// in principle, rt_xxx functions are called only by vm/native/viper and make assumptions about args // py_xxx functions are safer and can be called by anyone // note that rt_assign_xxx are called only from emit*, and maybe we can rename them to reflect this #include #include #include #include #include #include #include "nlr.h" #include "misc.h" #include "mpyconfig.h" #include "runtime.h" #include "bc.h" #include "map.h" #include "obj.h" #include "objprivate.h" #include "builtin.h" #if 0 // print debugging info #define DEBUG_PRINT (1) #define WRITE_CODE (1) #define DEBUG_printf(args...) printf(args) #define DEBUG_OP_printf(args...) printf(args) #else // don't print debugging info #define DEBUG_printf(args...) (void)0 #define DEBUG_OP_printf(args...) (void)0 #endif // TODO make these predefined so they don't take up RAM qstr rt_q_append; qstr rt_q_pop; qstr rt_q_sort; qstr rt_q_join; qstr rt_q_format; qstr rt_q___build_class__; qstr rt_q___next__; qstr rt_q_AttributeError; qstr rt_q_IndexError; qstr rt_q_KeyError; qstr rt_q_NameError; qstr rt_q_TypeError; qstr rt_q_SyntaxError; qstr rt_q_ValueError; py_obj_t py_const_none; py_obj_t py_const_false; py_obj_t py_const_true; py_obj_t py_const_stop_iteration; // locals and globals need to be pointers because they can be the same in outer module scope static py_map_t *map_locals; static py_map_t *map_globals; static py_map_t map_builtins; py_map_t *rt_get_map_locals(void) { return map_locals; } void rt_set_map_locals(py_map_t *m) { map_locals = m; } static bool fit_small_int(py_small_int_t o) { return true; } int rt_is_true(py_obj_t arg) { DEBUG_OP_printf("is true %p\n", arg); if (IS_SMALL_INT(arg)) { if (FROM_SMALL_INT(arg) == 0) { return 0; } else { return 1; } } else if (arg == py_const_none) { return 0; } else if (arg == py_const_false) { return 0; } else if (arg == py_const_true) { return 1; } else { assert(0); return 0; } } void vstr_printf_wrapper(void *env, const char *fmt, ...) { va_list args; va_start(args, fmt); vstr_vprintf(env, fmt, args); va_end(args); } py_obj_t rt_str_join(py_obj_t self_in, py_obj_t arg) { assert(IS_O(self_in, O_STR)); py_obj_base_t *self = self_in; int required_len = strlen(qstr_str(self->u_str)); // process arg, count required chars if (!IS_O(arg, O_TUPLE) && !IS_O(arg, O_LIST)) { goto bad_arg; } py_obj_base_t *tuple_list = arg; for (int i = 0; i < tuple_list->u_tuple_list.len; i++) { if (!IS_O(tuple_list->u_tuple_list.items[i], O_STR)) { goto bad_arg; } required_len += strlen(qstr_str(((py_obj_base_t*)tuple_list->u_tuple_list.items[i])->u_str)); } // make joined string char *joined_str = m_new(char, required_len + 1); joined_str[0] = 0; for (int i = 0; i < tuple_list->u_tuple_list.len; i++) { const char *s2 = qstr_str(((py_obj_base_t*)tuple_list->u_tuple_list.items[i])->u_str); if (i > 0) { strcat(joined_str, qstr_str(self->u_str)); } strcat(joined_str, s2); } return py_obj_new_str(qstr_from_str_take(joined_str)); bad_arg: nlr_jump(py_obj_new_exception_2(rt_q_TypeError, "?str.join expecting a list of str's", NULL, NULL)); } py_obj_t rt_str_format(int n_args, const py_obj_t *args) { assert(IS_O(args[0], O_STR)); py_obj_base_t *self = args[0]; const char *str = qstr_str(self->u_str); int arg_i = 1; vstr_t *vstr = vstr_new(); for (; *str; str++) { if (*str == '{') { str++; if (*str == '{') { vstr_add_char(vstr, '{'); } else if (*str == '}') { if (arg_i >= n_args) { nlr_jump(py_obj_new_exception_2(rt_q_IndexError, "tuple index out of range", NULL, NULL)); } py_obj_print_helper(vstr_printf_wrapper, vstr, args[arg_i]); arg_i++; } } else { vstr_add_char(vstr, *str); } } return py_obj_new_str(qstr_from_str_take(vstr->buf)); } uint get_index(py_obj_base_t *base, py_obj_t index) { // assumes base is O_TUPLE or O_LIST // TODO False and True are considered 0 and 1 for indexing purposes int len = base->u_tuple_list.len; if (IS_SMALL_INT(index)) { int i = FROM_SMALL_INT(index); if (i < 0) { i += len; } if (i < 0 || i >= len) { nlr_jump(py_obj_new_exception_2(rt_q_IndexError, "%s index out of range", py_obj_get_type_str(base), NULL)); } return i; } else { nlr_jump(py_obj_new_exception_2(rt_q_TypeError, "%s indices must be integers, not %s", py_obj_get_type_str(base), py_obj_get_type_str(index))); } } py_obj_t rt_list_append(py_obj_t self_in, py_obj_t arg) { assert(IS_O(self_in, O_LIST)); py_obj_base_t *self = self_in; if (self->u_tuple_list.len >= self->u_tuple_list.alloc) { self->u_tuple_list.alloc *= 2; self->u_tuple_list.items = m_renew(py_obj_t, self->u_tuple_list.items, self->u_tuple_list.alloc); } self->u_tuple_list.items[self->u_tuple_list.len++] = arg; return py_const_none; // return None, as per CPython } py_obj_t rt_list_pop(py_obj_t self_in, py_obj_t arg) { assert(IS_O(self_in, O_LIST)); py_obj_base_t *self = self_in; uint index = get_index(self, arg); py_obj_t ret = self->u_tuple_list.items[index]; self->u_tuple_list.len -= 1; memcpy(self->u_tuple_list.items + index, self->u_tuple_list.items + index + 1, (self->u_tuple_list.len - index) * sizeof(py_obj_t)); return ret; } // TODO make this conform to CPython's definition of sort static void py_quicksort(py_obj_t *head, py_obj_t *tail, py_obj_t key_fn) { while (head < tail) { py_obj_t *h = head - 1; py_obj_t *t = tail; py_obj_t v = rt_call_function_1(key_fn, tail[0]); // get pivot using key_fn for (;;) { do ++h; while (rt_compare_op(RT_COMPARE_OP_LESS, rt_call_function_1(key_fn, h[0]), v) == py_const_true); do --t; while (h < t && rt_compare_op(RT_COMPARE_OP_LESS, v, rt_call_function_1(key_fn, t[0])) == py_const_true); if (h >= t) break; py_obj_t x = h[0]; h[0] = t[0]; t[0] = x; } py_obj_t x = h[0]; h[0] = tail[0]; tail[0] = x; py_quicksort(head, t, key_fn); head = h + 1; } } py_obj_t rt_list_sort(py_obj_t self_in, py_obj_t key_fn) { assert(IS_O(self_in, O_LIST)); py_obj_base_t *self = self_in; if (self->u_tuple_list.len > 1) { py_quicksort(self->u_tuple_list.items, self->u_tuple_list.items + self->u_tuple_list.len - 1, key_fn); } return py_const_none; // return None, as per CPython } py_obj_t rt_gen_instance_next(py_obj_t self_in) { py_obj_t ret = rt_iternext(self_in); if (ret == py_const_stop_iteration) { nlr_jump(py_obj_new_exception_0(qstr_from_str_static("StopIteration"))); } else { return ret; } } typedef enum { PY_CODE_NONE, PY_CODE_BYTE, PY_CODE_NATIVE, PY_CODE_INLINE_ASM, } py_code_kind_t; typedef struct _py_code_t { py_code_kind_t kind; int n_args; int n_locals; int n_cells; int n_stack; bool is_generator; union { struct { byte *code; uint len; } u_byte; struct { py_fun_t fun; } u_native; struct { void *fun; } u_inline_asm; }; } py_code_t; static int next_unique_code_id; static py_code_t *unique_codes; py_obj_t fun_str_join; py_obj_t fun_str_format; py_obj_t fun_list_append; py_obj_t fun_list_pop; py_obj_t fun_list_sort; py_obj_t fun_gen_instance_next; #ifdef WRITE_CODE FILE *fp_write_code = NULL; #endif void rt_init(void) { rt_q_append = qstr_from_str_static("append"); rt_q_pop = qstr_from_str_static("pop"); rt_q_sort = qstr_from_str_static("sort"); rt_q_join = qstr_from_str_static("join"); rt_q_format = qstr_from_str_static("format"); rt_q___build_class__ = qstr_from_str_static("__build_class__"); rt_q___next__ = qstr_from_str_static("__next__"); rt_q_AttributeError = qstr_from_str_static("AttributeError"); rt_q_IndexError = qstr_from_str_static("IndexError"); rt_q_KeyError = qstr_from_str_static("KeyError"); rt_q_NameError = qstr_from_str_static("NameError"); rt_q_TypeError = qstr_from_str_static("TypeError"); rt_q_SyntaxError = qstr_from_str_static("SyntaxError"); rt_q_ValueError = qstr_from_str_static("ValueError"); py_const_none = py_obj_new_const("None"); py_const_false = py_obj_new_const("False"); py_const_true = py_obj_new_const("True"); py_const_stop_iteration = py_obj_new_const("StopIteration"); // locals = globals for outer module (see Objects/frameobject.c/PyFrame_New()) map_locals = map_globals = py_map_new(MAP_QSTR, 1); py_qstr_map_lookup(map_globals, qstr_from_str_static("__name__"), true)->value = py_obj_new_str(qstr_from_str_static("__main__")); py_map_init(&map_builtins, MAP_QSTR, 3); py_qstr_map_lookup(&map_builtins, rt_q___build_class__, true)->value = rt_make_function_2(py_builtin___build_class__); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("__repl_print__"), true)->value = rt_make_function_1(py_builtin___repl_print__); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("abs"), true)->value = rt_make_function_1(py_builtin_abs); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("all"), true)->value = rt_make_function_1(py_builtin_all); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("any"), true)->value = rt_make_function_1(py_builtin_any); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("bool"), true)->value = rt_make_function_var(0, py_builtin_bool); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("callable"), true)->value = rt_make_function_1(py_builtin_callable); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("complex"), true)->value = rt_make_function_var(0, py_builtin_complex); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("chr"), true)->value = rt_make_function_1(py_builtin_chr); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("dict"), true)->value = rt_make_function_0(py_builtin_dict); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("divmod"), true)->value = rt_make_function_2(py_builtin_divmod); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("hash"), true)->value = rt_make_function_1(py_builtin_hash); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("iter"), true)->value = rt_make_function_1(py_builtin_iter); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("len"), true)->value = rt_make_function_1(py_builtin_len); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("list"), true)->value = rt_make_function_var(0, py_builtin_list); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("max"), true)->value = rt_make_function_var(1, py_builtin_max); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("min"), true)->value = rt_make_function_var(1, py_builtin_min); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("next"), true)->value = rt_make_function_1(py_builtin_next); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("ord"), true)->value = rt_make_function_1(py_builtin_ord); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("pow"), true)->value = rt_make_function_var(2, py_builtin_pow); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("print"), true)->value = rt_make_function_var(0, py_builtin_print); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("range"), true)->value = rt_make_function_var(1, py_builtin_range); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("sum"), true)->value = rt_make_function_var(1, py_builtin_sum); next_unique_code_id = 2; // 1 is reserved for the __main__ module scope unique_codes = NULL; fun_str_join = rt_make_function_2(rt_str_join); fun_str_format = rt_make_function_var(1, rt_str_format); fun_list_append = rt_make_function_2(rt_list_append); fun_list_pop = rt_make_function_2(rt_list_pop); fun_list_sort = rt_make_function_2(rt_list_sort); fun_gen_instance_next = rt_make_function_1(rt_gen_instance_next); #ifdef WRITE_CODE fp_write_code = fopen("out-code", "wb"); #endif } void rt_deinit(void) { #ifdef WRITE_CODE if (fp_write_code != NULL) { fclose(fp_write_code); } #endif } int rt_get_unique_code_id(bool is_main_module) { if (is_main_module) { return 1; } else { return next_unique_code_id++; } } static void alloc_unique_codes(void) { if (unique_codes == NULL) { unique_codes = m_new(py_code_t, next_unique_code_id + 10); // XXX hack until we fix the REPL allocation problem for (int i = 0; i < next_unique_code_id; i++) { unique_codes[i].kind = PY_CODE_NONE; } } } void rt_assign_byte_code(int unique_code_id, byte *code, uint len, int n_args, int n_locals, int n_cells, int n_stack, bool is_generator) { alloc_unique_codes(); assert(unique_code_id < next_unique_code_id); unique_codes[unique_code_id].kind = PY_CODE_BYTE; unique_codes[unique_code_id].n_args = n_args; unique_codes[unique_code_id].n_locals = n_locals; unique_codes[unique_code_id].n_cells = n_cells; unique_codes[unique_code_id].n_stack = n_stack; unique_codes[unique_code_id].is_generator = is_generator; unique_codes[unique_code_id].u_byte.code = code; unique_codes[unique_code_id].u_byte.len = len; //printf("byte code: %d bytes\n", len); #ifdef DEBUG_PRINT DEBUG_printf("assign byte code: id=%d code=%p len=%u n_args=%d\n", unique_code_id, code, len, n_args); for (int i = 0; i < 128 && i < len; i++) { if (i > 0 && i % 16 == 0) { DEBUG_printf("\n"); } DEBUG_printf(" %02x", code[i]); } DEBUG_printf("\n"); extern void py_show_byte_code(const byte *code, int len); py_show_byte_code(code, len); #ifdef WRITE_CODE if (fp_write_code != NULL) { fwrite(code, len, 1, fp_write_code); fflush(fp_write_code); } #endif #endif } void rt_assign_native_code(int unique_code_id, py_fun_t fun, uint len, int n_args) { alloc_unique_codes(); assert(1 <= unique_code_id && unique_code_id < next_unique_code_id); unique_codes[unique_code_id].kind = PY_CODE_NATIVE; unique_codes[unique_code_id].n_args = n_args; unique_codes[unique_code_id].n_locals = 0; unique_codes[unique_code_id].n_cells = 0; unique_codes[unique_code_id].n_stack = 0; unique_codes[unique_code_id].is_generator = false; unique_codes[unique_code_id].u_native.fun = fun; printf("native code: %d bytes\n", len); #ifdef DEBUG_PRINT DEBUG_printf("assign native code: id=%d fun=%p len=%u n_args=%d\n", unique_code_id, fun, len, n_args); byte *fun_data = (byte*)(((machine_uint_t)fun) & (~1)); // need to clear lower bit in case it's thumb code for (int i = 0; i < 128 && i < len; i++) { if (i > 0 && i % 16 == 0) { DEBUG_printf("\n"); } DEBUG_printf(" %02x", fun_data[i]); } DEBUG_printf("\n"); #ifdef WRITE_CODE if (fp_write_code != NULL) { fwrite(fun_data, len, 1, fp_write_code); fflush(fp_write_code); } #endif #endif } void rt_assign_inline_asm_code(int unique_code_id, py_fun_t fun, uint len, int n_args) { alloc_unique_codes(); assert(1 <= unique_code_id && unique_code_id < next_unique_code_id); unique_codes[unique_code_id].kind = PY_CODE_INLINE_ASM; unique_codes[unique_code_id].n_args = n_args; unique_codes[unique_code_id].n_locals = 0; unique_codes[unique_code_id].n_cells = 0; unique_codes[unique_code_id].n_stack = 0; unique_codes[unique_code_id].is_generator = false; unique_codes[unique_code_id].u_inline_asm.fun = fun; #ifdef DEBUG_PRINT DEBUG_printf("assign inline asm code: id=%d fun=%p len=%u n_args=%d\n", unique_code_id, fun, len, n_args); byte *fun_data = (byte*)(((machine_uint_t)fun) & (~1)); // need to clear lower bit in case it's thumb code for (int i = 0; i < 128 && i < len; i++) { if (i > 0 && i % 16 == 0) { DEBUG_printf("\n"); } DEBUG_printf(" %02x", fun_data[i]); } DEBUG_printf("\n"); #ifdef WRITE_CODE if (fp_write_code != NULL) { fwrite(fun_data, len, 1, fp_write_code); } #endif #endif } #define PARSE_DEC_IN_INTG (1) #define PARSE_DEC_IN_FRAC (2) #define PARSE_DEC_IN_EXP (3) py_obj_t rt_load_const_dec(qstr qstr) { #if MICROPY_ENABLE_FLOAT DEBUG_OP_printf("load '%s'\n", qstr_str(qstr)); const char *s = qstr_str(qstr); int in = PARSE_DEC_IN_INTG; py_float_t dec_val = 0; bool exp_neg = false; int exp_val = 0; int exp_extra = 0; bool imag = false; for (; *s; s++) { int dig = *s; if ('0' <= dig && dig <= '9') { dig -= '0'; if (in == PARSE_DEC_IN_EXP) { exp_val = 10 * exp_val + dig; } else { dec_val = 10 * dec_val + dig; if (in == PARSE_DEC_IN_FRAC) { exp_extra -= 1; } } } else if (in == PARSE_DEC_IN_INTG && dig == '.') { in = PARSE_DEC_IN_FRAC; } else if (in != PARSE_DEC_IN_EXP && (dig == 'E' || dig == 'e')) { in = PARSE_DEC_IN_EXP; if (s[1] == '+') { s++; } else if (s[1] == '-') { s++; exp_neg = true; } } else if (dig == 'J' || dig == 'j') { s++; imag = true; break; } else { // unknown character break; } } if (*s != 0) { nlr_jump(py_obj_new_exception_2(rt_q_SyntaxError, "invalid syntax for number", NULL, NULL)); } if (exp_neg) { exp_val = -exp_val; } exp_val += exp_extra; for (; exp_val > 0; exp_val--) { dec_val *= 10; } for (; exp_val < 0; exp_val++) { dec_val *= 0.1; } if (imag) { return py_obj_new_complex(0, dec_val); } else { return py_obj_new_float(dec_val); } #else nlr_jump(py_obj_new_exception_2(rt_q_SyntaxError, "decimal numbers not supported", NULL, NULL)); #endif } py_obj_t rt_load_const_str(qstr qstr) { DEBUG_OP_printf("load '%s'\n", qstr_str(qstr)); return py_obj_new_str(qstr); } py_obj_t rt_load_name(qstr qstr) { // logic: search locals, globals, builtins DEBUG_OP_printf("load name %s\n", qstr_str(qstr)); py_map_elem_t *elem = py_qstr_map_lookup(map_locals, qstr, false); if (elem == NULL) { elem = py_qstr_map_lookup(map_globals, qstr, false); if (elem == NULL) { elem = py_qstr_map_lookup(&map_builtins, qstr, false); if (elem == NULL) { nlr_jump(py_obj_new_exception_2(rt_q_NameError, "name '%s' is not defined", qstr_str(qstr), NULL)); } } } return elem->value; } py_obj_t rt_load_global(qstr qstr) { // logic: search globals, builtins DEBUG_OP_printf("load global %s\n", qstr_str(qstr)); py_map_elem_t *elem = py_qstr_map_lookup(map_globals, qstr, false); if (elem == NULL) { elem = py_qstr_map_lookup(&map_builtins, qstr, false); if (elem == NULL) { nlr_jump(py_obj_new_exception_2(rt_q_NameError, "name '%s' is not defined", qstr_str(qstr), NULL)); } } return elem->value; } py_obj_t rt_load_build_class(void) { DEBUG_OP_printf("load_build_class\n"); py_map_elem_t *elem = py_qstr_map_lookup(&map_builtins, rt_q___build_class__, false); if (elem == NULL) { printf("name doesn't exist: __build_class__\n"); assert(0); } return elem->value; } py_obj_t rt_new_cell(py_obj_t val) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_CELL; o->u_cell = val; return (py_obj_t)o; } py_obj_t rt_get_cell(py_obj_t cell) { if (IS_O(cell, O_CELL)) { return ((py_obj_base_t*)cell)->u_cell; } else { assert(0); return py_const_none; } } void rt_set_cell(py_obj_t cell, py_obj_t val) { if (IS_O(cell, O_CELL)) { ((py_obj_base_t*)cell)->u_cell = val; } else { assert(0); } } void rt_store_name(qstr qstr, py_obj_t obj) { DEBUG_OP_printf("store name %s <- %p\n", qstr_str(qstr), obj); py_qstr_map_lookup(map_locals, qstr, true)->value = obj; } void rt_store_global(qstr qstr, py_obj_t obj) { DEBUG_OP_printf("store global %s <- %p\n", qstr_str(qstr), obj); py_qstr_map_lookup(map_globals, qstr, true)->value = obj; } py_obj_t rt_unary_op(int op, py_obj_t arg) { DEBUG_OP_printf("unary %d %p\n", op, arg); if (IS_SMALL_INT(arg)) { py_small_int_t val = FROM_SMALL_INT(arg); switch (op) { case RT_UNARY_OP_NOT: if (val != 0) { return py_const_true;} else { return py_const_false; } case RT_UNARY_OP_POSITIVE: break; case RT_UNARY_OP_NEGATIVE: val = -val; break; case RT_UNARY_OP_INVERT: val = ~val; break; default: assert(0); val = 0; } if (fit_small_int(val)) { return TO_SMALL_INT(val); } #if MICROPY_ENABLE_FLOAT } else if (IS_O(arg, O_FLOAT)) { py_float_t val = py_obj_get_float(arg); switch (op) { case RT_UNARY_OP_NOT: if (val != 0) { return py_const_true;} else { return py_const_false; } case RT_UNARY_OP_POSITIVE: break; case RT_UNARY_OP_NEGATIVE: val = -val; break; case RT_UNARY_OP_INVERT: nlr_jump(py_obj_new_exception_2(rt_q_TypeError, "bad operand type for unary ~: 'float'", NULL, NULL)); default: assert(0); val = 0; } return py_obj_new_float(val); #endif } assert(0); return py_const_none; } py_obj_t rt_binary_op(int op, py_obj_t lhs, py_obj_t rhs) { DEBUG_OP_printf("binary %d %p %p\n", op, lhs, rhs); if (op == RT_BINARY_OP_SUBSCR) { if (IS_O(lhs, O_STR)) { // string access // XXX a hack! const char *str = qstr_str(((py_obj_base_t*)lhs)->u_str); return py_obj_new_int(str[FROM_SMALL_INT(rhs)]); } else if ((IS_O(lhs, O_TUPLE) || IS_O(lhs, O_LIST))) { // tuple/list load uint index = get_index(lhs, rhs); return ((py_obj_base_t*)lhs)->u_tuple_list.items[index]; } else if (IS_O(lhs, O_MAP)) { // map load py_map_elem_t *elem = py_map_lookup(lhs, rhs, false); if (elem == NULL) { nlr_jump(py_obj_new_exception_2(rt_q_KeyError, "", NULL, NULL)); } else { return elem->value; } } else { assert(0); } } else if (IS_SMALL_INT(lhs) && IS_SMALL_INT(rhs)) { py_small_int_t lhs_val = FROM_SMALL_INT(lhs); py_small_int_t rhs_val = FROM_SMALL_INT(rhs); switch (op) { case RT_BINARY_OP_OR: case RT_BINARY_OP_INPLACE_OR: lhs_val |= rhs_val; break; case RT_BINARY_OP_XOR: case RT_BINARY_OP_INPLACE_XOR: lhs_val ^= rhs_val; break; case RT_BINARY_OP_AND: case RT_BINARY_OP_INPLACE_AND: lhs_val &= rhs_val; break; case RT_BINARY_OP_LSHIFT: case RT_BINARY_OP_INPLACE_LSHIFT: lhs_val <<= rhs_val; break; case RT_BINARY_OP_RSHIFT: case RT_BINARY_OP_INPLACE_RSHIFT: lhs_val >>= rhs_val; break; case RT_BINARY_OP_ADD: case RT_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break; case RT_BINARY_OP_SUBTRACT: case RT_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break; case RT_BINARY_OP_MULTIPLY: case RT_BINARY_OP_INPLACE_MULTIPLY: lhs_val *= rhs_val; break; case RT_BINARY_OP_FLOOR_DIVIDE: case RT_BINARY_OP_INPLACE_FLOOR_DIVIDE: lhs_val /= rhs_val; break; #if MICROPY_ENABLE_FLOAT case RT_BINARY_OP_TRUE_DIVIDE: case RT_BINARY_OP_INPLACE_TRUE_DIVIDE: return py_obj_new_float((py_float_t)lhs_val / (py_float_t)rhs_val); #endif // TODO implement modulo as specified by Python case RT_BINARY_OP_MODULO: case RT_BINARY_OP_INPLACE_MODULO: lhs_val %= rhs_val; break; // TODO check for negative power, and overflow case RT_BINARY_OP_POWER: case RT_BINARY_OP_INPLACE_POWER: { int ans = 1; while (rhs_val > 0) { if (rhs_val & 1) { ans *= lhs_val; } lhs_val *= lhs_val; rhs_val /= 2; } lhs_val = ans; break; } default: printf("%d\n", op); assert(0); } if (fit_small_int(lhs_val)) { return TO_SMALL_INT(lhs_val); } #if MICROPY_ENABLE_FLOAT } else if (IS_O(lhs, O_COMPLEX) || IS_O(rhs, O_COMPLEX)) { py_float_t lhs_real, lhs_imag, rhs_real, rhs_imag; py_obj_get_complex(lhs, &lhs_real, &lhs_imag); py_obj_get_complex(rhs, &rhs_real, &rhs_imag); switch (op) { case RT_BINARY_OP_ADD: case RT_BINARY_OP_INPLACE_ADD: lhs_real += rhs_real; lhs_imag += rhs_imag; break; case RT_BINARY_OP_SUBTRACT: case RT_BINARY_OP_INPLACE_SUBTRACT: lhs_real -= rhs_real; lhs_imag -= rhs_imag; break; case RT_BINARY_OP_MULTIPLY: case RT_BINARY_OP_INPLACE_MULTIPLY: { py_float_t real = lhs_real * rhs_real - lhs_imag * rhs_imag; lhs_imag = lhs_real * rhs_imag + lhs_imag * rhs_real; lhs_real = real; break; } /* TODO floor(?) the value case RT_BINARY_OP_FLOOR_DIVIDE: case RT_BINARY_OP_INPLACE_FLOOR_DIVIDE: val = lhs_val / rhs_val; break; */ /* TODO case RT_BINARY_OP_TRUE_DIVIDE: case RT_BINARY_OP_INPLACE_TRUE_DIVIDE: val = lhs_val / rhs_val; break; */ default: printf("%d\n", op); assert(0); } return py_obj_new_complex(lhs_real, lhs_imag); } else if (IS_O(lhs, O_FLOAT) || IS_O(rhs, O_FLOAT)) { py_float_t lhs_val = py_obj_get_float(lhs); py_float_t rhs_val = py_obj_get_float(rhs); switch (op) { case RT_BINARY_OP_ADD: case RT_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break; case RT_BINARY_OP_SUBTRACT: case RT_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break; case RT_BINARY_OP_MULTIPLY: case RT_BINARY_OP_INPLACE_MULTIPLY: lhs_val *= rhs_val; break; /* TODO floor(?) the value case RT_BINARY_OP_FLOOR_DIVIDE: case RT_BINARY_OP_INPLACE_FLOOR_DIVIDE: val = lhs_val / rhs_val; break; */ case RT_BINARY_OP_TRUE_DIVIDE: case RT_BINARY_OP_INPLACE_TRUE_DIVIDE: lhs_val /= rhs_val; break; default: printf("%d\n", op); assert(0); } return py_obj_new_float(lhs_val); #endif } else if (IS_O(lhs, O_STR) && IS_O(rhs, O_STR)) { const char *lhs_str = qstr_str(((py_obj_base_t*)lhs)->u_str); const char *rhs_str = qstr_str(((py_obj_base_t*)rhs)->u_str); char *val; switch (op) { case RT_BINARY_OP_ADD: case RT_BINARY_OP_INPLACE_ADD: val = m_new(char, strlen(lhs_str) + strlen(rhs_str) + 1); strcpy(val, lhs_str); strcat(val, rhs_str); break; default: printf("%d\n", op); assert(0); val = NULL; } return py_obj_new_str(qstr_from_str_take(val)); } assert(0); return py_const_none; } py_obj_t rt_compare_op(int op, py_obj_t lhs, py_obj_t rhs) { DEBUG_OP_printf("compare %d %p %p\n", op, lhs, rhs); // deal with == and != if (op == RT_COMPARE_OP_EQUAL || op == RT_COMPARE_OP_NOT_EQUAL) { if (py_obj_equal(lhs, rhs)) { if (op == RT_COMPARE_OP_EQUAL) { return py_const_true; } else { return py_const_false; } } else { if (op == RT_COMPARE_OP_EQUAL) { return py_const_false; } else { return py_const_true; } } } // deal with small ints if (IS_SMALL_INT(lhs) && IS_SMALL_INT(rhs)) { py_small_int_t lhs_val = FROM_SMALL_INT(lhs); py_small_int_t rhs_val = FROM_SMALL_INT(rhs); int cmp; switch (op) { case RT_COMPARE_OP_LESS: cmp = lhs_val < rhs_val; break; case RT_COMPARE_OP_MORE: cmp = lhs_val > rhs_val; break; case RT_COMPARE_OP_LESS_EQUAL: cmp = lhs_val <= rhs_val; break; case RT_COMPARE_OP_MORE_EQUAL: cmp = lhs_val >= rhs_val; break; default: assert(0); cmp = 0; } if (cmp) { return py_const_true; } else { return py_const_false; } } #if MICROPY_ENABLE_FLOAT // deal with floats if (IS_O(lhs, O_FLOAT) || IS_O(rhs, O_FLOAT)) { py_float_t lhs_val = py_obj_get_float(lhs); py_float_t rhs_val = py_obj_get_float(rhs); int cmp; switch (op) { case RT_COMPARE_OP_LESS: cmp = lhs_val < rhs_val; break; case RT_COMPARE_OP_MORE: cmp = lhs_val > rhs_val; break; case RT_COMPARE_OP_LESS_EQUAL: cmp = lhs_val <= rhs_val; break; case RT_COMPARE_OP_MORE_EQUAL: cmp = lhs_val >= rhs_val; break; default: assert(0); cmp = 0; } if (cmp) { return py_const_true; } else { return py_const_false; } } #endif // not implemented assert(0); return py_const_none; } py_obj_t rt_make_function_from_id(int unique_code_id) { DEBUG_OP_printf("make_function_from_id %d\n", unique_code_id); if (unique_code_id < 1 || unique_code_id >= next_unique_code_id) { // illegal code id return py_const_none; } py_code_t *c = &unique_codes[unique_code_id]; py_obj_base_t *o = m_new(py_obj_base_t, 1); switch (c->kind) { case PY_CODE_BYTE: o->kind = O_FUN_BC; o->u_fun_bc.n_args = c->n_args; o->u_fun_bc.n_state = c->n_locals + c->n_cells + c->n_stack; o->u_fun_bc.code = c->u_byte.code; break; case PY_CODE_NATIVE: switch (c->n_args) { case 0: o->kind = O_FUN_0; break; case 1: o->kind = O_FUN_1; break; case 2: o->kind = O_FUN_2; break; default: assert(0); } o->u_fun.fun = c->u_native.fun; break; case PY_CODE_INLINE_ASM: o->kind = O_FUN_ASM; o->u_fun_asm.n_args = c->n_args; o->u_fun_asm.fun = c->u_inline_asm.fun; break; default: assert(0); } // check for generator functions and if so wrap in generator object if (c->is_generator) { py_obj_base_t *o2 = m_new(py_obj_base_t, 1); o2->kind = O_GEN_WRAP; // we have at least 3 locals so the bc can write back fast[0,1,2] safely; should improve how this is done o2->u_gen_wrap.n_state = ((c->n_locals + c->n_cells) < 3 ? 3 : (c->n_locals + c->n_cells)) + c->n_stack; o2->u_gen_wrap.fun = o; o = o2; } return o; } py_obj_t rt_make_function_0(py_fun_0_t fun) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_FUN_0; o->u_fun.fun = fun; return o; } py_obj_t rt_make_function_1(py_fun_1_t fun) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_FUN_1; o->u_fun.fun = fun; return o; } py_obj_t rt_make_function_2(py_fun_2_t fun) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_FUN_2; o->u_fun.fun = fun; return o; } py_obj_t rt_make_function(int n_args, py_fun_t code) { // assumes code is a pointer to a py_fun_t (i think this is safe...) py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_FUN_N; o->u_fun.n_args = n_args; o->u_fun.fun = code; return o; } py_obj_t rt_make_function_var(int n_fixed_args, py_fun_var_t f) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_FUN_VAR; o->u_fun.n_args = n_fixed_args; o->u_fun.fun = f; return o; } py_obj_t rt_make_closure_from_id(int unique_code_id, py_obj_t closure_tuple) { py_obj_t f = rt_make_function_from_id(unique_code_id); // wrap function in closure object py_obj_base_t *f2 = m_new(py_obj_base_t, 1); f2->kind = O_CLOSURE; f2->u_closure.fun = f; f2->u_closure.vars = closure_tuple; return f2; } py_obj_t rt_call_function_0(py_obj_t fun) { return rt_call_function_n(fun, 0, NULL); } py_obj_t rt_call_function_1(py_obj_t fun, py_obj_t arg) { return rt_call_function_n(fun, 1, &arg); } py_obj_t rt_call_function_2(py_obj_t fun, py_obj_t arg1, py_obj_t arg2) { py_obj_t args[2]; args[1] = arg1; args[0] = arg2; return rt_call_function_n(fun, 2, args); } typedef machine_uint_t (*inline_asm_fun_0_t)(); typedef machine_uint_t (*inline_asm_fun_1_t)(machine_uint_t); typedef machine_uint_t (*inline_asm_fun_2_t)(machine_uint_t, machine_uint_t); typedef machine_uint_t (*inline_asm_fun_3_t)(machine_uint_t, machine_uint_t, machine_uint_t); // convert a Python object to a sensible value for inline asm machine_uint_t rt_convert_obj_for_inline_asm(py_obj_t obj) { // TODO for byte_array, pass pointer to the array if (IS_SMALL_INT(obj)) { return FROM_SMALL_INT(obj); } else if (obj == py_const_none) { return 0; } else if (obj == py_const_false) { return 0; } else if (obj == py_const_true) { return 1; } else { py_obj_base_t *o = obj; switch (o->kind) { case O_STR: // pointer to the string (it's probably constant though!) return (machine_uint_t)qstr_str(o->u_str); #if MICROPY_ENABLE_FLOAT case O_FLOAT: // convert float to int (could also pass in float registers) return (machine_int_t)o->u_float; #endif case O_TUPLE: case O_LIST: // pointer to start of tuple/list (could pass length, but then could use len(x) for that) return (machine_uint_t)o->u_tuple_list.items; default: // just pass along a pointer to the object return (machine_uint_t)obj; } } } // convert a return value from inline asm to a sensible Python object py_obj_t rt_convert_val_from_inline_asm(machine_uint_t val) { return TO_SMALL_INT(val); } // args are in reverse order in the array py_obj_t rt_call_function_n(py_obj_t fun, int n_args, const py_obj_t *args) { int n_args_fun = 0; if (IS_O(fun, O_FUN_0)) { py_obj_base_t *o = fun; if (n_args != 0) { n_args_fun = 0; goto bad_n_args; } DEBUG_OP_printf("calling native %p()\n", o->u_fun.fun); return ((py_fun_0_t)o->u_fun.fun)(); } else if (IS_O(fun, O_FUN_1)) { py_obj_base_t *o = fun; if (n_args != 1) { n_args_fun = 1; goto bad_n_args; } DEBUG_OP_printf("calling native %p(%p)\n", o->u_fun.fun, args[0]); return ((py_fun_1_t)o->u_fun.fun)(args[0]); } else if (IS_O(fun, O_FUN_2)) { py_obj_base_t *o = fun; if (n_args != 2) { n_args_fun = 2; goto bad_n_args; } DEBUG_OP_printf("calling native %p(%p, %p)\n", o->u_fun.fun, args[1], args[0]); return ((py_fun_2_t)o->u_fun.fun)(args[1], args[0]); // TODO O_FUN_N } else if (IS_O(fun, O_FUN_VAR)) { py_obj_base_t *o = fun; if (n_args < o->u_fun.n_args) { nlr_jump(py_obj_new_exception_2(rt_q_TypeError, "() missing %d required positional arguments: ", (const char*)(machine_int_t)(o->u_fun.n_args - n_args), NULL)); } // TODO really the args need to be passed in as a Python tuple, as the form f(*[1,2]) can be used to pass var args py_obj_t *args_ordered = m_new(py_obj_t, n_args); for (int i = 0; i < n_args; i++) { args_ordered[i] = args[n_args - i - 1]; } py_obj_t res = ((py_fun_var_t)o->u_fun.fun)(n_args, args_ordered); m_free(args_ordered); return res; } else if (IS_O(fun, O_FUN_BC)) { py_obj_base_t *o = fun; if (n_args != o->u_fun_bc.n_args) { n_args_fun = o->u_fun_bc.n_args; goto bad_n_args; } DEBUG_OP_printf("calling byte code %p(n_args=%d)\n", o->u_fun_bc.code, n_args); return py_execute_byte_code(o->u_fun_bc.code, args, n_args, o->u_fun_bc.n_state); } else if (IS_O(fun, O_FUN_ASM)) { py_obj_base_t *o = fun; if (n_args != o->u_fun_asm.n_args) { n_args_fun = o->u_fun_asm.n_args; goto bad_n_args; } DEBUG_OP_printf("calling inline asm %p(n_args=%d)\n", o->u_fun_asm.fun, n_args); machine_uint_t ret; if (n_args == 0) { ret = ((inline_asm_fun_0_t)o->u_fun_asm.fun)(); } else if (n_args == 1) { ret = ((inline_asm_fun_1_t)o->u_fun_asm.fun)(rt_convert_obj_for_inline_asm(args[0])); } else if (n_args == 2) { ret = ((inline_asm_fun_2_t)o->u_fun_asm.fun)(rt_convert_obj_for_inline_asm(args[1]), rt_convert_obj_for_inline_asm(args[0])); } else if (n_args == 3) { ret = ((inline_asm_fun_3_t)o->u_fun_asm.fun)(rt_convert_obj_for_inline_asm(args[2]), rt_convert_obj_for_inline_asm(args[1]), rt_convert_obj_for_inline_asm(args[0])); } else { assert(0); ret = 0; } return rt_convert_val_from_inline_asm(ret); } else if (IS_O(fun, O_GEN_WRAP)) { py_obj_base_t *o = fun; py_obj_base_t *o_fun = o->u_gen_wrap.fun; assert(o_fun->kind == O_FUN_BC); // TODO if (n_args != o_fun->u_fun_bc.n_args) { n_args_fun = o_fun->u_fun_bc.n_args; goto bad_n_args; } py_obj_t *state = m_new(py_obj_t, 1 + o->u_gen_wrap.n_state); // put function object at first slot in state (to keep u_gen_instance small) state[0] = o_fun; // init args for (int i = 0; i < n_args; i++) { state[1 + i] = args[n_args - 1 - i]; } py_obj_base_t *o2 = m_new(py_obj_base_t, 1); o2->kind = O_GEN_INSTANCE; o2->u_gen_instance.state = state; o2->u_gen_instance.ip = o_fun->u_fun_bc.code; o2->u_gen_instance.sp = state + o->u_gen_wrap.n_state; return o2; } else if (IS_O(fun, O_BOUND_METH)) { py_obj_base_t *o = fun; DEBUG_OP_printf("calling bound method %p(self=%p, n_args=%d)\n", o->u_bound_meth.meth, o->u_bound_meth.self, n_args); if (n_args == 0) { return rt_call_function_n(o->u_bound_meth.meth, 1, &o->u_bound_meth.self); } else if (n_args == 1) { py_obj_t args2[2]; args2[1] = o->u_bound_meth.self; args2[0] = args[0]; return rt_call_function_n(o->u_bound_meth.meth, 2, args2); } else { // TODO not implemented assert(0); return py_const_none; //return rt_call_function_2(o->u_bound_meth.meth, n_args + 1, o->u_bound_meth.self + args); } } else if (IS_O(fun, O_CLASS)) { // instantiate an instance of a class DEBUG_OP_printf("instantiate object of class %p with %d args\n", fun, n_args); py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_OBJ; o->u_obj.class = fun; o->u_obj.members = py_map_new(MAP_QSTR, 0); // look for __init__ function py_obj_base_t *o_class = fun; py_map_elem_t *init_fn = py_qstr_map_lookup(o_class->u_class.locals, qstr_from_str_static("__init__"), false); if (init_fn != NULL) { // call __init__ function py_obj_t init_ret; if (n_args == 0) { init_ret = rt_call_function_n(init_fn->value, 1, (py_obj_t*)&o); } else { py_obj_t *args2 = m_new(py_obj_t, n_args + 1); memcpy(args2, args, n_args * sizeof(py_obj_t)); args2[n_args] = o; init_ret = rt_call_function_n(init_fn->value, n_args + 1, args2); m_free(args2); } if (init_ret != py_const_none) { nlr_jump(py_obj_new_exception_2(rt_q_TypeError, "__init__() should return None, not '%s'", py_obj_get_type_str(init_ret), NULL)); } } else { // TODO if (n_args != 0) { n_args_fun = 0; goto bad_n_args; } } return o; } else { printf("fun %p %d\n", fun, ((py_obj_base_t*)fun)->kind); assert(0); return py_const_none; } bad_n_args: nlr_jump(py_obj_new_exception_2(rt_q_TypeError, "function takes %d positional arguments but %d were given", (const char*)(machine_int_t)n_args_fun, (const char*)(machine_int_t)n_args)); } // args are in reverse order in the array; keyword arguments come first, value then key // eg: (value1, key1, value0, key0, arg1, arg0) py_obj_t rt_call_function_n_kw(py_obj_t fun, uint n_args, uint n_kw, const py_obj_t *args) { // TODO assert(0); return py_const_none; } // args contains: arg(n_args-1) arg(n_args-2) ... arg(0) self/NULL fun // if n_args==0 then there are only self/NULL and fun py_obj_t rt_call_method_n(uint n_args, const py_obj_t *args) { DEBUG_OP_printf("call method %p(self=%p, n_args=%u)\n", args[n_args + 1], args[n_args], n_args); return rt_call_function_n(args[n_args + 1], n_args + ((args[n_args] == NULL) ? 0 : 1), args); } // args contains: kw_val(n_kw-1) kw_key(n_kw-1) ... kw_val(0) kw_key(0) arg(n_args-1) arg(n_args-2) ... arg(0) self/NULL fun py_obj_t rt_call_method_n_kw(uint n_args, uint n_kw, const py_obj_t *args) { uint n = n_args + 2 * n_kw; DEBUG_OP_printf("call method %p(self=%p, n_args=%u, n_kw=%u)\n", args[n + 1], args[n], n_args, n_kw); return rt_call_function_n_kw(args[n + 1], n_args + ((args[n] == NULL) ? 0 : 1), n_kw, args); } // items are in reverse order py_obj_t rt_build_tuple(int n_args, py_obj_t *items) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_TUPLE; o->u_tuple_list.alloc = n_args < 4 ? 4 : n_args; o->u_tuple_list.len = n_args; o->u_tuple_list.items = m_new(py_obj_t, o->u_tuple_list.alloc); for (int i = 0; i < n_args; i++) { o->u_tuple_list.items[i] = items[n_args - i - 1]; } return o; } // items are in reverse order py_obj_t rt_build_list(int n_args, py_obj_t *items) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_LIST; o->u_tuple_list.alloc = n_args < 4 ? 4 : n_args; o->u_tuple_list.len = n_args; o->u_tuple_list.items = m_new(py_obj_t, o->u_tuple_list.alloc); for (int i = 0; i < n_args; i++) { o->u_tuple_list.items[i] = items[n_args - i - 1]; } return o; } py_obj_t rt_build_set(int n_args, py_obj_t *items) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_SET; o->u_set.alloc = get_doubling_prime_greater_or_equal_to(n_args + 1); o->u_set.used = 0; o->u_set.table = m_new(py_obj_t, o->u_set.alloc); for (int i = 0; i < o->u_set.alloc; i++) { o->u_set.table[i] = NULL; } for (int i = 0; i < n_args; i++) { py_set_lookup(o, items[i], true); } return o; } py_obj_t rt_store_set(py_obj_t set, py_obj_t item) { py_set_lookup(set, item, true); return set; } // unpacked items are stored in order into the array pointed to by items void rt_unpack_sequence(py_obj_t seq_in, uint num, py_obj_t *items) { if (IS_O(seq_in, O_TUPLE) || IS_O(seq_in, O_LIST)) { py_obj_base_t *seq = seq_in; if (seq->u_tuple_list.len < num) { nlr_jump(py_obj_new_exception_2(rt_q_ValueError, "need more than %d values to unpack", (void*)seq->u_tuple_list.len, NULL)); } else if (seq->u_tuple_list.len > num) { nlr_jump(py_obj_new_exception_2(rt_q_ValueError, "too many values to unpack (expected %d)", (void*)(machine_uint_t)num, NULL)); } memcpy(items, seq->u_tuple_list.items, num * sizeof(py_obj_t)); } else { // TODO call rt_getiter and extract via rt_iternext nlr_jump(py_obj_new_exception_2(rt_q_TypeError, "'%s' object is not iterable", py_obj_get_type_str(seq_in), NULL)); } } py_obj_t rt_build_map(int n_args) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_MAP; py_map_init(&o->u_map, MAP_PY_OBJ, n_args); return o; } py_obj_t rt_store_map(py_obj_t map, py_obj_t key, py_obj_t value) { assert(IS_O(map, O_MAP)); // should always be py_map_lookup(map, key, true)->value = value; return map; } py_obj_t build_bound_method(py_obj_t self, py_obj_t meth) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_BOUND_METH; o->u_bound_meth.meth = meth; o->u_bound_meth.self = self; return o; } py_obj_t rt_load_attr(py_obj_t base, qstr attr) { DEBUG_OP_printf("load attr %s\n", qstr_str(attr)); if (IS_O(base, O_LIST) && attr == rt_q_append) { return build_bound_method(base, fun_list_append); } else if (IS_O(base, O_LIST) && attr == rt_q_pop) { return build_bound_method(base, fun_list_pop); } else if (IS_O(base, O_LIST) && attr == rt_q_sort) { return build_bound_method(base, fun_list_sort); } else if (IS_O(base, O_CLASS)) { py_obj_base_t *o = base; py_map_elem_t *elem = py_qstr_map_lookup(o->u_class.locals, attr, false); if (elem == NULL) { goto no_attr; } return elem->value; } else if (IS_O(base, O_OBJ)) { // logic: look in obj members then class locals (TODO check this against CPython) py_obj_base_t *o = base; py_map_elem_t *elem = py_qstr_map_lookup(o->u_obj.members, attr, false); if (elem != NULL) { // object member, always treated as a value return elem->value; } elem = py_qstr_map_lookup(o->u_obj.class->u_class.locals, attr, false); if (elem != NULL) { if (py_obj_is_callable(elem->value)) { // class member is callable so build a bound method return build_bound_method(base, elem->value); } else { // class member is a value, so just return that value return elem->value; } } goto no_attr; } no_attr: nlr_jump(py_obj_new_exception_2(rt_q_AttributeError, "'%s' object has no attribute '%s'", py_obj_get_type_str(base), qstr_str(attr))); } void rt_load_method(py_obj_t base, qstr attr, py_obj_t *dest) { DEBUG_OP_printf("load method %s\n", qstr_str(attr)); if (IS_O(base, O_STR)) { if (attr == rt_q_join) { dest[1] = fun_str_join; dest[0] = base; return; } else if (attr == rt_q_format) { dest[1] = fun_str_format; dest[0] = base; return; } } else if (IS_O(base, O_GEN_INSTANCE) && attr == rt_q___next__) { dest[1] = fun_gen_instance_next; dest[0] = base; return; } else if (IS_O(base, O_LIST) && attr == rt_q_append) { dest[1] = fun_list_append; dest[0] = base; return; } else if (IS_O(base, O_LIST) && attr == rt_q_pop) { dest[1] = fun_list_pop; dest[0] = base; return; } else if (IS_O(base, O_LIST) && attr == rt_q_sort) { dest[1] = fun_list_sort; dest[0] = base; return; } else if (IS_O(base, O_OBJ)) { // logic: look in obj members then class locals (TODO check this against CPython) py_obj_base_t *o = base; py_map_elem_t *elem = py_qstr_map_lookup(o->u_obj.members, attr, false); if (elem != NULL) { // object member, always treated as a value dest[1] = elem->value; dest[0] = NULL; return; } elem = py_qstr_map_lookup(o->u_obj.class->u_class.locals, attr, false); if (elem != NULL) { if (py_obj_is_callable(elem->value)) { // class member is callable so build a bound method dest[1] = elem->value; dest[0] = base; return; } else { // class member is a value, so just return that value dest[1] = elem->value; dest[0] = NULL; return; } } goto no_attr; } else if (IS_O(base, O_USER)) { py_obj_base_t *o = base; const py_user_method_t *meth = &o->u_user.info->methods[0]; for (; meth->name != NULL; meth++) { if (strcmp(meth->name, qstr_str(attr)) == 0) { if (meth->kind == 0) { dest[1] = rt_make_function_1(meth->fun); } else if (meth->kind == 1) { dest[1] = rt_make_function_2(meth->fun); } else { assert(0); } dest[0] = base; return; } } } no_attr: dest[1] = rt_load_attr(base, attr); dest[0] = NULL; } void rt_store_attr(py_obj_t base, qstr attr, py_obj_t value) { DEBUG_OP_printf("store attr %p.%s <- %p\n", base, qstr_str(attr), value); if (IS_O(base, O_CLASS)) { // TODO CPython allows STORE_ATTR to a class, but is this the correct implementation? py_obj_base_t *o = base; py_qstr_map_lookup(o->u_class.locals, attr, true)->value = value; } else if (IS_O(base, O_OBJ)) { // logic: look in class locals (no add) then obj members (add) (TODO check this against CPython) py_obj_base_t *o = base; py_map_elem_t *elem = py_qstr_map_lookup(o->u_obj.class->u_class.locals, attr, false); if (elem != NULL) { elem->value = value; } else { py_qstr_map_lookup(o->u_obj.members, attr, true)->value = value; } } else { printf("?AttributeError: '%s' object has no attribute '%s'\n", py_obj_get_type_str(base), qstr_str(attr)); assert(0); } } void rt_store_subscr(py_obj_t base, py_obj_t index, py_obj_t value) { DEBUG_OP_printf("store subscr %p[%p] <- %p\n", base, index, value); if (IS_O(base, O_LIST)) { // list store uint i = get_index(base, index); ((py_obj_base_t*)base)->u_tuple_list.items[i] = value; } else if (IS_O(base, O_MAP)) { // map store py_map_lookup(base, index, true)->value = value; } else { assert(0); } } py_obj_t rt_getiter(py_obj_t o_in) { if (IS_O(o_in, O_GEN_INSTANCE)) { return o_in; } else if (IS_O(o_in, O_RANGE)) { py_obj_base_t *o = o_in; return py_obj_new_range_iterator(o->u_range.start, o->u_range.stop, o->u_range.step); } else if (IS_O(o_in, O_TUPLE)) { return py_obj_new_tuple_iterator(o_in, 0); } else if (IS_O(o_in, O_LIST)) { return py_obj_new_list_iterator(o_in, 0); } else { nlr_jump(py_obj_new_exception_2(rt_q_TypeError, "'%s' object is not iterable", py_obj_get_type_str(o_in), NULL)); } } py_obj_t rt_iternext(py_obj_t o_in) { if (IS_O(o_in, O_GEN_INSTANCE)) { py_obj_base_t *self = o_in; //py_obj_base_t *fun = self->u_gen_instance.state[0]; //assert(fun->kind == O_FUN_BC); bool yield = py_execute_byte_code_2(&self->u_gen_instance.ip, &self->u_gen_instance.state[1], &self->u_gen_instance.sp); if (yield) { return *self->u_gen_instance.sp; } else { if (*self->u_gen_instance.sp == py_const_none) { return py_const_stop_iteration; } else { // TODO return StopIteration with value *self->u_gen_instance.sp return py_const_stop_iteration; } } } else if (IS_O(o_in, O_RANGE_IT)) { py_obj_base_t *o = o_in; if ((o->u_range_it.step > 0 && o->u_range_it.cur < o->u_range_it.stop) || (o->u_range_it.step < 0 && o->u_range_it.cur > o->u_range_it.stop)) { py_obj_t o_out = TO_SMALL_INT(o->u_range_it.cur); o->u_range_it.cur += o->u_range_it.step; return o_out; } else { return py_const_stop_iteration; } } else if (IS_O(o_in, O_TUPLE_IT) || IS_O(o_in, O_LIST_IT)) { py_obj_base_t *o = o_in; if (o->u_tuple_list_it.cur < o->u_tuple_list_it.obj->u_tuple_list.len) { py_obj_t o_out = o->u_tuple_list_it.obj->u_tuple_list.items[o->u_tuple_list_it.cur]; o->u_tuple_list_it.cur += 1; return o_out; } else { return py_const_stop_iteration; } } else { nlr_jump(py_obj_new_exception_2(rt_q_TypeError, "? '%s' object is not iterable", py_obj_get_type_str(o_in), NULL)); } } py_obj_t rt_import_name(qstr name, py_obj_t fromlist, py_obj_t level) { // build args array py_obj_t args[5]; args[0] = py_obj_new_str(name); args[1] = py_const_none; // TODO should be globals args[2] = py_const_none; // TODO should be locals args[3] = fromlist; args[4] = level; // must be 0; we don't yet support other values // TODO lookup __import__ and call that instead of going straight to builtin implementation return py_builtin___import__(5, args); } py_obj_t rt_import_from(py_obj_t module, qstr name) { py_obj_t x = rt_load_attr(module, name); /* TODO convert AttributeError to ImportError if (fail) { (ImportError, "cannot import name %s", qstr_str(name), NULL) } */ return x; } // these must correspond to the respective enum void *const rt_fun_table[RT_F_NUMBER_OF] = { rt_load_const_dec, rt_load_const_str, rt_load_name, rt_load_global, rt_load_build_class, rt_load_attr, rt_load_method, rt_store_name, rt_store_attr, rt_store_subscr, rt_is_true, rt_unary_op, rt_build_tuple, rt_build_list, rt_list_append, rt_build_map, rt_store_map, rt_build_set, rt_store_set, rt_make_function_from_id, rt_call_function_n, rt_call_method_n, rt_binary_op, rt_compare_op, rt_getiter, rt_iternext, }; /* void rt_f_vector(rt_fun_kind_t fun_kind) { (rt_f_table[fun_kind])(); } */