/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2019 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/runtime.h" #include "extmod/machine_bitstream.h" #include "extmod/machine_mem.h" #include "extmod/machine_pulse.h" #include "extmod/machine_i2c.h" #include "extmod/machine_spi.h" #include "drivers/dht/dht.h" #include "modmachine.h" #include "samd_soc.h" // ASF 4 #include "hal_flash.h" #include "hal_init.h" #include "hpl_gclk_base.h" #include "hpl_pm_base.h" #if MICROPY_PY_MACHINE #if defined(MCU_SAMD21) #define DBL_TAP_ADDR ((volatile uint32_t *)(HMCRAMC0_ADDR + HMCRAMC0_SIZE - 4)) #elif defined(MCU_SAMD51) #define DBL_TAP_ADDR ((volatile uint32_t *)(HSRAM_ADDR + HSRAM_SIZE - 4)) #endif // A board may define a DPL_TAP_ADDR_ALT, which will be set as well // Needed at the moment for Sparkfun SAMD51 Thing Plus #define DBL_TAP_MAGIC_LOADER 0xf01669ef #define DBL_TAP_MAGIC_RESET 0xf02669ef #define LIGHTSLEEP_CPU_FREQ 200000 extern bool EIC_occured; extern uint32_t _dbl_tap_addr; STATIC mp_obj_t machine_reset(void) { *DBL_TAP_ADDR = DBL_TAP_MAGIC_RESET; #ifdef DBL_TAP_ADDR_ALT *DBL_TAP_ADDR_ALT = DBL_TAP_MAGIC_RESET; #endif NVIC_SystemReset(); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_obj, machine_reset); STATIC mp_obj_t machine_bootloader(void) { *DBL_TAP_ADDR = DBL_TAP_MAGIC_LOADER; #ifdef DBL_TAP_ADDR_ALT *DBL_TAP_ADDR_ALT = DBL_TAP_MAGIC_LOADER; #endif NVIC_SystemReset(); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_0(machine_bootloader_obj, machine_bootloader); STATIC mp_obj_t machine_freq(size_t n_args, const mp_obj_t *args) { if (n_args == 0) { return MP_OBJ_NEW_SMALL_INT(get_cpu_freq()); } else { uint32_t freq = mp_obj_get_int(args[0]); if (freq >= 1000000 && freq <= MAX_CPU_FREQ) { set_cpu_freq(freq); } return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_freq_obj, 0, 1, machine_freq); STATIC mp_obj_t machine_unique_id(void) { // Each device has a unique 128-bit serial number which is a concatenation of four 32-bit // words contained at the following addresses. The uniqueness of the serial number is // guaranteed only when using all 128 bits. // Atmel SAM D21E / SAM D21G / SAM D21J // SMART ARM-Based Microcontroller // DATASHEET // 9.6 (SAMD51) or 9.3.3 (or 10.3.3 depending on which manual)(SAMD21) Serial Number // // EXAMPLE (SAMD21) // ---------------- // OpenOCD: // Word0: // > at91samd21g18.cpu mdw 0x0080A00C 1 // 0x0080a00c: 6e27f15f // Words 1-3: // > at91samd21g18.cpu mdw 0x0080A040 3 // 0x0080a040: 50534b54 332e3120 ff091645 // // MicroPython (this code and same order as shown in Arduino IDE) // >>> ubinascii.hexlify(machine.unique_id()) // b'6e27f15f50534b54332e3120ff091645' #if defined(MCU_SAMD21) uint32_t *id_addresses[4] = {(uint32_t *)0x0080A00C, (uint32_t *)0x0080A040, (uint32_t *)0x0080A044, (uint32_t *)0x0080A048}; #elif defined(MCU_SAMD51) uint32_t *id_addresses[4] = {(uint32_t *)0x008061FC, (uint32_t *)0x00806010, (uint32_t *)0x00806014, (uint32_t *)0x00806018}; #endif uint8_t raw_id[16]; for (int i = 0; i < 4; i++) { for (int k = 0; k < 4; k++) { // 'Reverse' the read bytes into a 32 bit word (Consistent with Arduino) raw_id[4 * i + k] = (*(id_addresses[i]) >> (24 - k * 8)) & 0xff; } } return mp_obj_new_bytes((byte *)&raw_id, sizeof(raw_id)); } STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_unique_id_obj, machine_unique_id); STATIC mp_obj_t machine_idle(void) { MICROPY_EVENT_POLL_HOOK; return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_idle_obj, machine_idle); STATIC mp_obj_t machine_disable_irq(void) { uint32_t state = MICROPY_BEGIN_ATOMIC_SECTION(); return mp_obj_new_int(state); } MP_DEFINE_CONST_FUN_OBJ_0(machine_disable_irq_obj, machine_disable_irq); STATIC mp_obj_t machine_enable_irq(mp_obj_t state_in) { uint32_t state = mp_obj_get_int(state_in); MICROPY_END_ATOMIC_SECTION(state); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(machine_enable_irq_obj, machine_enable_irq); STATIC mp_obj_t machine_reset_cause(void) { #if defined(MCU_SAMD21) return MP_OBJ_NEW_SMALL_INT(PM->RCAUSE.reg); #elif defined(MCU_SAMD51) return MP_OBJ_NEW_SMALL_INT(RSTC->RCAUSE.reg); #else return MP_OBJ_NEW_SMALL_INT(0); #endif } MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_cause_obj, machine_reset_cause); STATIC mp_obj_t machine_lightsleep(size_t n_args, const mp_obj_t *args) { int32_t duration = -1; uint32_t freq = get_cpu_freq(); if (n_args > 0) { duration = mp_obj_get_int(args[0]); } EIC_occured = false; // Slow down set_cpu_freq(LIGHTSLEEP_CPU_FREQ); #if defined(MCU_SAMD21) // Switch the peripheral clock off GCLK->GENCTRL.reg = GCLK_GENCTRL_ID(2); while (GCLK->STATUS.bit.SYNCBUSY) { } // Switch the EIC temporarily to GCLK3, since GCLK2 is off GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK3 | EIC_GCLK_ID; if (duration > 0) { uint32_t t0 = systick_ms; while ((systick_ms - t0 < duration) && (EIC_occured == false)) { __WFI(); } } else { while (EIC_occured == false) { __WFI(); } } GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK2 | EIC_GCLK_ID; #elif defined(MCU_SAMD51) // Switch the peripheral clock off GCLK->GENCTRL[2].reg = 0; while (GCLK->SYNCBUSY.bit.GENCTRL2) { } // Switch the EIC temporarily to GCLK3, since GCLK2 is off GCLK->PCHCTRL[EIC_GCLK_ID].reg = GCLK_PCHCTRL_CHEN | GCLK_PCHCTRL_GEN_GCLK3; if (duration > 0) { uint32_t t0 = systick_ms; while ((systick_ms - t0 < duration) && (EIC_occured == false)) { __WFI(); } } else { while (EIC_occured == false) { __WFI(); } } GCLK->PCHCTRL[EIC_GCLK_ID].reg = GCLK_PCHCTRL_CHEN | GCLK_PCHCTRL_GEN_GCLK2; #endif // Speed up again set_cpu_freq(freq); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_lightsleep_obj, 0, 1, machine_lightsleep); STATIC const mp_rom_map_elem_t machine_module_globals_table[] = { { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_umachine) }, { MP_ROM_QSTR(MP_QSTR_reset), MP_ROM_PTR(&machine_reset_obj) }, { MP_ROM_QSTR(MP_QSTR_bootloader), MP_ROM_PTR(&machine_bootloader_obj) }, { MP_ROM_QSTR(MP_QSTR_freq), MP_ROM_PTR(&machine_freq_obj) }, { MP_ROM_QSTR(MP_QSTR_mem8), MP_ROM_PTR(&machine_mem8_obj) }, { MP_ROM_QSTR(MP_QSTR_mem16), MP_ROM_PTR(&machine_mem16_obj) }, { MP_ROM_QSTR(MP_QSTR_mem32), MP_ROM_PTR(&machine_mem32_obj) }, { MP_ROM_QSTR(MP_QSTR_unique_id), MP_ROM_PTR(&machine_unique_id_obj) }, { MP_ROM_QSTR(MP_QSTR_ADC), MP_ROM_PTR(&machine_adc_type) }, { MP_ROM_QSTR(MP_QSTR_DAC), MP_ROM_PTR(&machine_dac_type) }, { MP_ROM_QSTR(MP_QSTR_LED), MP_ROM_PTR(&machine_led_type) }, { MP_ROM_QSTR(MP_QSTR_Pin), MP_ROM_PTR(&machine_pin_type) }, { MP_ROM_QSTR(MP_QSTR_PWM), MP_ROM_PTR(&machine_pwm_type) }, { MP_ROM_QSTR(MP_QSTR_SoftI2C), MP_ROM_PTR(&mp_machine_soft_i2c_type) }, { MP_ROM_QSTR(MP_QSTR_I2C), MP_ROM_PTR(&machine_i2c_type) }, { MP_ROM_QSTR(MP_QSTR_SoftSPI), MP_ROM_PTR(&mp_machine_soft_spi_type) }, { MP_ROM_QSTR(MP_QSTR_SPI), MP_ROM_PTR(&machine_spi_type) }, { MP_ROM_QSTR(MP_QSTR_Timer), MP_ROM_PTR(&machine_timer_type) }, { MP_ROM_QSTR(MP_QSTR_UART), MP_ROM_PTR(&machine_uart_type) }, { MP_ROM_QSTR(MP_QSTR_WDT), MP_ROM_PTR(&machine_wdt_type) }, #if MICROPY_PY_MACHINE_RTC { MP_ROM_QSTR(MP_QSTR_RTC), MP_ROM_PTR(&machine_rtc_type) }, #endif { MP_ROM_QSTR(MP_QSTR_idle), MP_ROM_PTR(&machine_idle_obj) }, { MP_ROM_QSTR(MP_QSTR_disable_irq), MP_ROM_PTR(&machine_disable_irq_obj) }, { MP_ROM_QSTR(MP_QSTR_enable_irq), MP_ROM_PTR(&machine_enable_irq_obj) }, { MP_ROM_QSTR(MP_QSTR_reset_cause), MP_ROM_PTR(&machine_reset_cause_obj) }, { MP_ROM_QSTR(MP_QSTR_time_pulse_us), MP_ROM_PTR(&machine_time_pulse_us_obj) }, { MP_ROM_QSTR(MP_QSTR_lightsleep), MP_ROM_PTR(&machine_lightsleep_obj) }, { MP_ROM_QSTR(MP_QSTR_bitstream), MP_ROM_PTR(&machine_bitstream_obj) }, #if MICROPY_PY_MACHINE_DHT_READINTO { MP_ROM_QSTR(MP_QSTR_dht_readinto), MP_ROM_PTR(&dht_readinto_obj) }, #endif // Class constants. // Use numerical constants instead of the symbolic names, // since the names differ between SAMD21 and SAMD51. { MP_ROM_QSTR(MP_QSTR_PWRON_RESET), MP_ROM_INT(0x01) }, { MP_ROM_QSTR(MP_QSTR_HARD_RESET), MP_ROM_INT(0x10) }, { MP_ROM_QSTR(MP_QSTR_WDT_RESET), MP_ROM_INT(0x20) }, { MP_ROM_QSTR(MP_QSTR_SOFT_RESET), MP_ROM_INT(0x40) }, { MP_ROM_QSTR(MP_QSTR_DEEPSLEEP_RESET), MP_ROM_INT(0x80) }, }; STATIC MP_DEFINE_CONST_DICT(machine_module_globals, machine_module_globals_table); const mp_obj_module_t mp_module_machine = { .base = { &mp_type_module }, .globals = (mp_obj_dict_t *)&machine_module_globals, }; MP_REGISTER_MODULE(MP_QSTR_umachine, mp_module_machine); #endif // MICROPY_PY_MACHINE