_end); EMIT(for_iter_end); if (scope->kind == SCOPE_GEN_EXPR) { EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); } EMIT(return_value); } else { assert(scope->kind == SCOPE_CLASS); assert(MP_PARSE_NODE_IS_STRUCT(scope->pn)); mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn; assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_classdef); if (comp->pass == PASS_1) { bool added; id_info_t *id_info = scope_find_or_add_id(scope, MP_QSTR___class__, &added); assert(added); id_info->kind = ID_INFO_KIND_LOCAL; id_info = scope_find_or_add_id(scope, MP_QSTR___locals__, &added); assert(added); id_info->kind = ID_INFO_KIND_LOCAL; id_info->param = true; scope->num_params = 1; // __locals__ is the parameter } EMIT_ARG(load_id, MP_QSTR___locals__); EMIT(store_locals); EMIT_ARG(load_id, MP_QSTR___name__); EMIT_ARG(store_id, MP_QSTR___module__); EMIT_ARG(load_const_id, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0])); // 0 is class name EMIT_ARG(store_id, MP_QSTR___qualname__); check_for_doc_string(comp, pns->nodes[2]); compile_node(comp, pns->nodes[2]); // 2 is class body id_info_t *id = scope_find(scope, MP_QSTR___class__); assert(id != NULL); if (id->kind == ID_INFO_KIND_LOCAL) { EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); } else { #if MICROPY_EMIT_CPYTHON EMIT_ARG(load_closure, MP_QSTR___class__, 0); // XXX check this is the correct local num #else EMIT_ARG(load_fast, MP_QSTR___class__, 0); // XXX check this is the correct local num #endif } EMIT(return_value); } EMIT(end_pass); } void compile_scope_inline_asm(compiler_t *comp, scope_t *scope, pass_kind_t pass) { comp->pass = pass; comp->scope_cur = scope; comp->next_label = 1; if (scope->kind != SCOPE_FUNCTION) { printf("Error: inline assembler must be a function\n"); return; } if (comp->pass > PASS_1) { EMIT_INLINE_ASM_ARG(start_pass, comp->pass, comp->scope_cur); } // get the function definition parse node assert(MP_PARSE_NODE_IS_STRUCT(scope->pn)); mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn; assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef); //qstr f_id = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); // function name // parameters are in pns->nodes[1] if (comp->pass == PASS_2) { mp_parse_node_t *pn_params; int n_params = list_get(&pns->nodes[1], PN_typedargslist, &pn_params); scope->num_params = EMIT_INLINE_ASM_ARG(count_params, n_params, pn_params); } assert(MP_PARSE_NODE_IS_NULL(pns->nodes[2])); // type mp_parse_node_t pn_body = pns->nodes[3]; // body mp_parse_node_t *nodes; int num = list_get(&pn_body, PN_suite_block_stmts, &nodes); /* if (comp->pass == PASS_3) { //printf("----\n"); scope_print_info(scope); } */ for (int i = 0; i < num; i++) { assert(MP_PARSE_NODE_IS_STRUCT(nodes[i])); mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)nodes[i]; assert(MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_expr_stmt); assert(MP_PARSE_NODE_IS_STRUCT(pns2->nodes[0])); assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[1])); pns2 = (mp_parse_node_struct_t*)pns2->nodes[0]; assert(MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_power); assert(MP_PARSE_NODE_IS_ID(pns2->nodes[0])); assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns2->nodes[1], PN_trailer_paren)); assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[2])); qstr op = MP_PARSE_NODE_LEAF_ARG(pns2->nodes[0]); pns2 = (mp_parse_node_struct_t*)pns2->nodes[1]; // PN_trailer_paren mp_parse_node_t *pn_arg; int n_args = list_get(&pns2->nodes[0], PN_arglist, &pn_arg); // emit instructions if (strcmp(qstr_str(op), "label") == 0) { if (!(n_args == 1 && MP_PARSE_NODE_IS_ID(pn_arg[0]))) { printf("SyntaxError: inline assembler 'label' requires 1 argument\n"); return; } int lab = comp_next_label(comp); if (pass > PASS_1) { EMIT_INLINE_ASM_ARG(label, lab, MP_PARSE_NODE_LEAF_ARG(pn_arg[0])); } } else { if (pass > PASS_1) { EMIT_INLINE_ASM_ARG(op, op, n_args, pn_arg); } } } if (comp->pass > PASS_1) { EMIT_INLINE_ASM(end_pass); } } void compile_scope_compute_things(compiler_t *comp, scope_t *scope) { // in functions, turn implicit globals into explicit globals // compute the index of each local scope->num_locals = 0; for (int i = 0; i < scope->id_info_len; i++) { id_info_t *id = &scope->id_info[i]; if (scope->kind == SCOPE_CLASS && id->qstr == MP_QSTR___class__) { // __class__ is not counted as a local; if it's used then it becomes a ID_INFO_KIND_CELL continue; } if (scope->kind >= SCOPE_FUNCTION && scope->kind <= SCOPE_GEN_EXPR && id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) { id->kind = ID_INFO_KIND_GLOBAL_EXPLICIT; } // note: params always count for 1 local, even if they are a cell if (id->param || id->kind == ID_INFO_KIND_LOCAL) { id->local_num = scope->num_locals; scope->num_locals += 1; } } // compute the index of cell vars (freevars[idx] in CPython) #if MICROPY_EMIT_CPYTHON int num_cell = 0; #endif for (int i = 0; i < scope->id_info_len; i++) { id_info_t *id = &scope->id_info[i]; #if MICROPY_EMIT_CPYTHON // in CPython the cells are numbered starting from 0 if (id->kind == ID_INFO_KIND_CELL) { id->local_num = num_cell; num_cell += 1; } #else // in Micro Python the cells come right after the fast locals // parameters are not counted here, since they remain at the start // of the locals, even if they are cell vars if (!id->param && id->kind == ID_INFO_KIND_CELL) { id->local_num = scope->num_locals; scope->num_locals += 1; } #endif } // compute the index of free vars (freevars[idx] in CPython) // make sure they are in the order of the parent scope if (scope->parent != NULL) { int num_free = 0; for (int i = 0; i < scope->parent->id_info_len; i++) { id_info_t *id = &scope->parent->id_info[i]; if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) { for (int j = 0; j < scope->id_info_len; j++) { id_info_t *id2 = &scope->id_info[j]; if (id2->kind == ID_INFO_KIND_FREE && id->qstr == id2->qstr) { assert(!id2->param); // free vars should not be params #if MICROPY_EMIT_CPYTHON // in CPython the frees are numbered after the cells id2->local_num = num_cell + num_free; #else // in Micro Python the frees come first, before the params id2->local_num = num_free; #endif num_free += 1; } } } } #if !MICROPY_EMIT_CPYTHON // in Micro Python shift all other locals after the free locals if (num_free > 0) { for (int i = 0; i < scope->id_info_len; i++) { id_info_t *id = &scope->id_info[i]; if (id->param || id->kind != ID_INFO_KIND_FREE) { id->local_num += num_free; } } scope->num_params += num_free; // free vars are counted as params for passing them into the function scope->num_locals += num_free; } #endif } // compute flags //scope->flags = 0; since we set some things in parameters if (scope->kind != SCOPE_MODULE) { scope->flags |= SCOPE_FLAG_NEWLOCALS; } if (scope->kind == SCOPE_FUNCTION || scope->kind == SCOPE_LAMBDA || scope->kind == SCOPE_LIST_COMP || scope->kind == SCOPE_DICT_COMP || scope->kind == SCOPE_SET_COMP || scope->kind == SCOPE_GEN_EXPR) { assert(scope->parent != NULL); scope->flags |= SCOPE_FLAG_OPTIMISED; // TODO possibly other ways it can be nested // Note that we don't actually use this information at the moment (for CPython compat only) if ((SCOPE_FUNCTION <= scope->parent->kind && scope->parent->kind <= SCOPE_SET_COMP) || (scope->parent->kind == SCOPE_CLASS && scope->parent->parent->kind == SCOPE_FUNCTION)) { scope->flags |= SCOPE_FLAG_NESTED; } } int num_free = 0; for (int i = 0; i < scope->id_info_len; i++) { id_info_t *id = &scope->id_info[i]; if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) { num_free += 1; } } if (num_free == 0) { scope->flags |= SCOPE_FLAG_NOFREE; } } mp_obj_t mp_compile(mp_parse_node_t pn, qstr source_file, bool is_repl) { compiler_t *comp = m_new(compiler_t, 1); comp->source_file = source_file; comp->is_repl = is_repl; comp->had_error = false; comp->break_label = 0; comp->continue_label = 0; comp->break_continue_except_level = 0; comp->cur_except_level = 0; comp->scope_head = NULL; comp->scope_cur = NULL; // optimise constants pn = fold_constants(pn); // set the outer scope scope_t *module_scope = scope_new_and_link(comp, SCOPE_MODULE, pn, EMIT_OPT_NONE); // compile pass 1 comp->emit = emit_pass1_new(MP_QSTR___class__); comp->emit_method_table = &emit_pass1_method_table; comp->emit_inline_asm = NULL; comp->emit_inline_asm_method_table = NULL; uint max_num_labels = 0; for (scope_t *s = comp->scope_head; s != NULL && !comp->had_error; s = s->next) { if (false) { #if MICROPY_EMIT_INLINE_THUMB } else if (s->emit_options == EMIT_OPT_ASM_THUMB) { compile_scope_inline_asm(comp, s, PASS_1); #endif } else { compile_scope(comp, s, PASS_1); } // update maximim number of labels needed if (comp->next_label > max_num_labels) { max_num_labels = comp->next_label; } } // compute some things related to scope and identifiers for (scope_t *s = comp->scope_head; s != NULL && !comp->had_error; s = s->next) { compile_scope_compute_things(comp, s); } // finish with pass 1 emit_pass1_free(comp->emit); // compile pass 2 and 3 #if !MICROPY_EMIT_CPYTHON emit_t *emit_bc = NULL; #if MICROPY_EMIT_NATIVE emit_t *emit_native = NULL; #endif #if MICROPY_EMIT_INLINE_THUMB emit_inline_asm_t *emit_inline_thumb = NULL; #endif #endif // !MICROPY_EMIT_CPYTHON for (scope_t *s = comp->scope_head; s != NULL && !comp->had_error; s = s->next) { if (false) { // dummy #if MICROPY_EMIT_INLINE_THUMB } else if (s->emit_options == EMIT_OPT_ASM_THUMB) { // inline assembly for thumb if (emit_inline_thumb == NULL) { emit_inline_thumb = emit_inline_thumb_new(max_num_labels); } comp->emit = NULL; comp->emit_method_table = NULL; comp->emit_inline_asm = emit_inline_thumb; comp->emit_inline_asm_method_table = &emit_inline_thumb_method_table; compile_scope_inline_asm(comp, s, PASS_2); compile_scope_inline_asm(comp, s, PASS_3); #endif } else { // choose the emit type #if MICROPY_EMIT_CPYTHON comp->emit = emit_cpython_new(max_num_labels); comp->emit_method_table = &emit_cpython_method_table; #else switch (s->emit_options) { #if MICROPY_EMIT_NATIVE case EMIT_OPT_NATIVE_PYTHON: case EMIT_OPT_VIPER: #if MICROPY_EMIT_X64 if (emit_native == NULL) { emit_native = emit_native_x64_new(max_num_labels); } comp->emit_method_table = &emit_native_x64_method_table; #elif MICROPY_EMIT_THUMB if (emit_native == NULL) { emit_native = emit_native_thumb_new(max_num_labels); } comp->emit_method_table = &emit_native_thumb_method_table; #endif comp->emit = emit_native; comp->emit_method_table->set_native_types(comp->emit, s->emit_options == EMIT_OPT_VIPER); break; #endif // MICROPY_EMIT_NATIVE default: if (emit_bc == NULL) { emit_bc = emit_bc_new(max_num_labels); } comp->emit = emit_bc; comp->emit_method_table = &emit_bc_method_table; break; } #endif // !MICROPY_EMIT_CPYTHON // compile pass 2 and pass 3 compile_scope(comp, s, PASS_2); compile_scope(comp, s, PASS_3); } } // free the emitters #if !MICROPY_EMIT_CPYTHON if (emit_bc != NULL) { emit_bc_free(emit_bc); } #if MICROPY_EMIT_NATIVE if (emit_native != NULL) { #if MICROPY_EMIT_X64 emit_native_x64_free(emit_native); #elif MICROPY_EMIT_THUMB emit_native_thumb_free(emit_native); #endif } #endif #if MICROPY_EMIT_INLINE_THUMB if (emit_inline_thumb != NULL) { emit_inline_thumb_free(emit_inline_thumb); } #endif #endif // !MICROPY_EMIT_CPYTHON // free the scopes uint unique_code_id = module_scope->unique_code_id; for (scope_t *s = module_scope; s;) { scope_t *next = s->next; scope_free(s); s = next; } // free the compiler bool had_error = comp->had_error; m_del_obj(compiler_t, comp); if (had_error) { // TODO return a proper error message return mp_const_none; } else { #if MICROPY_EMIT_CPYTHON // can't create code, so just return true (void)unique_code_id; // to suppress warning that unique_code_id is unused return mp_const_true; #else // return function that executes the outer module return rt_make_function_from_id(unique_code_id, MP_OBJ_NULL); #endif } }