#include #include "stm32f4xx_hal.h" #include "nlr.h" #include "misc.h" #include "mpconfig.h" #include "qstr.h" #include "obj.h" #include "runtime.h" #include "servo.h" // this servo driver uses hardware PWM to drive servos on PA0, PA1, PA2, PA3 = X1, X2, X3, X4 // TIM2 and TIM5 have CH1, CH2, CH3, CH4 on PA0-PA3 respectively // they are both 32-bit counters with 16-bit prescaler // we use TIM2 #define PYB_SERVO_NUM (4) typedef struct _pyb_servo_obj_t { mp_obj_base_t base; uint16_t servo_id; uint16_t time_left; int16_t pulse_accum; uint16_t pulse_cur; uint16_t pulse_dest; } pyb_servo_obj_t; STATIC const mp_obj_type_t servo_obj_type; STATIC pyb_servo_obj_t pyb_servo_obj[PYB_SERVO_NUM]; TIM_HandleTypeDef TIM2_Handle; void servo_init(void) { // TIM2 clock enable __TIM2_CLK_ENABLE(); // set up and enable interrupt HAL_NVIC_SetPriority(TIM2_IRQn, 6, 0); HAL_NVIC_EnableIRQ(TIM2_IRQn); // PWM clock configuration TIM2_Handle.Instance = TIM2; TIM2_Handle.Init.Period = 2000; // timer cycles at 50Hz TIM2_Handle.Init.Prescaler = ((SystemCoreClock / 2) / 100000) - 1; // timer runs at 100kHz TIM2_Handle.Init.ClockDivision = 0; TIM2_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; HAL_TIM_PWM_Init(&TIM2_Handle); // reset servo objects for (int i = 0; i < PYB_SERVO_NUM; i++) { pyb_servo_obj[i].base.type = &servo_obj_type; pyb_servo_obj[i].servo_id = i + 1; pyb_servo_obj[i].time_left = 0; pyb_servo_obj[i].pulse_cur = 150; // units of 10us pyb_servo_obj[i].pulse_dest = 0; } } void servo_timer_irq_callback(void) { bool need_it = false; for (int i = 0; i < PYB_SERVO_NUM; i++) { pyb_servo_obj_t *s = &pyb_servo_obj[i]; if (s->pulse_cur != s->pulse_dest) { if (s->time_left <= 1) { s->pulse_cur = s->pulse_dest; s->time_left = 0; } else { s->pulse_accum += s->pulse_dest - s->pulse_cur; s->pulse_cur += s->pulse_accum / s->time_left; s->pulse_accum %= s->time_left; s->time_left--; need_it = true; } switch (s->servo_id) { case 1: TIM2->CCR1 = s->pulse_cur; break; case 2: TIM2->CCR2 = s->pulse_cur; break; case 3: TIM2->CCR3 = s->pulse_cur; break; case 4: TIM2->CCR4 = s->pulse_cur; break; } } } if (need_it) { __HAL_TIM_ENABLE_IT(&TIM2_Handle, TIM_IT_UPDATE); } else { __HAL_TIM_DISABLE_IT(&TIM2_Handle, TIM_IT_UPDATE); } } STATIC void servo_init_channel(pyb_servo_obj_t *s) { uint32_t pin; uint32_t channel; switch (s->servo_id) { case 1: pin = GPIO_PIN_0; channel = TIM_CHANNEL_1; break; case 2: pin = GPIO_PIN_1; channel = TIM_CHANNEL_2; break; case 3: pin = GPIO_PIN_2; channel = TIM_CHANNEL_3; break; case 4: pin = GPIO_PIN_3; channel = TIM_CHANNEL_4; break; default: return; } // GPIO configuration GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.Pin = pin; GPIO_InitStructure.Mode = GPIO_MODE_AF_PP; GPIO_InitStructure.Speed = GPIO_SPEED_FAST; GPIO_InitStructure.Pull = GPIO_NOPULL; GPIO_InitStructure.Alternate = GPIO_AF1_TIM2; HAL_GPIO_Init(GPIOA, &GPIO_InitStructure); // PWM mode configuration TIM_OC_InitTypeDef oc_init; oc_init.OCMode = TIM_OCMODE_PWM1; oc_init.Pulse = s->pulse_cur; // units of 10us oc_init.OCPolarity = TIM_OCPOLARITY_HIGH; oc_init.OCFastMode = TIM_OCFAST_DISABLE; HAL_TIM_PWM_ConfigChannel(&TIM2_Handle, &oc_init, channel); // start PWM HAL_TIM_PWM_Start(&TIM2_Handle, channel); } /******************************************************************************/ // Micro Python bindings STATIC mp_obj_t pyb_servo_set(mp_obj_t port, mp_obj_t value) { int p = mp_obj_get_int(port); int v = mp_obj_get_int(value); if (v < 50) { v = 50; } if (v > 250) { v = 250; } switch (p) { case 1: TIM2->CCR1 = v; break; case 2: TIM2->CCR2 = v; break; case 3: TIM2->CCR3 = v; break; case 4: TIM2->CCR4 = v; break; } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_2(pyb_servo_set_obj, pyb_servo_set); STATIC mp_obj_t pyb_pwm_set(mp_obj_t period, mp_obj_t pulse) { int pe = mp_obj_get_int(period); int pu = mp_obj_get_int(pulse); TIM2->ARR = pe; TIM2->CCR3 = pu; return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_2(pyb_pwm_set_obj, pyb_pwm_set); STATIC void pyb_servo_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { pyb_servo_obj_t *self = self_in; print(env, "", self->servo_id, self->pulse_cur); } STATIC mp_obj_t pyb_servo_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) { // check arguments mp_check_nargs(n_args, 1, 1, n_kw, false); // get servo number machine_int_t servo_id = mp_obj_get_int(args[0]) - 1; // check servo number if (!(0 <= servo_id && servo_id < PYB_SERVO_NUM)) { nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Servo %d does not exist", servo_id)); } // get and init servo object pyb_servo_obj_t *s = &pyb_servo_obj[servo_id]; s->pulse_dest = s->pulse_cur; s->time_left = 0; servo_init_channel(s); return s; } STATIC mp_obj_t pyb_servo_angle(uint n_args, const mp_obj_t *args) { pyb_servo_obj_t *self = args[0]; if (n_args == 1) { // get angle return mp_obj_new_int((self->pulse_cur - 152) * 90 / 85); } else { #if MICROPY_ENABLE_FLOAT machine_int_t v = 152 + 85.0 * mp_obj_get_float(args[1]) / 90.0; #else machine_int_t v = 152 + 85 * mp_obj_get_int(args[1]) / 90; #endif if (v < 65) { v = 65; } if (v > 210) { v = 210; } self->pulse_dest = v; if (n_args == 2) { // set angle immediately self->time_left = 0; } else { // set angle over a given time (given in milli seconds) self->time_left = mp_obj_get_int(args[2]) / 20; self->pulse_accum = 0; } servo_timer_irq_callback(); return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_servo_angle_obj, 1, 3, pyb_servo_angle); STATIC const mp_map_elem_t pyb_servo_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_angle), (mp_obj_t)&pyb_servo_angle_obj }, }; STATIC MP_DEFINE_CONST_DICT(pyb_servo_locals_dict, pyb_servo_locals_dict_table); const mp_obj_type_t pyb_servo_type = { { &mp_type_type }, .name = MP_QSTR_Servo, .print = pyb_servo_print, .make_new = pyb_servo_make_new, .locals_dict = (mp_obj_t)&pyb_servo_locals_dict, };