/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/mpstate.h" #include "py/nlr.h" #include "py/parsenum.h" #include "py/compile.h" #include "py/objstr.h" #include "py/objtuple.h" #include "py/objlist.h" #include "py/objmodule.h" #include "py/objgenerator.h" #include "py/smallint.h" #include "py/runtime0.h" #include "py/runtime.h" #include "py/builtin.h" #include "py/stackctrl.h" #include "py/gc.h" #if 0 // print debugging info #define DEBUG_PRINT (1) #define DEBUG_printf DEBUG_printf #define DEBUG_OP_printf(...) DEBUG_printf(__VA_ARGS__) #else // don't print debugging info #define DEBUG_printf(...) (void)0 #define DEBUG_OP_printf(...) (void)0 #endif const mp_obj_module_t mp_module___main__ = { .base = { &mp_type_module }, .globals = (mp_obj_dict_t*)&MP_STATE_VM(dict_main), }; void mp_init(void) { qstr_init(); // no pending exceptions to start with MP_STATE_VM(mp_pending_exception) = MP_OBJ_NULL; #if MICROPY_ENABLE_EMERGENCY_EXCEPTION_BUF mp_init_emergency_exception_buf(); #endif #if MICROPY_KBD_EXCEPTION // initialise the exception object for raising KeyboardInterrupt MP_STATE_VM(mp_kbd_exception).base.type = &mp_type_KeyboardInterrupt; MP_STATE_VM(mp_kbd_exception).traceback_alloc = 0; MP_STATE_VM(mp_kbd_exception).traceback_len = 0; MP_STATE_VM(mp_kbd_exception).traceback_data = NULL; MP_STATE_VM(mp_kbd_exception).args = mp_const_empty_tuple; #endif // call port specific initialization if any #ifdef MICROPY_PORT_INIT_FUNC MICROPY_PORT_INIT_FUNC; #endif // optimization disabled by default MP_STATE_VM(mp_optimise_value) = 0; // init global module stuff mp_module_init(); // initialise the __main__ module mp_obj_dict_init(&MP_STATE_VM(dict_main), 1); mp_obj_dict_store(MP_OBJ_FROM_PTR(&MP_STATE_VM(dict_main)), MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR___main__)); // locals = globals for outer module (see Objects/frameobject.c/PyFrame_New()) MP_STATE_CTX(dict_locals) = MP_STATE_CTX(dict_globals) = &MP_STATE_VM(dict_main); #if MICROPY_CAN_OVERRIDE_BUILTINS // start with no extensions to builtins MP_STATE_VM(mp_module_builtins_override_dict) = NULL; #endif #if MICROPY_FSUSERMOUNT // zero out the pointers to the user-mounted devices memset(MP_STATE_VM(fs_user_mount), 0, sizeof(MP_STATE_VM(fs_user_mount))); #endif #if MICROPY_PY_THREAD_GIL mp_thread_mutex_init(&MP_STATE_VM(gil_mutex)); #endif MP_THREAD_GIL_ENTER(); } void mp_deinit(void) { //mp_obj_dict_free(&dict_main); mp_module_deinit(); // call port specific deinitialization if any #ifdef MICROPY_PORT_INIT_FUNC MICROPY_PORT_DEINIT_FUNC; #endif } mp_obj_t mp_load_name(qstr qst) { // logic: search locals, globals, builtins DEBUG_OP_printf("load name %s\n", qstr_str(qst)); // If we're at the outer scope (locals == globals), dispatch to load_global right away if (MP_STATE_CTX(dict_locals) != MP_STATE_CTX(dict_globals)) { mp_map_elem_t *elem = mp_map_lookup(&MP_STATE_CTX(dict_locals)->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP); if (elem != NULL) { return elem->value; } } return mp_load_global(qst); } mp_obj_t mp_load_global(qstr qst) { // logic: search globals, builtins DEBUG_OP_printf("load global %s\n", qstr_str(qst)); mp_map_elem_t *elem = mp_map_lookup(&MP_STATE_CTX(dict_globals)->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP); if (elem == NULL) { #if MICROPY_CAN_OVERRIDE_BUILTINS if (MP_STATE_VM(mp_module_builtins_override_dict) != NULL) { // lookup in additional dynamic table of builtins first elem = mp_map_lookup(&MP_STATE_VM(mp_module_builtins_override_dict)->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP); if (elem != NULL) { return elem->value; } } #endif elem = mp_map_lookup((mp_map_t*)&mp_module_builtins_globals.map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP); if (elem == NULL) { if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { mp_raise_msg(&mp_type_NameError, "name not defined"); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_NameError, "name '%q' is not defined", qst)); } } } return elem->value; } mp_obj_t mp_load_build_class(void) { DEBUG_OP_printf("load_build_class\n"); #if MICROPY_CAN_OVERRIDE_BUILTINS if (MP_STATE_VM(mp_module_builtins_override_dict) != NULL) { // lookup in additional dynamic table of builtins first mp_map_elem_t *elem = mp_map_lookup(&MP_STATE_VM(mp_module_builtins_override_dict)->map, MP_OBJ_NEW_QSTR(MP_QSTR___build_class__), MP_MAP_LOOKUP); if (elem != NULL) { return elem->value; } } #endif return MP_OBJ_FROM_PTR(&mp_builtin___build_class___obj); } void mp_store_name(qstr qst, mp_obj_t obj) { DEBUG_OP_printf("store name %s <- %p\n", qstr_str(qst), obj); mp_obj_dict_store(MP_OBJ_FROM_PTR(MP_STATE_CTX(dict_locals)), MP_OBJ_NEW_QSTR(qst), obj); } void mp_delete_name(qstr qst) { DEBUG_OP_printf("delete name %s\n", qstr_str(qst)); // TODO convert KeyError to NameError if qst not found mp_obj_dict_delete(MP_OBJ_FROM_PTR(MP_STATE_CTX(dict_locals)), MP_OBJ_NEW_QSTR(qst)); } void mp_store_global(qstr qst, mp_obj_t obj) { DEBUG_OP_printf("store global %s <- %p\n", qstr_str(qst), obj); mp_obj_dict_store(MP_OBJ_FROM_PTR(MP_STATE_CTX(dict_globals)), MP_OBJ_NEW_QSTR(qst), obj); } void mp_delete_global(qstr qst) { DEBUG_OP_printf("delete global %s\n", qstr_str(qst)); // TODO convert KeyError to NameError if qst not found mp_obj_dict_delete(MP_OBJ_FROM_PTR(MP_STATE_CTX(dict_globals)), MP_OBJ_NEW_QSTR(qst)); } mp_obj_t mp_unary_op(mp_uint_t op, mp_obj_t arg) { DEBUG_OP_printf("unary " UINT_FMT " %p\n", op, arg); if (op == MP_UNARY_OP_NOT) { // "not x" is the negative of whether "x" is true per Python semantics return mp_obj_new_bool(mp_obj_is_true(arg) == 0); } else if (MP_OBJ_IS_SMALL_INT(arg)) { mp_int_t val = MP_OBJ_SMALL_INT_VALUE(arg); switch (op) { case MP_UNARY_OP_BOOL: return mp_obj_new_bool(val != 0); case MP_UNARY_OP_HASH: return arg; case MP_UNARY_OP_POSITIVE: return arg; case MP_UNARY_OP_NEGATIVE: // check for overflow if (val == MP_SMALL_INT_MIN) { return mp_obj_new_int(-val); } else { return MP_OBJ_NEW_SMALL_INT(-val); } case MP_UNARY_OP_INVERT: return MP_OBJ_NEW_SMALL_INT(~val); default: assert(0); return arg; } } else if (op == MP_UNARY_OP_HASH && MP_OBJ_IS_STR_OR_BYTES(arg)) { // fast path for hashing str/bytes GET_STR_HASH(arg, h); if (h == 0) { GET_STR_DATA_LEN(arg, data, len); h = qstr_compute_hash(data, len); } return MP_OBJ_NEW_SMALL_INT(h); } else { mp_obj_type_t *type = mp_obj_get_type(arg); if (type->unary_op != NULL) { mp_obj_t result = type->unary_op(op, arg); if (result != MP_OBJ_NULL) { return result; } } if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { mp_raise_msg(&mp_type_TypeError, "unsupported type for operator"); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "unsupported type for %q: '%s'", mp_unary_op_method_name[op], mp_obj_get_type_str(arg))); } } } mp_obj_t mp_binary_op(mp_uint_t op, mp_obj_t lhs, mp_obj_t rhs) { DEBUG_OP_printf("binary " UINT_FMT " %p %p\n", op, lhs, rhs); // TODO correctly distinguish inplace operators for mutable objects // lookup logic that CPython uses for +=: // check for implemented += // then check for implemented + // then check for implemented seq.inplace_concat // then check for implemented seq.concat // then fail // note that list does not implement + or +=, so that inplace_concat is reached first for += // deal with is if (op == MP_BINARY_OP_IS) { return mp_obj_new_bool(lhs == rhs); } // deal with == and != for all types if (op == MP_BINARY_OP_EQUAL || op == MP_BINARY_OP_NOT_EQUAL) { if (mp_obj_equal(lhs, rhs)) { if (op == MP_BINARY_OP_EQUAL) { return mp_const_true; } else { return mp_const_false; } } else { if (op == MP_BINARY_OP_EQUAL) { return mp_const_false; } else { return mp_const_true; } } } // deal with exception_match for all types if (op == MP_BINARY_OP_EXCEPTION_MATCH) { // rhs must be issubclass(rhs, BaseException) if (mp_obj_is_exception_type(rhs)) { if (mp_obj_exception_match(lhs, rhs)) { return mp_const_true; } else { return mp_const_false; } } else if (MP_OBJ_IS_TYPE(rhs, &mp_type_tuple)) { mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(rhs); for (mp_uint_t i = 0; i < tuple->len; i++) { rhs = tuple->items[i]; if (!mp_obj_is_exception_type(rhs)) { goto unsupported_op; } if (mp_obj_exception_match(lhs, rhs)) { return mp_const_true; } } return mp_const_false; } goto unsupported_op; } if (MP_OBJ_IS_SMALL_INT(lhs)) { mp_int_t lhs_val = MP_OBJ_SMALL_INT_VALUE(lhs); if (MP_OBJ_IS_SMALL_INT(rhs)) { mp_int_t rhs_val = MP_OBJ_SMALL_INT_VALUE(rhs); // This is a binary operation: lhs_val op rhs_val // We need to be careful to handle overflow; see CERT INT32-C // Operations that can overflow: // + result always fits in mp_int_t, then handled by SMALL_INT check // - result always fits in mp_int_t, then handled by SMALL_INT check // * checked explicitly // / if lhs=MIN and rhs=-1; result always fits in mp_int_t, then handled by SMALL_INT check // % if lhs=MIN and rhs=-1; result always fits in mp_int_t, then handled by SMALL_INT check // << checked explicitly switch (op) { case MP_BINARY_OP_OR: case MP_BINARY_OP_INPLACE_OR: lhs_val |= rhs_val; break; case MP_BINARY_OP_XOR: case MP_BINARY_OP_INPLACE_XOR: lhs_val ^= rhs_val; break; case MP_BINARY_OP_AND: case MP_BINARY_OP_INPLACE_AND: lhs_val &= rhs_val; break; case MP_BINARY_OP_LSHIFT: case MP_BINARY_OP_INPLACE_LSHIFT: { if (rhs_val < 0) { // negative shift not allowed mp_raise_msg(&mp_type_ValueError, "negative shift count"); } else if (rhs_val >= (mp_int_t)BITS_PER_WORD || lhs_val > (MP_SMALL_INT_MAX >> rhs_val) || lhs_val < (MP_SMALL_INT_MIN >> rhs_val)) { // left-shift will overflow, so use higher precision integer lhs = mp_obj_new_int_from_ll(lhs_val); goto generic_binary_op; } else { // use standard precision lhs_val <<= rhs_val; } break; } case MP_BINARY_OP_RSHIFT: case MP_BINARY_OP_INPLACE_RSHIFT: if (rhs_val < 0) { // negative shift not allowed mp_raise_msg(&mp_type_ValueError, "negative shift count"); } else { // standard precision is enough for right-shift if (rhs_val >= (mp_int_t)BITS_PER_WORD) { // Shifting to big amounts is underfined behavior // in C and is CPU-dependent; propagate sign bit. rhs_val = BITS_PER_WORD - 1; } lhs_val >>= rhs_val; } break; case MP_BINARY_OP_ADD: case MP_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break; case MP_BINARY_OP_SUBTRACT: case MP_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break; case MP_BINARY_OP_MULTIPLY: case MP_BINARY_OP_INPLACE_MULTIPLY: { // If long long type exists and is larger than mp_int_t, then // we can use the following code to perform overflow-checked multiplication. // Otherwise (eg in x64 case) we must use mp_small_int_mul_overflow. #if 0 // compute result using long long precision long long res = (long long)lhs_val * (long long)rhs_val; if (res > MP_SMALL_INT_MAX || res < MP_SMALL_INT_MIN) { // result overflowed SMALL_INT, so return higher precision integer return mp_obj_new_int_from_ll(res); } else { // use standard precision lhs_val = (mp_int_t)res; } #endif if (mp_small_int_mul_overflow(lhs_val, rhs_val)) { // use higher precision lhs = mp_obj_new_int_from_ll(lhs_val); goto generic_binary_op; } else { // use standard precision return MP_OBJ_NEW_SMALL_INT(lhs_val * rhs_val); } break; } case MP_BINARY_OP_FLOOR_DIVIDE: case MP_BINARY_OP_INPLACE_FLOOR_DIVIDE: if (rhs_val == 0) { goto zero_division; } lhs_val = mp_small_int_floor_divide(lhs_val, rhs_val); break; #if MICROPY_PY_BUILTINS_FLOAT case MP_BINARY_OP_TRUE_DIVIDE: case MP_BINARY_OP_INPLACE_TRUE_DIVIDE: if (rhs_val == 0) { goto zero_division; } return mp_obj_new_float((mp_float_t)lhs_val / (mp_float_t)rhs_val); #endif case MP_BINARY_OP_MODULO: case MP_BINARY_OP_INPLACE_MODULO: { if (rhs_val == 0) { goto zero_division; } lhs_val = mp_small_int_modulo(lhs_val, rhs_val); break; } case MP_BINARY_OP_POWER: case MP_BINARY_OP_INPLACE_POWER: if (rhs_val < 0) { #if MICROPY_PY_BUILTINS_FLOAT lhs = mp_obj_new_float(lhs_val); goto generic_binary_op; #else mp_raise_msg(&mp_type_ValueError, "negative power with no float support"); #endif } else { mp_int_t ans = 1; while (rhs_val > 0) { if (rhs_val & 1) { if (mp_small_int_mul_overflow(ans, lhs_val)) { goto power_overflow; } ans *= lhs_val; } if (rhs_val == 1) { break; } rhs_val /= 2; if (mp_small_int_mul_overflow(lhs_val, lhs_val)) { goto power_overflow; } lhs_val *= lhs_val; } lhs_val = ans; } break; power_overflow: // use higher precision lhs = mp_obj_new_int_from_ll(MP_OBJ_SMALL_INT_VALUE(lhs)); goto generic_binary_op; case MP_BINARY_OP_DIVMOD: { if (rhs_val == 0) { goto zero_division; } // to reduce stack usage we don't pass a temp array of the 2 items mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(mp_obj_new_tuple(2, NULL)); tuple->items[0] = MP_OBJ_NEW_SMALL_INT(mp_small_int_floor_divide(lhs_val, rhs_val)); tuple->items[1] = MP_OBJ_NEW_SMALL_INT(mp_small_int_modulo(lhs_val, rhs_val)); return MP_OBJ_FROM_PTR(tuple); } case MP_BINARY_OP_LESS: return mp_obj_new_bool(lhs_val < rhs_val); break; case MP_BINARY_OP_MORE: return mp_obj_new_bool(lhs_val > rhs_val); break; case MP_BINARY_OP_LESS_EQUAL: return mp_obj_new_bool(lhs_val <= rhs_val); break; case MP_BINARY_OP_MORE_EQUAL: return mp_obj_new_bool(lhs_val >= rhs_val); break; default: goto unsupported_op; } // TODO: We just should make mp_obj_new_int() inline and use that if (MP_SMALL_INT_FITS(lhs_val)) { return MP_OBJ_NEW_SMALL_INT(lhs_val); } else { return mp_obj_new_int(lhs_val); } #if MICROPY_PY_BUILTINS_FLOAT } else if (mp_obj_is_float(rhs)) { mp_obj_t res = mp_obj_float_binary_op(op, lhs_val, rhs); if (res == MP_OBJ_NULL) { goto unsupported_op; } else { return res; } #if MICROPY_PY_BUILTINS_COMPLEX } else if (MP_OBJ_IS_TYPE(rhs, &mp_type_complex)) { mp_obj_t res = mp_obj_complex_binary_op(op, lhs_val, 0, rhs); if (res == MP_OBJ_NULL) { goto unsupported_op; } else { return res; } #endif #endif } } /* deal with `in` * * NOTE `a in b` is `b.__contains__(a)`, hence why the generic dispatch * needs to go below with swapped arguments */ if (op == MP_BINARY_OP_IN) { mp_obj_type_t *type = mp_obj_get_type(rhs); if (type->binary_op != NULL) { mp_obj_t res = type->binary_op(op, rhs, lhs); if (res != MP_OBJ_NULL) { return res; } } if (type->getiter != NULL) { /* second attempt, walk the iterator */ mp_obj_t iter = mp_getiter(rhs); mp_obj_t next; while ((next = mp_iternext(iter)) != MP_OBJ_STOP_ITERATION) { if (mp_obj_equal(next, lhs)) { return mp_const_true; } } return mp_const_false; } if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { mp_raise_msg(&mp_type_TypeError, "object not iterable"); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object is not iterable", mp_obj_get_type_str(rhs))); } } // generic binary_op supplied by type mp_obj_type_t *type; generic_binary_op: type = mp_obj_get_type(lhs); if (type->binary_op != NULL) { mp_obj_t result = type->binary_op(op, lhs, rhs); if (result != MP_OBJ_NULL) { return result; } } // TODO implement dispatch for reverse binary ops unsupported_op: if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { mp_raise_msg(&mp_type_TypeError, "unsupported type for operator"); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "unsupported types for %q: '%s', '%s'", mp_binary_op_method_name[op], mp_obj_get_type_str(lhs), mp_obj_get_type_str(rhs))); } zero_division: mp_raise_msg(&mp_type_ZeroDivisionError, "division by zero"); } mp_obj_t mp_call_function_0(mp_obj_t fun) { return mp_call_function_n_kw(fun, 0, 0, NULL); } mp_obj_t mp_call_function_1(mp_obj_t fun, mp_obj_t arg) { return mp_call_function_n_kw(fun, 1, 0, &arg); } mp_obj_t mp_call_function_2(mp_obj_t fun, mp_obj_t arg1, mp_obj_t arg2) { mp_obj_t args[2]; args[0] = arg1; args[1] = arg2; return mp_call_function_n_kw(fun, 2, 0, args); } // args contains, eg: arg0 arg1 key0 value0 key1 value1 mp_obj_t mp_call_function_n_kw(mp_obj_t fun_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { // TODO improve this: fun object can specify its type and we parse here the arguments, // passing to the function arrays of fixed and keyword arguments DEBUG_OP_printf("calling function %p(n_args=" UINT_FMT ", n_kw=" UINT_FMT ", args=%p)\n", fun_in, n_args, n_kw, args); // get the type mp_obj_type_t *type = mp_obj_get_type(fun_in); // do the call if (type->call != NULL) { return type->call(fun_in, n_args, n_kw, args); } if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { mp_raise_msg(&mp_type_TypeError, "object not callable"); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object is not callable", mp_obj_get_type_str(fun_in))); } } // args contains: fun self/NULL arg(0) ... arg(n_args-2) arg(n_args-1) kw_key(0) kw_val(0) ... kw_key(n_kw-1) kw_val(n_kw-1) // if n_args==0 and n_kw==0 then there are only fun and self/NULL mp_obj_t mp_call_method_n_kw(mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { DEBUG_OP_printf("call method (fun=%p, self=%p, n_args=" UINT_FMT ", n_kw=" UINT_FMT ", args=%p)\n", args[0], args[1], n_args, n_kw, args); int adjust = (args[1] == MP_OBJ_NULL) ? 0 : 1; return mp_call_function_n_kw(args[0], n_args + adjust, n_kw, args + 2 - adjust); } // This function only needs to be exposed externally when in stackless mode. #if !MICROPY_STACKLESS STATIC #endif void mp_call_prepare_args_n_kw_var(bool have_self, mp_uint_t n_args_n_kw, const mp_obj_t *args, mp_call_args_t *out_args) { mp_obj_t fun = *args++; mp_obj_t self = MP_OBJ_NULL; if (have_self) { self = *args++; // may be MP_OBJ_NULL } uint n_args = n_args_n_kw & 0xff; uint n_kw = (n_args_n_kw >> 8) & 0xff; mp_obj_t pos_seq = args[n_args + 2 * n_kw]; // may be MP_OBJ_NULL mp_obj_t kw_dict = args[n_args + 2 * n_kw + 1]; // may be MP_OBJ_NULL DEBUG_OP_printf("call method var (fun=%p, self=%p, n_args=%u, n_kw=%u, args=%p, seq=%p, dict=%p)\n", fun, self, n_args, n_kw, args, pos_seq, kw_dict); // We need to create the following array of objects: // args[0 .. n_args] unpacked(pos_seq) args[n_args .. n_args + 2 * n_kw] unpacked(kw_dict) // TODO: optimize one day to avoid constructing new arg array? Will be hard. // The new args array mp_obj_t *args2; uint args2_alloc; uint args2_len = 0; // Try to get a hint for the size of the kw_dict uint kw_dict_len = 0; if (kw_dict != MP_OBJ_NULL && MP_OBJ_IS_TYPE(kw_dict, &mp_type_dict)) { kw_dict_len = mp_obj_dict_len(kw_dict); } // Extract the pos_seq sequence to the new args array. // Note that it can be arbitrary iterator. if (pos_seq == MP_OBJ_NULL) { // no sequence // allocate memory for the new array of args args2_alloc = 1 + n_args + 2 * (n_kw + kw_dict_len); args2 = m_new(mp_obj_t, args2_alloc); // copy the self if (self != MP_OBJ_NULL) { args2[args2_len++] = self; } // copy the fixed pos args mp_seq_copy(args2 + args2_len, args, n_args, mp_obj_t); args2_len += n_args; } else if (MP_OBJ_IS_TYPE(pos_seq, &mp_type_tuple) || MP_OBJ_IS_TYPE(pos_seq, &mp_type_list)) { // optimise the case of a tuple and list // get the items mp_uint_t len; mp_obj_t *items; mp_obj_get_array(pos_seq, &len, &items); // allocate memory for the new array of args args2_alloc = 1 + n_args + len + 2 * (n_kw + kw_dict_len); args2 = m_new(mp_obj_t, args2_alloc); // copy the self if (self != MP_OBJ_NULL) { args2[args2_len++] = self; } // copy the fixed and variable position args mp_seq_cat(args2 + args2_len, args, n_args, items, len, mp_obj_t); args2_len += n_args + len; } else { // generic iterator // allocate memory for the new array of args args2_alloc = 1 + n_args + 2 * (n_kw + kw_dict_len) + 3; args2 = m_new(mp_obj_t, args2_alloc); // copy the self if (self != MP_OBJ_NULL) { args2[args2_len++] = self; } // copy the fixed position args mp_seq_copy(args2 + args2_len, args, n_args, mp_obj_t); args2_len += n_args; // extract the variable position args from the iterator mp_obj_t iterable = mp_getiter(pos_seq); mp_obj_t item; while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) { if (args2_len >= args2_alloc) { args2 = m_renew(mp_obj_t, args2, args2_alloc, args2_alloc * 2); args2_alloc *= 2; } args2[args2_len++] = item; } } // The size of the args2 array now is the number of positional args. uint pos_args_len = args2_len; // Copy the fixed kw args. mp_seq_copy(args2 + args2_len, args + n_args, 2 * n_kw, mp_obj_t); args2_len += 2 * n_kw; // Extract (key,value) pairs from kw_dict dictionary and append to args2. // Note that it can be arbitrary iterator. if (kw_dict == MP_OBJ_NULL) { // pass } else if (MP_OBJ_IS_TYPE(kw_dict, &mp_type_dict)) { // dictionary mp_map_t *map = mp_obj_dict_get_map(kw_dict); assert(args2_len + 2 * map->used <= args2_alloc); // should have enough, since kw_dict_len is in this case hinted correctly above for (mp_uint_t i = 0; i < map->alloc; i++) { if (MP_MAP_SLOT_IS_FILLED(map, i)) { // the key must be a qstr, so intern it if it's a string mp_obj_t key = map->table[i].key; if (MP_OBJ_IS_TYPE(key, &mp_type_str)) { key = mp_obj_str_intern(key); } args2[args2_len++] = key; args2[args2_len++] = map->table[i].value; } } } else { // generic mapping: // - call keys() to get an iterable of all keys in the mapping // - call __getitem__ for each key to get the corresponding value // get the keys iterable mp_obj_t dest[3]; mp_load_method(kw_dict, MP_QSTR_keys, dest); mp_obj_t iterable = mp_getiter(mp_call_method_n_kw(0, 0, dest)); mp_obj_t key; while ((key = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) { // expand size of args array if needed if (args2_len + 1 >= args2_alloc) { uint new_alloc = args2_alloc * 2; if (new_alloc < 4) { new_alloc = 4; } args2 = m_renew(mp_obj_t, args2, args2_alloc, new_alloc); args2_alloc = new_alloc; } // the key must be a qstr, so intern it if it's a string if (MP_OBJ_IS_TYPE(key, &mp_type_str)) { key = mp_obj_str_intern(key); } // get the value corresponding to the key mp_load_method(kw_dict, MP_QSTR___getitem__, dest); dest[2] = key; mp_obj_t value = mp_call_method_n_kw(1, 0, dest); // store the key/value pair in the argument array args2[args2_len++] = key; args2[args2_len++] = value; } } out_args->fun = fun; out_args->args = args2; out_args->n_args = pos_args_len; out_args->n_kw = (args2_len - pos_args_len) / 2; out_args->n_alloc = args2_alloc; } mp_obj_t mp_call_method_n_kw_var(bool have_self, mp_uint_t n_args_n_kw, const mp_obj_t *args) { mp_call_args_t out_args; mp_call_prepare_args_n_kw_var(have_self, n_args_n_kw, args, &out_args); mp_obj_t res = mp_call_function_n_kw(out_args.fun, out_args.n_args, out_args.n_kw, out_args.args); m_del(mp_obj_t, out_args.args, out_args.n_alloc); return res; } // unpacked items are stored in reverse order into the array pointed to by items void mp_unpack_sequence(mp_obj_t seq_in, mp_uint_t num, mp_obj_t *items) { mp_uint_t seq_len; if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(seq_in, &mp_type_list)) { mp_obj_t *seq_items; if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple)) { mp_obj_tuple_get(seq_in, &seq_len, &seq_items); } else { mp_obj_list_get(seq_in, &seq_len, &seq_items); } if (seq_len < num) { goto too_short; } else if (seq_len > num) { goto too_long; } for (mp_uint_t i = 0; i < num; i++) { items[i] = seq_items[num - 1 - i]; } } else { mp_obj_t iterable = mp_getiter(seq_in); for (seq_len = 0; seq_len < num; seq_len++) { mp_obj_t el = mp_iternext(iterable); if (el == MP_OBJ_STOP_ITERATION) { goto too_short; } items[num - 1 - seq_len] = el; } if (mp_iternext(iterable) != MP_OBJ_STOP_ITERATION) { goto too_long; } } return; too_short: if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { mp_raise_msg(&mp_type_ValueError, "wrong number of values to unpack"); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "need more than %d values to unpack", (int)seq_len)); } too_long: if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { mp_raise_msg(&mp_type_ValueError, "wrong number of values to unpack"); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "too many values to unpack (expected %d)", (int)num)); } } // unpacked items are stored in reverse order into the array pointed to by items void mp_unpack_ex(mp_obj_t seq_in, mp_uint_t num_in, mp_obj_t *items) { mp_uint_t num_left = num_in & 0xff; mp_uint_t num_right = (num_in >> 8) & 0xff; DEBUG_OP_printf("unpack ex " UINT_FMT " " UINT_FMT "\n", num_left, num_right); mp_uint_t seq_len; if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(seq_in, &mp_type_list)) { mp_obj_t *seq_items; if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple)) { mp_obj_tuple_get(seq_in, &seq_len, &seq_items); } else { if (num_left == 0 && num_right == 0) { // *a, = b # sets a to b if b is a list items[0] = seq_in; return; } mp_obj_list_get(seq_in, &seq_len, &seq_items); } if (seq_len < num_left + num_right) { goto too_short; } for (mp_uint_t i = 0; i < num_right; i++) { items[i] = seq_items[seq_len - 1 - i]; } items[num_right] = mp_obj_new_list(seq_len - num_left - num_right, seq_items + num_left); for (mp_uint_t i = 0; i < num_left; i++) { items[num_right + 1 + i] = seq_items[num_left - 1 - i]; } } else { // Generic iterable; this gets a bit messy: we unpack known left length to the // items destination array, then the rest to a dynamically created list. Once the // iterable is exhausted, we take from this list for the right part of the items. // TODO Improve to waste less memory in the dynamically created list. mp_obj_t iterable = mp_getiter(seq_in); mp_obj_t item; for (seq_len = 0; seq_len < num_left; seq_len++) { item = mp_iternext(iterable); if (item == MP_OBJ_STOP_ITERATION) { goto too_short; } items[num_left + num_right + 1 - 1 - seq_len] = item; } mp_obj_list_t *rest = MP_OBJ_TO_PTR(mp_obj_new_list(0, NULL)); while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) { mp_obj_list_append(MP_OBJ_FROM_PTR(rest), item); } if (rest->len < num_right) { goto too_short; } items[num_right] = MP_OBJ_FROM_PTR(rest); for (mp_uint_t i = 0; i < num_right; i++) { items[num_right - 1 - i] = rest->items[rest->len - num_right + i]; } mp_obj_list_set_len(MP_OBJ_FROM_PTR(rest), rest->len - num_right); } return; too_short: if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { mp_raise_msg(&mp_type_ValueError, "wrong number of values to unpack"); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "need more than %d values to unpack", (int)seq_len)); } } mp_obj_t mp_load_attr(mp_obj_t base, qstr attr) { DEBUG_OP_printf("load attr %p.%s\n", base, qstr_str(attr)); // use load_method mp_obj_t dest[2]; mp_load_method(base, attr, dest); if (dest[1] == MP_OBJ_NULL) { // load_method returned just a normal attribute return dest[0]; } else { // load_method returned a method, so build a bound method object return mp_obj_new_bound_meth(dest[0], dest[1]); } } #if MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG // The following "checked fun" type is local to the mp_convert_member_lookup // function, and serves to check that the first argument to a builtin function // has the correct type. typedef struct _mp_obj_checked_fun_t { mp_obj_base_t base; const mp_obj_type_t *type; mp_obj_t fun; } mp_obj_checked_fun_t; STATIC mp_obj_t checked_fun_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_obj_checked_fun_t *self = MP_OBJ_TO_PTR(self_in); if (n_args > 0) { const mp_obj_type_t *arg0_type = mp_obj_get_type(args[0]); if (arg0_type != self->type) { if (MICROPY_ERROR_REPORTING != MICROPY_ERROR_REPORTING_DETAILED) { mp_raise_msg(&mp_type_TypeError, "argument has wrong type"); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "argument should be a '%q' not a '%q'", self->type->name, arg0_type->name)); } } } return mp_call_function_n_kw(self->fun, n_args, n_kw, args); } STATIC const mp_obj_type_t mp_type_checked_fun = { { &mp_type_type }, .name = MP_QSTR_function, .call = checked_fun_call, }; STATIC mp_obj_t mp_obj_new_checked_fun(const mp_obj_type_t *type, mp_obj_t fun) { mp_obj_checked_fun_t *o = m_new_obj(mp_obj_checked_fun_t); o->base.type = &mp_type_checked_fun; o->type = type; o->fun = fun; return MP_OBJ_FROM_PTR(o); } #endif // MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG // Given a member that was extracted from an instance, convert it correctly // and put the result in the dest[] array for a possible method call. // Conversion means dealing with static/class methods, callables, and values. // see http://docs.python.org/3/howto/descriptor.html void mp_convert_member_lookup(mp_obj_t self, const mp_obj_type_t *type, mp_obj_t member, mp_obj_t *dest) { if (MP_OBJ_IS_TYPE(member, &mp_type_staticmethod)) { // return just the function dest[0] = ((mp_obj_static_class_method_t*)MP_OBJ_TO_PTR(member))->fun; } else if (MP_OBJ_IS_TYPE(member, &mp_type_classmethod)) { // return a bound method, with self being the type of this object // this type should be the type of the original instance, not the base // type (which is what is passed in the 'type' argument to this function) if (self != MP_OBJ_NULL) { type = mp_obj_get_type(self); } dest[0] = ((mp_obj_static_class_method_t*)MP_OBJ_TO_PTR(member))->fun; dest[1] = MP_OBJ_FROM_PTR(type); } else if (MP_OBJ_IS_TYPE(member, &mp_type_type)) { // Don't try to bind types (even though they're callable) dest[0] = member; } else if (MP_OBJ_IS_FUN(member) || (MP_OBJ_IS_OBJ(member) && (((mp_obj_base_t*)MP_OBJ_TO_PTR(member))->type->name == MP_QSTR_closure || ((mp_obj_base_t*)MP_OBJ_TO_PTR(member))->type->name == MP_QSTR_generator))) { // only functions, closures and generators objects can be bound to self #if MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG const mp_obj_type_t *m_type = ((mp_obj_base_t*)MP_OBJ_TO_PTR(member))->type; if (self == MP_OBJ_NULL && (m_type == &mp_type_fun_builtin_0 || m_type == &mp_type_fun_builtin_1 || m_type == &mp_type_fun_builtin_2 || m_type == &mp_type_fun_builtin_3 || m_type == &mp_type_fun_builtin_var)) { // we extracted a builtin method without a first argument, so we must // wrap this function in a type checker dest[0] = mp_obj_new_checked_fun(type, member); } else #endif { // return a bound method, with self being this object dest[0] = member; dest[1] = self; } } else { // class member is a value, so just return that value dest[0] = member; } } // no attribute found, returns: dest[0] == MP_OBJ_NULL, dest[1] == MP_OBJ_NULL // normal attribute found, returns: dest[0] == , dest[1] == MP_OBJ_NULL // method attribute found, returns: dest[0] == , dest[1] == void mp_load_method_maybe(mp_obj_t obj, qstr attr, mp_obj_t *dest) { // clear output to indicate no attribute/method found yet dest[0] = MP_OBJ_NULL; dest[1] = MP_OBJ_NULL; // get the type mp_obj_type_t *type = mp_obj_get_type(obj); // look for built-in names if (0) { #if MICROPY_CPYTHON_COMPAT } else if (attr == MP_QSTR___class__) { // a.__class__ is equivalent to type(a) dest[0] = MP_OBJ_FROM_PTR(type); #endif } else if (attr == MP_QSTR___next__ && type->iternext != NULL) { dest[0] = MP_OBJ_FROM_PTR(&mp_builtin_next_obj); dest[1] = obj; } else if (type->attr != NULL) { // this type can do its own load, so call it type->attr(obj, attr, dest); } else if (type->locals_dict != NULL) { // generic method lookup // this is a lookup in the object (ie not class or type) assert(type->locals_dict->base.type == &mp_type_dict); // Micro Python restriction, for now mp_map_t *locals_map = &type->locals_dict->map; mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP); if (elem != NULL) { mp_convert_member_lookup(obj, type, elem->value, dest); } } } void mp_load_method(mp_obj_t base, qstr attr, mp_obj_t *dest) { DEBUG_OP_printf("load method %p.%s\n", base, qstr_str(attr)); mp_load_method_maybe(base, attr, dest); if (dest[0] == MP_OBJ_NULL) { // no attribute/method called attr if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { mp_raise_msg(&mp_type_AttributeError, "no such attribute"); } else { // following CPython, we give a more detailed error message for type objects if (MP_OBJ_IS_TYPE(base, &mp_type_type)) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_AttributeError, "type object '%q' has no attribute '%q'", ((mp_obj_type_t*)MP_OBJ_TO_PTR(base))->name, attr)); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_AttributeError, "'%s' object has no attribute '%q'", mp_obj_get_type_str(base), attr)); } } } } void mp_store_attr(mp_obj_t base, qstr attr, mp_obj_t value) { DEBUG_OP_printf("store attr %p.%s <- %p\n", base, qstr_str(attr), value); mp_obj_type_t *type = mp_obj_get_type(base); if (type->attr != NULL) { mp_obj_t dest[2] = {MP_OBJ_SENTINEL, value}; type->attr(base, attr, dest); if (dest[0] == MP_OBJ_NULL) { // success return; } } if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { mp_raise_msg(&mp_type_AttributeError, "no such attribute"); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_AttributeError, "'%s' object has no attribute '%q'", mp_obj_get_type_str(base), attr)); } } mp_obj_t mp_getiter(mp_obj_t o_in) { assert(o_in); // check for native getiter (corresponds to __iter__) mp_obj_type_t *type = mp_obj_get_type(o_in); if (type->getiter != NULL) { mp_obj_t iter = type->getiter(o_in); if (iter != MP_OBJ_NULL) { return iter; } } // check for __getitem__ mp_obj_t dest[2]; mp_load_method_maybe(o_in, MP_QSTR___getitem__, dest); if (dest[0] != MP_OBJ_NULL) { // __getitem__ exists, create and return an iterator return mp_obj_new_getitem_iter(dest); } // object not iterable if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { mp_raise_msg(&mp_type_TypeError, "object not iterable"); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object is not iterable", mp_obj_get_type_str(o_in))); } } // may return MP_OBJ_STOP_ITERATION as an optimisation instead of raise StopIteration() // may also raise StopIteration() mp_obj_t mp_iternext_allow_raise(mp_obj_t o_in) { mp_obj_type_t *type = mp_obj_get_type(o_in); if (type->iternext != NULL) { return type->iternext(o_in); } else { // check for __next__ method mp_obj_t dest[2]; mp_load_method_maybe(o_in, MP_QSTR___next__, dest); if (dest[0] != MP_OBJ_NULL) { // __next__ exists, call it and return its result return mp_call_method_n_kw(0, 0, dest); } else { if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { mp_raise_msg(&mp_type_TypeError, "object not an iterator"); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object is not an iterator", mp_obj_get_type_str(o_in))); } } } } // will always return MP_OBJ_STOP_ITERATION instead of raising StopIteration() (or any subclass thereof) // may raise other exceptions mp_obj_t mp_iternext(mp_obj_t o_in) { MP_STACK_CHECK(); // enumerate, filter, map and zip can recursively call mp_iternext mp_obj_type_t *type = mp_obj_get_type(o_in); if (type->iternext != NULL) { return type->iternext(o_in); } else { // check for __next__ method mp_obj_t dest[2]; mp_load_method_maybe(o_in, MP_QSTR___next__, dest); if (dest[0] != MP_OBJ_NULL) { // __next__ exists, call it and return its result nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { mp_obj_t ret = mp_call_method_n_kw(0, 0, dest); nlr_pop(); return ret; } else { if (mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(((mp_obj_base_t*)nlr.ret_val)->type), MP_OBJ_FROM_PTR(&mp_type_StopIteration))) { return MP_OBJ_STOP_ITERATION; } else { nlr_jump(nlr.ret_val); } } } else { if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { mp_raise_msg(&mp_type_TypeError, "object not an iterator"); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object is not an iterator", mp_obj_get_type_str(o_in))); } } } } // TODO: Unclear what to do with StopIterarion exception here. mp_vm_return_kind_t mp_resume(mp_obj_t self_in, mp_obj_t send_value, mp_obj_t throw_value, mp_obj_t *ret_val) { assert((send_value != MP_OBJ_NULL) ^ (throw_value != MP_OBJ_NULL)); mp_obj_type_t *type = mp_obj_get_type(self_in); if (type == &mp_type_gen_instance) { return mp_obj_gen_resume(self_in, send_value, throw_value, ret_val); } if (type->iternext != NULL && send_value == mp_const_none) { mp_obj_t ret = type->iternext(self_in); if (ret != MP_OBJ_STOP_ITERATION) { *ret_val = ret; return MP_VM_RETURN_YIELD; } else { // Emulate raise StopIteration() // Special case, handled in vm.c *ret_val = MP_OBJ_NULL; return MP_VM_RETURN_NORMAL; } } mp_obj_t dest[3]; // Reserve slot for send() arg // Python instance iterator protocol if (send_value == mp_const_none) { mp_load_method_maybe(self_in, MP_QSTR___next__, dest); if (dest[0] != MP_OBJ_NULL) { nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { *ret_val = mp_call_method_n_kw(0, 0, dest); nlr_pop(); return MP_VM_RETURN_YIELD; } else { *ret_val = MP_OBJ_FROM_PTR(nlr.ret_val); return MP_VM_RETURN_EXCEPTION; } } } // Either python instance generator protocol, or native object // generator protocol. if (send_value != MP_OBJ_NULL) { mp_load_method(self_in, MP_QSTR_send, dest); dest[2] = send_value; // TODO: This should have exception wrapping like __next__ case // above. Not done right away to think how to optimize native // generators better, see: // https://github.com/micropython/micropython/issues/2628 *ret_val = mp_call_method_n_kw(1, 0, dest); return MP_VM_RETURN_YIELD; } if (throw_value != MP_OBJ_NULL) { if (mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(mp_obj_get_type(throw_value)), MP_OBJ_FROM_PTR(&mp_type_GeneratorExit))) { mp_load_method_maybe(self_in, MP_QSTR_close, dest); if (dest[0] != MP_OBJ_NULL) { // TODO: Exceptions raised in close() are not propagated, // printed to sys.stderr *ret_val = mp_call_method_n_kw(0, 0, dest); // We assume one can't "yield" from close() return MP_VM_RETURN_NORMAL; } } mp_load_method_maybe(self_in, MP_QSTR_throw, dest); if (dest[0] != MP_OBJ_NULL) { *ret_val = mp_call_method_n_kw(1, 0, &throw_value); // If .throw() method returned, we assume it's value to yield // - any exception would be thrown with nlr_raise(). return MP_VM_RETURN_YIELD; } // If there's nowhere to throw exception into, then we assume that object // is just incapable to handle it, so any exception thrown into it // will be propagated up. This behavior is approved by test_pep380.py // test_delegation_of_close_to_non_generator(), // test_delegating_throw_to_non_generator() *ret_val = throw_value; return MP_VM_RETURN_EXCEPTION; } assert(0); return MP_VM_RETURN_NORMAL; // Should be unreachable } mp_obj_t mp_make_raise_obj(mp_obj_t o) { DEBUG_printf("raise %p\n", o); if (mp_obj_is_exception_type(o)) { // o is an exception type (it is derived from BaseException (or is BaseException)) // create and return a new exception instance by calling o // TODO could have an option to disable traceback, then builtin exceptions (eg TypeError) // could have const instances in ROM which we return here instead return mp_call_function_n_kw(o, 0, 0, NULL); } else if (mp_obj_is_exception_instance(o)) { // o is an instance of an exception, so use it as the exception return o; } else { // o cannot be used as an exception, so return a type error (which will be raised by the caller) return mp_obj_new_exception_msg(&mp_type_TypeError, "exceptions must derive from BaseException"); } } mp_obj_t mp_import_name(qstr name, mp_obj_t fromlist, mp_obj_t level) { DEBUG_printf("import name '%s' level=%d\n", qstr_str(name), MP_OBJ_SMALL_INT_VALUE(level)); // build args array mp_obj_t args[5]; args[0] = MP_OBJ_NEW_QSTR(name); args[1] = mp_const_none; // TODO should be globals args[2] = mp_const_none; // TODO should be locals args[3] = fromlist; args[4] = level; // must be 0; we don't yet support other values // TODO lookup __import__ and call that instead of going straight to builtin implementation return mp_builtin___import__(5, args); } mp_obj_t mp_import_from(mp_obj_t module, qstr name) { DEBUG_printf("import from %p %s\n", module, qstr_str(name)); mp_obj_t dest[2]; mp_load_method_maybe(module, name, dest); if (dest[1] != MP_OBJ_NULL) { // Hopefully we can't import bound method from an object import_error: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ImportError, "cannot import name %q", name)); } if (dest[0] != MP_OBJ_NULL) { return dest[0]; } // See if it's a package, then can try FS import if (!mp_obj_is_package(module)) { goto import_error; } mp_load_method_maybe(module, MP_QSTR___name__, dest); mp_uint_t pkg_name_len; const char *pkg_name = mp_obj_str_get_data(dest[0], &pkg_name_len); const uint dot_name_len = pkg_name_len + 1 + qstr_len(name); char *dot_name = alloca(dot_name_len); memcpy(dot_name, pkg_name, pkg_name_len); dot_name[pkg_name_len] = '.'; memcpy(dot_name + pkg_name_len + 1, qstr_str(name), qstr_len(name)); qstr dot_name_q = qstr_from_strn(dot_name, dot_name_len); mp_obj_t args[5]; args[0] = MP_OBJ_NEW_QSTR(dot_name_q); args[1] = mp_const_none; // TODO should be globals args[2] = mp_const_none; // TODO should be locals args[3] = mp_const_true; // Pass sentinel "non empty" value to force returning of leaf module args[4] = MP_OBJ_NEW_SMALL_INT(0); // TODO lookup __import__ and call that instead of going straight to builtin implementation return mp_builtin___import__(5, args); } void mp_import_all(mp_obj_t module) { DEBUG_printf("import all %p\n", module); // TODO: Support __all__ mp_map_t *map = mp_obj_dict_get_map(MP_OBJ_FROM_PTR(mp_obj_module_get_globals(module))); for (mp_uint_t i = 0; i < map->alloc; i++) { if (MP_MAP_SLOT_IS_FILLED(map, i)) { qstr name = MP_OBJ_QSTR_VALUE(map->table[i].key); if (*qstr_str(name) != '_') { mp_store_name(name, map->table[i].value); } } } } #if MICROPY_ENABLE_COMPILER // this is implemented in this file so it can optimise access to locals/globals mp_obj_t mp_parse_compile_execute(mp_lexer_t *lex, mp_parse_input_kind_t parse_input_kind, mp_obj_dict_t *globals, mp_obj_dict_t *locals) { // save context mp_obj_dict_t *volatile old_globals = mp_globals_get(); mp_obj_dict_t *volatile old_locals = mp_locals_get(); // set new context mp_globals_set(globals); mp_locals_set(locals); nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { qstr source_name = lex->source_name; mp_parse_tree_t parse_tree = mp_parse(lex, parse_input_kind); mp_obj_t module_fun = mp_compile(&parse_tree, source_name, MP_EMIT_OPT_NONE, false); mp_obj_t ret; if (MICROPY_PY_BUILTINS_COMPILE && globals == NULL) { // for compile only, return value is the module function ret = module_fun; } else { // execute module function and get return value ret = mp_call_function_0(module_fun); } // finish nlr block, restore context and return value nlr_pop(); mp_globals_set(old_globals); mp_locals_set(old_locals); return ret; } else { // exception; restore context and re-raise same exception mp_globals_set(old_globals); mp_locals_set(old_locals); nlr_jump(nlr.ret_val); } } #endif // MICROPY_ENABLE_COMPILER void *m_malloc_fail(size_t num_bytes) { DEBUG_printf("memory allocation failed, allocating %u bytes\n", (uint)num_bytes); if (0) { // dummy #if MICROPY_ENABLE_GC } else if (gc_is_locked()) { mp_raise_msg(&mp_type_MemoryError, "memory allocation failed, heap is locked"); #endif } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_MemoryError, "memory allocation failed, allocating %u bytes", (uint)num_bytes)); } } NORETURN void mp_raise_msg(const mp_obj_type_t *exc_type, const char *msg) { nlr_raise(mp_obj_new_exception_msg(exc_type, msg)); } NORETURN void mp_raise_ValueError(const char *msg) { mp_raise_msg(&mp_type_ValueError, msg); } NORETURN void mp_raise_TypeError(const char *msg) { mp_raise_msg(&mp_type_TypeError, msg); } NORETURN void mp_raise_OSError(int errno_) { nlr_raise(mp_obj_new_exception_arg1(&mp_type_OSError, MP_OBJ_NEW_SMALL_INT(errno_))); } NORETURN void mp_not_implemented(const char *msg) { mp_raise_msg(&mp_type_NotImplementedError, msg); }