// stb_sprintf - v1.01 - public domain snprintf() implementation // originally by Jeff Roberts / RAD Game Tools, 2015/10/20 // http://github.com/nothings/stb // // allowed types: sc uidBboXx p AaGgEef n // lengths : h ll j z t I64 I32 I // // Contributors (bugfixes): // github:d26435 // github:trex78 #ifndef STB_SPRINTF_H_INCLUDE #define STB_SPRINTF_H_INCLUDE /* Single file sprintf replacement. Originally written by Jeff Roberts at RAD Game Tools - 2015/10/20. Hereby placed in public domain. This is a full sprintf replacement that supports everything that the C runtime sprintfs support, including float/double, 64-bit integers, hex floats, field parameters (%*.*d stuff), length reads backs, etc. Why would you need this if sprintf already exists? Well, first off, it's *much* faster (see below). It's also much smaller than the CRT versions code-space-wise. We've also added some simple improvements that are super handy (commas in thousands, callbacks at buffer full, for example). Finally, the format strings for MSVC and GCC differ for 64-bit integers (among other small things), so this lets you use the same format strings in cross platform code. It uses the standard single file trick of being both the header file and the source itself. If you just include it normally, you just get the header file function definitions. To get the code, you include it from a C or C++ file and define STB_SPRINTF_IMPLEMENTATION first. It only uses va_args macros from the C runtime to do it's work. It does cast doubles to S64s and shifts and divides U64s, which does drag in CRT code on most platforms. It compiles to roughly 8K with float support, and 4K without. As a comparison, when using MSVC static libs, calling sprintf drags in 16K. API: ==== int stbsp_sprintf( char * buf, char const * fmt, ... ) int stbsp_snprintf( char * buf, int count, char const * fmt, ... ) Convert an arg list into a buffer. stbsp_snprintf always returns a zero-terminated string (unlike regular snprintf). int stbsp_vsprintf( char * buf, char const * fmt, va_list va ) int stbsp_vsnprintf( char * buf, int count, char const * fmt, va_list va ) Convert a va_list arg list into a buffer. stbsp_vsnprintf always returns a zero-terminated string (unlike regular snprintf). int stbsp_vsprintfcb( STBSP_SPRINTFCB * callback, void * user, char * buf, char const * fmt, va_list va ) typedef char * STBSP_SPRINTFCB( char const * buf, void * user, int len ); Convert into a buffer, calling back every STB_SPRINTF_MIN chars. Your callback can then copy the chars out, print them or whatever. This function is actually the workhorse for everything else. The buffer you pass in must hold at least STB_SPRINTF_MIN characters. // you return the next buffer to use or 0 to stop converting void stbsp_set_separators( char comma, char period ) Set the comma and period characters to use. FLOATS/DOUBLES: =============== This code uses a internal float->ascii conversion method that uses doubles with error correction (double-doubles, for ~105 bits of precision). This conversion is round-trip perfect - that is, an atof of the values output here will give you the bit-exact double back. One difference is that our insignificant digits will be different than with MSVC or GCC (but they don't match each other either). We also don't attempt to find the minimum length matching float (pre-MSVC15 doesn't either). If you don't need float or doubles at all, define STB_SPRINTF_NOFLOAT and you'll save 4K of code space. 64-BIT INTS: ============ This library also supports 64-bit integers and you can use MSVC style or GCC style indicators (%I64d or %lld). It supports the C99 specifiers for size_t and ptr_diff_t (%jd %zd) as well. EXTRAS: ======= Like some GCCs, for integers and floats, you can use a ' (single quote) specifier and commas will be inserted on the thousands: "%'d" on 12345 would print 12,345. For integers and floats, you can use a "$" specifier and the number will be converted to float and then divided to get kilo, mega, giga or tera and then printed, so "%$d" 1024 is "1.0 k", "%$.2d" 2536000 is "2.42 m", etc. In addition to octal and hexadecimal conversions, you can print integers in binary: "%b" for 256 would print 100. PERFORMANCE vs MSVC 2008 32-/64-bit (GCC is even slower than MSVC): =================================================================== "%d" across all 32-bit ints (4.8x/4.0x faster than 32-/64-bit MSVC) "%24d" across all 32-bit ints (4.5x/4.2x faster) "%x" across all 32-bit ints (4.5x/3.8x faster) "%08x" across all 32-bit ints (4.3x/3.8x faster) "%f" across e-10 to e+10 floats (7.3x/6.0x faster) "%e" across e-10 to e+10 floats (8.1x/6.0x faster) "%g" across e-10 to e+10 floats (10.0x/7.1x faster) "%f" for values near e-300 (7.9x/6.5x faster) "%f" for values near e+300 (10.0x/9.1x faster) "%e" for values near e-300 (10.1x/7.0x faster) "%e" for values near e+300 (9.2x/6.0x faster) "%.320f" for values near e-300 (12.6x/11.2x faster) "%a" for random values (8.6x/4.3x faster) "%I64d" for 64-bits with 32-bit values (4.8x/3.4x faster) "%I64d" for 64-bits > 32-bit values (4.9x/5.5x faster) "%s%s%s" for 64 char strings (7.1x/7.3x faster) "...512 char string..." ( 35.0x/32.5x faster!) */ #if defined(__has_feature) #if __has_feature(address_sanitizer) #define STBI__ASAN __attribute__((no_sanitize("address"))) #endif #endif #ifndef STBI__ASAN #define STBI__ASAN #endif #ifdef STB_SPRINTF_STATIC #define STBSP__PUBLICDEC static #define STBSP__PUBLICDEF static STBI__ASAN #else #ifdef __cplusplus #define STBSP__PUBLICDEC extern "C" #define STBSP__PUBLICDEF extern "C" STBI__ASAN #else #define STBSP__PUBLICDEC extern #define STBSP__PUBLICDEF STBI__ASAN #endif #endif #include // for va_list() #ifndef STB_SPRINTF_MIN #define STB_SPRINTF_MIN 512 // how many characters per callback #endif typedef char * STBSP_SPRINTFCB( char * buf, void * user, int len ); #ifndef STB_SPRINTF_DECORATE #define STB_SPRINTF_DECORATE(name) stbsp_##name // define this before including if you want to change the names #endif STBSP__PUBLICDEF int STB_SPRINTF_DECORATE( vsprintf )( char * buf, char const * fmt, va_list va ); STBSP__PUBLICDEF int STB_SPRINTF_DECORATE( vsnprintf )( char * buf, int count, char const * fmt, va_list va ); STBSP__PUBLICDEF int STB_SPRINTF_DECORATE( sprintf ) ( char * buf, char const * fmt, ... ); STBSP__PUBLICDEF int STB_SPRINTF_DECORATE( snprintf )( char * buf, int count, char const * fmt, ... ); STBSP__PUBLICDEF int STB_SPRINTF_DECORATE( vsprintfcb )( STBSP_SPRINTFCB * callback, void * user, char * buf, char const * fmt, va_list va ); STBSP__PUBLICDEF void STB_SPRINTF_DECORATE( set_separators )( char comma, char period ); #endif // STB_SPRINTF_H_INCLUDE #ifdef STB_SPRINTF_IMPLEMENTATION #include // for va_arg() #define stbsp__uint32 unsigned int #define stbsp__int32 signed int #ifdef _MSC_VER #define stbsp__uint64 unsigned __int64 #define stbsp__int64 signed __int64 #else #define stbsp__uint64 unsigned long long #define stbsp__int64 signed long long #endif #define stbsp__uint16 unsigned short #ifndef stbsp__uintptr #if defined(__ppc64__) || defined(__aarch64__) || defined(_M_X64) || defined(__x86_64__) || defined(__x86_64) #define stbsp__uintptr stbsp__uint64 #else #define stbsp__uintptr stbsp__uint32 #endif #endif #ifndef STB_SPRINTF_MSVC_MODE // used for MSVC2013 and earlier (MSVC2015 matches GCC) #if defined(_MSC_VER) && (_MSC_VER<1900) #define STB_SPRINTF_MSVC_MODE #endif #endif #ifdef STB_SPRINTF_NOUNALIGNED // define this before inclusion to force stbsp_sprintf to always use aligned accesses #define STBSP__UNALIGNED(code) #else #define STBSP__UNALIGNED(code) code #endif #ifndef STB_SPRINTF_NOFLOAT // internal float utility functions static stbsp__int32 stbsp__real_to_str( char const * * start, stbsp__uint32 * len, char *out, stbsp__int32 * decimal_pos, double value, stbsp__uint32 frac_digits ); static stbsp__int32 stbsp__real_to_parts( stbsp__int64 * bits, stbsp__int32 * expo, double value ); #define STBSP__SPECIAL 0x7000 #endif static char stbsp__period='.'; static char stbsp__comma=','; static char stbsp__digitpair[201]="00010203040506070809101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899"; STBSP__PUBLICDEF void STB_SPRINTF_DECORATE( set_separators )( char pcomma, char pperiod ) { stbsp__period=pperiod; stbsp__comma=pcomma; } STBSP__PUBLICDEF int STB_SPRINTF_DECORATE( vsprintfcb )( STBSP_SPRINTFCB * callback, void * user, char * buf, char const * fmt, va_list va ) { static char hex[]="0123456789abcdefxp"; static char hexu[]="0123456789ABCDEFXP"; char * bf; char const * f; int tlen = 0; bf = buf; f = fmt; for(;;) { stbsp__int32 fw,pr,tz; stbsp__uint32 fl; #define STBSP__LEFTJUST 1 #define STBSP__LEADINGPLUS 2 #define STBSP__LEADINGSPACE 4 #define STBSP__LEADING_0X 8 #define STBSP__LEADINGZERO 16 #define STBSP__INTMAX 32 #define STBSP__TRIPLET_COMMA 64 #define STBSP__NEGATIVE 128 #define STBSP__METRIC_SUFFIX 256 #define STBSP__HALFWIDTH 512 // macros for the callback buffer stuff #define stbsp__chk_cb_bufL(bytes) { int len = (int)(bf-buf); if ((len+(bytes))>=STB_SPRINTF_MIN) { tlen+=len; if (0==(bf=buf=callback(buf,user,len))) goto done; } } #define stbsp__chk_cb_buf(bytes) { if ( callback ) { stbsp__chk_cb_bufL(bytes); } } #define stbsp__flush_cb() { stbsp__chk_cb_bufL(STB_SPRINTF_MIN-1); } //flush if there is even one byte in the buffer #define stbsp__cb_buf_clamp(cl,v) cl = v; if ( callback ) { int lg = STB_SPRINTF_MIN-(int)(bf-buf); if (cl>lg) cl=lg; } // fast copy everything up to the next % (or end of string) for(;;) { while (((stbsp__uintptr)f)&3) { schk1: if (f[0]=='%') goto scandd; schk2: if (f[0]==0) goto endfmt; stbsp__chk_cb_buf(1); *bf++=f[0]; ++f; } for(;;) { // Check if the next 4 bytes contain %(0x25) or end of string. // Using the 'hasless' trick: // https://graphics.stanford.edu/~seander/bithacks.html#HasLessInWord stbsp__uint32 v,c; v=*(stbsp__uint32*)f; c=(~v)&0x80808080; if (((v^0x25252525)-0x01010101)&c) goto schk1; if ((v-0x01010101)&c) goto schk2; if (callback) if ((STB_SPRINTF_MIN-(int)(bf-buf))<4) goto schk1; *(stbsp__uint32*)bf=v; bf+=4; f+=4; } } scandd: ++f; // ok, we have a percent, read the modifiers first fw = 0; pr = -1; fl = 0; tz = 0; // flags for(;;) { switch(f[0]) { // if we have left justify case '-': fl|=STBSP__LEFTJUST; ++f; continue; // if we have leading plus case '+': fl|=STBSP__LEADINGPLUS; ++f; continue; // if we have leading space case ' ': fl|=STBSP__LEADINGSPACE; ++f; continue; // if we have leading 0x case '#': fl|=STBSP__LEADING_0X; ++f; continue; // if we have thousand commas case '\'': fl|=STBSP__TRIPLET_COMMA; ++f; continue; // if we have kilo marker case '$': fl|=STBSP__METRIC_SUFFIX; ++f; continue; // if we have leading zero case '0': fl|=STBSP__LEADINGZERO; ++f; goto flags_done; default: goto flags_done; } } flags_done: // get the field width if ( f[0] == '*' ) {fw = va_arg(va,stbsp__uint32); ++f;} else { while (( f[0] >= '0' ) && ( f[0] <= '9' )) { fw = fw * 10 + f[0] - '0'; f++; } } // get the precision if ( f[0]=='.' ) { ++f; if ( f[0] == '*' ) {pr = va_arg(va,stbsp__uint32); ++f;} else { pr = 0; while (( f[0] >= '0' ) && ( f[0] <= '9' )) { pr = pr * 10 + f[0] - '0'; f++; } } } // handle integer size overrides switch(f[0]) { // are we halfwidth? case 'h': fl|=STBSP__HALFWIDTH; ++f; break; // are we 64-bit (unix style) case 'l': ++f; if ( f[0]=='l') { fl|=STBSP__INTMAX; ++f; } break; // are we 64-bit on intmax? (c99) case 'j': fl|=STBSP__INTMAX; ++f; break; // are we 64-bit on size_t or ptrdiff_t? (c99) case 'z': case 't': fl|=((sizeof(char*)==8)?STBSP__INTMAX:0); ++f; break; // are we 64-bit (msft style) case 'I': if ( ( f[1]=='6') && ( f[2]=='4') ) { fl|=STBSP__INTMAX; f+=3; } else if ( ( f[1]=='3') && ( f[2]=='2') ) { f+=3; } else { fl|=((sizeof(void*)==8)?STBSP__INTMAX:0); ++f; } break; default: break; } // handle each replacement switch( f[0] ) { #define STBSP__NUMSZ 512 // big enough for e308 (with commas) or e-307 char num[STBSP__NUMSZ]; char lead[8]; char tail[8]; char *s; char const *h; stbsp__uint32 l,n,cs; stbsp__uint64 n64; #ifndef STB_SPRINTF_NOFLOAT double fv; #endif stbsp__int32 dp; char const * sn; case 's': // get the string s = va_arg(va,char*); if (s==0) s = (char*)"null"; // get the length sn = s; for(;;) { if ((((stbsp__uintptr)sn)&3)==0) break; lchk: if (sn[0]==0) goto ld; ++sn; } n = 0xffffffff; if (pr>=0) { n=(stbsp__uint32)(sn-s); if (n>=(stbsp__uint32)pr) goto ld; n=((stbsp__uint32)(pr-n))>>2; } while(n) { stbsp__uint32 v=*(stbsp__uint32*)sn; if ((v-0x01010101)&(~v)&0x80808080UL) goto lchk; sn+=4; --n; } goto lchk; ld: l = (stbsp__uint32) ( sn - s ); // clamp to precision if ( l > (stbsp__uint32)pr ) l = pr; lead[0]=0; tail[0]=0; pr = 0; dp = 0; cs = 0; // copy the string in goto scopy; case 'c': // char // get the character s = num + STBSP__NUMSZ -1; *s = (char)va_arg(va,int); l = 1; lead[0]=0; tail[0]=0; pr = 0; dp = 0; cs = 0; goto scopy; case 'n': // weird write-bytes specifier { int * d = va_arg(va,int*); *d = tlen + (int)( bf - buf ); } break; #ifdef STB_SPRINTF_NOFLOAT case 'A': // float case 'a': // hex float case 'G': // float case 'g': // float case 'E': // float case 'e': // float case 'f': // float va_arg(va,double); // eat it s = (char*)"No float"; l = 8; lead[0]=0; tail[0]=0; pr = 0; dp = 0; cs = 0; goto scopy; #else case 'A': // float h=hexu; goto hexfloat; case 'a': // hex float h=hex; hexfloat: fv = va_arg(va,double); if (pr==-1) pr=6; // default is 6 // read the double into a string if ( stbsp__real_to_parts( (stbsp__int64*)&n64, &dp, fv ) ) fl |= STBSP__NEGATIVE; s = num+64; // sign lead[0]=0; if (fl&STBSP__NEGATIVE) { lead[0]=1; lead[1]='-'; } else if (fl&STBSP__LEADINGSPACE) { lead[0]=1; lead[1]=' '; } else if (fl&STBSP__LEADINGPLUS) { lead[0]=1; lead[1]='+'; }; if (dp==-1023) dp=(n64)?-1022:0; else n64|=(((stbsp__uint64)1)<<52); n64<<=(64-56); if (pr<15) n64+=((((stbsp__uint64)8)<<56)>>(pr*4)); // add leading chars #ifdef STB_SPRINTF_MSVC_MODE *s++='0';*s++='x'; #else lead[1+lead[0]]='0'; lead[2+lead[0]]='x'; lead[0]+=2; #endif *s++=h[(n64>>60)&15]; n64<<=4; if ( pr ) *s++=stbsp__period; sn = s; // print the bits n = pr; if (n>13) n = 13; if (pr>(stbsp__int32)n) tz=pr-n; pr = 0; while(n--) { *s++=h[(n64>>60)&15]; n64<<=4; } // print the expo tail[1]=h[17]; if (dp<0) { tail[2]='-'; dp=-dp;} else tail[2]='+'; n = (dp>=1000)?6:((dp>=100)?5:((dp>=10)?4:3)); tail[0]=(char)n; for(;;) { tail[n]='0'+dp%10; if (n<=3) break; --n; dp/=10; } dp = (int)(s-sn); l = (int)(s-(num+64)); s = num+64; cs = 1 + (3<<24); goto scopy; case 'G': // float h=hexu; goto dosmallfloat; case 'g': // float h=hex; dosmallfloat: fv = va_arg(va,double); if (pr==-1) pr=6; else if (pr==0) pr = 1; // default is 6 // read the double into a string if ( stbsp__real_to_str( &sn, &l, num, &dp, fv, (pr-1)|0x80000000 ) ) fl |= STBSP__NEGATIVE; // clamp the precision and delete extra zeros after clamp n = pr; if ( l > (stbsp__uint32)pr ) l = pr; while ((l>1)&&(pr)&&(sn[l-1]=='0')) { --pr; --l; } // should we use %e if ((dp<=-4)||(dp>(stbsp__int32)n)) { if ( pr > (stbsp__int32)l ) pr = l-1; else if ( pr ) --pr; // when using %e, there is one digit before the decimal goto doexpfromg; } // this is the insane action to get the pr to match %g sematics for %f if(dp>0) { pr=(dp<(stbsp__int32)l)?l-dp:0; } else { pr = -dp+((pr>(stbsp__int32)l)?l:pr); } goto dofloatfromg; case 'E': // float h=hexu; goto doexp; case 'e': // float h=hex; doexp: fv = va_arg(va,double); if (pr==-1) pr=6; // default is 6 // read the double into a string if ( stbsp__real_to_str( &sn, &l, num, &dp, fv, pr|0x80000000 ) ) fl |= STBSP__NEGATIVE; doexpfromg: tail[0]=0; lead[0]=0; if (fl&STBSP__NEGATIVE) { lead[0]=1; lead[1]='-'; } else if (fl&STBSP__LEADINGSPACE) { lead[0]=1; lead[1]=' '; } else if (fl&STBSP__LEADINGPLUS) { lead[0]=1; lead[1]='+'; }; if ( dp == STBSP__SPECIAL ) { s=(char*)sn; cs=0; pr=0; goto scopy; } s=num+64; // handle leading chars *s++=sn[0]; if (pr) *s++=stbsp__period; // handle after decimal if ((l-1)>(stbsp__uint32)pr) l=pr+1; for(n=1;n=100)?5:4; #endif tail[0]=(char)n; for(;;) { tail[n]='0'+dp%10; if (n<=3) break; --n; dp/=10; } cs = 1 + (3<<24); // how many tens goto flt_lead; case 'f': // float fv = va_arg(va,double); doafloat: // do kilos if (fl&STBSP__METRIC_SUFFIX) {while(fl<0x4000000) { if ((fv<1024.0) && (fv>-1024.0)) break; fv/=1024.0; fl+=0x1000000; }} if (pr==-1) pr=6; // default is 6 // read the double into a string if ( stbsp__real_to_str( &sn, &l, num, &dp, fv, pr ) ) fl |= STBSP__NEGATIVE; dofloatfromg: tail[0]=0; // sign lead[0]=0; if (fl&STBSP__NEGATIVE) { lead[0]=1; lead[1]='-'; } else if (fl&STBSP__LEADINGSPACE) { lead[0]=1; lead[1]=' '; } else if (fl&STBSP__LEADINGPLUS) { lead[0]=1; lead[1]='+'; }; if ( dp == STBSP__SPECIAL ) { s=(char*)sn; cs=0; pr=0; goto scopy; } s=num+64; // handle the three decimal varieties if (dp<=0) { stbsp__int32 i; // handle 0.000*000xxxx *s++='0'; if (pr) *s++=stbsp__period; n=-dp; if((stbsp__int32)n>pr) n=pr; i=n; while(i) { if ((((stbsp__uintptr)s)&3)==0) break; *s++='0'; --i; } while(i>=4) { *(stbsp__uint32*)s=0x30303030; s+=4; i-=4; } while(i) { *s++='0'; --i; } if ((stbsp__int32)(l+n)>pr) l=pr-n; i=l; while(i) { *s++=*sn++; --i; } tz = pr-(n+l); cs = 1 + (3<<24); // how many tens did we write (for commas below) } else { cs = (fl&STBSP__TRIPLET_COMMA)?((600-(stbsp__uint32)dp)%3):0; if ((stbsp__uint32)dp>=l) { // handle xxxx000*000.0 n=0; for(;;) { if ((fl&STBSP__TRIPLET_COMMA) && (++cs==4)) { cs = 0; *s++=stbsp__comma; } else { *s++=sn[n]; ++n; if (n>=l) break; } } if (n<(stbsp__uint32)dp) { n = dp - n; if ((fl&STBSP__TRIPLET_COMMA)==0) { while(n) { if ((((stbsp__uintptr)s)&3)==0) break; *s++='0'; --n; } while(n>=4) { *(stbsp__uint32*)s=0x30303030; s+=4; n-=4; } } while(n) { if ((fl&STBSP__TRIPLET_COMMA) && (++cs==4)) { cs = 0; *s++=stbsp__comma; } else { *s++='0'; --n; } } } cs = (int)(s-(num+64)) + (3<<24); // cs is how many tens if (pr) { *s++=stbsp__period; tz=pr;} } else { // handle xxxxx.xxxx000*000 n=0; for(;;) { if ((fl&STBSP__TRIPLET_COMMA) && (++cs==4)) { cs = 0; *s++=stbsp__comma; } else { *s++=sn[n]; ++n; if (n>=(stbsp__uint32)dp) break; } } cs = (int)(s-(num+64)) + (3<<24); // cs is how many tens if (pr) *s++=stbsp__period; if ((l-dp)>(stbsp__uint32)pr) l=pr+dp; while(n>24) { tail[2]="_kmgt"[fl>>24]; tail[0]=2; } } }; flt_lead: // get the length that we copied l = (stbsp__uint32) ( s-(num+64) ); s=num+64; goto scopy; #endif case 'B': // upper binary h = hexu; goto binary; case 'b': // lower binary h = hex; binary: lead[0]=0; if (fl&STBSP__LEADING_0X) { lead[0]=2;lead[1]='0';lead[2]=h[0xb]; } l=(8<<4)|(1<<8); goto radixnum; case 'o': // octal h = hexu; lead[0]=0; if (fl&STBSP__LEADING_0X) { lead[0]=1;lead[1]='0'; } l=(3<<4)|(3<<8); goto radixnum; case 'p': // pointer fl |= (sizeof(void*)==8)?STBSP__INTMAX:0; pr = sizeof(void*)*2; fl &= ~STBSP__LEADINGZERO; // 'p' only prints the pointer with zeros // drop through to X case 'X': // upper binary h = hexu; goto dohexb; case 'x': // lower binary h = hex; dohexb: l=(4<<4)|(4<<8); lead[0]=0; if (fl&STBSP__LEADING_0X) { lead[0]=2;lead[1]='0';lead[2]=h[16]; } radixnum: // get the number if ( fl&STBSP__INTMAX ) n64 = va_arg(va,stbsp__uint64); else n64 = va_arg(va,stbsp__uint32); s = num + STBSP__NUMSZ; dp = 0; // clear tail, and clear leading if value is zero tail[0]=0; if (n64==0) { lead[0]=0; if (pr==0) { l=0; cs = ( ((l>>4)&15)) << 24; goto scopy; } } // convert to string for(;;) { *--s = h[n64&((1<<(l>>8))-1)]; n64>>=(l>>8); if ( ! ( (n64) || ((stbsp__int32) ( (num+STBSP__NUMSZ) - s ) < pr ) ) ) break; if ( fl&STBSP__TRIPLET_COMMA) { ++l; if ((l&15)==((l>>4)&15)) { l&=~15; *--s=stbsp__comma; } } }; // get the tens and the comma pos cs = (stbsp__uint32) ( (num+STBSP__NUMSZ) - s ) + ( ( ((l>>4)&15)) << 24 ); // get the length that we copied l = (stbsp__uint32) ( (num+STBSP__NUMSZ) - s ); // copy it goto scopy; case 'u': // unsigned case 'i': case 'd': // integer // get the integer and abs it if ( fl&STBSP__INTMAX ) { stbsp__int64 i64 = va_arg(va,stbsp__int64); n64 = (stbsp__uint64)i64; if ((f[0]!='u') && (i64<0)) { n64=(stbsp__uint64)-i64; fl|=STBSP__NEGATIVE; } } else { stbsp__int32 i = va_arg(va,stbsp__int32); n64 = (stbsp__uint32)i; if ((f[0]!='u') && (i<0)) { n64=(stbsp__uint32)-i; fl|=STBSP__NEGATIVE; } } #ifndef STB_SPRINTF_NOFLOAT if (fl&STBSP__METRIC_SUFFIX) { if (n64<1024) pr=0; else if (pr==-1) pr=1; fv=(double)(stbsp__int64)n64; goto doafloat; } #endif // convert to string s = num+STBSP__NUMSZ; l=0; for(;;) { // do in 32-bit chunks (avoid lots of 64-bit divides even with constant denominators) char * o=s-8; if (n64>=100000000) { n = (stbsp__uint32)( n64 % 100000000); n64 /= 100000000; } else {n = (stbsp__uint32)n64; n64 = 0; } if((fl&STBSP__TRIPLET_COMMA)==0) { while(n) { s-=2; *(stbsp__uint16*)s=*(stbsp__uint16*)&stbsp__digitpair[(n%100)*2]; n/=100; } } while (n) { if ( ( fl&STBSP__TRIPLET_COMMA) && (l++==3) ) { l=0; *--s=stbsp__comma; --o; } else { *--s=(char)(n%10)+'0'; n/=10; } } if (n64==0) { if ((s[0]=='0') && (s!=(num+STBSP__NUMSZ))) ++s; break; } while (s!=o) if ( ( fl&STBSP__TRIPLET_COMMA) && (l++==3) ) { l=0; *--s=stbsp__comma; --o; } else { *--s='0'; } } tail[0]=0; // sign lead[0]=0; if (fl&STBSP__NEGATIVE) { lead[0]=1; lead[1]='-'; } else if (fl&STBSP__LEADINGSPACE) { lead[0]=1; lead[1]=' '; } else if (fl&STBSP__LEADINGPLUS) { lead[0]=1; lead[1]='+'; }; // get the length that we copied l = (stbsp__uint32) ( (num+STBSP__NUMSZ) - s ); if ( l == 0 ) { *--s='0'; l = 1; } cs = l + (3<<24); if (pr<0) pr = 0; scopy: // get fw=leading/trailing space, pr=leading zeros if (pr<(stbsp__int32)l) pr = l; n = pr + lead[0] + tail[0] + tz; if (fw<(stbsp__int32)n) fw = n; fw -= n; pr -= l; // handle right justify and leading zeros if ( (fl&STBSP__LEFTJUST)==0 ) { if (fl&STBSP__LEADINGZERO) // if leading zeros, everything is in pr { pr = (fw>pr)?fw:pr; fw = 0; } else { fl &= ~STBSP__TRIPLET_COMMA; // if no leading zeros, then no commas } } // copy the spaces and/or zeros if (fw+pr) { stbsp__int32 i; stbsp__uint32 c; // copy leading spaces (or when doing %8.4d stuff) if ( (fl&STBSP__LEFTJUST)==0 ) while(fw>0) { stbsp__cb_buf_clamp(i,fw); fw -= i; while(i) { if ((((stbsp__uintptr)bf)&3)==0) break; *bf++=' '; --i; } while(i>=4) { *(stbsp__uint32*)bf=0x20202020; bf+=4; i-=4; } while (i) {*bf++=' '; --i;} stbsp__chk_cb_buf(1); } // copy leader sn=lead+1; while(lead[0]) { stbsp__cb_buf_clamp(i,lead[0]); lead[0] -= (char)i; while (i) {*bf++=*sn++; --i;} stbsp__chk_cb_buf(1); } // copy leading zeros c = cs >> 24; cs &= 0xffffff; cs = (fl&STBSP__TRIPLET_COMMA)?((stbsp__uint32)(c-((pr+cs)%(c+1)))):0; while(pr>0) { stbsp__cb_buf_clamp(i,pr); pr -= i; if((fl&STBSP__TRIPLET_COMMA)==0) { while(i) { if ((((stbsp__uintptr)bf)&3)==0) break; *bf++='0'; --i; } while(i>=4) { *(stbsp__uint32*)bf=0x30303030; bf+=4; i-=4; } } while (i) { if((fl&STBSP__TRIPLET_COMMA) && (cs++==c)) { cs = 0; *bf++=stbsp__comma; } else *bf++='0'; --i; } stbsp__chk_cb_buf(1); } } // copy leader if there is still one sn=lead+1; while(lead[0]) { stbsp__int32 i; stbsp__cb_buf_clamp(i,lead[0]); lead[0] -= (char)i; while (i) {*bf++=*sn++; --i;} stbsp__chk_cb_buf(1); } // copy the string n = l; while (n) { stbsp__int32 i; stbsp__cb_buf_clamp(i,n); n-=i; STBSP__UNALIGNED( while(i>=4) { *(stbsp__uint32*)bf=*(stbsp__uint32*)s; bf+=4; s+=4; i-=4; } ) while (i) {*bf++=*s++; --i;} stbsp__chk_cb_buf(1); } // copy trailing zeros while(tz) { stbsp__int32 i; stbsp__cb_buf_clamp(i,tz); tz -= i; while(i) { if ((((stbsp__uintptr)bf)&3)==0) break; *bf++='0'; --i; } while(i>=4) { *(stbsp__uint32*)bf=0x30303030; bf+=4; i-=4; } while (i) {*bf++='0'; --i;} stbsp__chk_cb_buf(1); } // copy tail if there is one sn=tail+1; while(tail[0]) { stbsp__int32 i; stbsp__cb_buf_clamp(i,tail[0]); tail[0] -= (char)i; while (i) {*bf++=*sn++; --i;} stbsp__chk_cb_buf(1); } // handle the left justify if (fl&STBSP__LEFTJUST) if (fw>0) { while (fw) { stbsp__int32 i; stbsp__cb_buf_clamp(i,fw); fw-=i; while(i) { if ((((stbsp__uintptr)bf)&3)==0) break; *bf++=' '; --i; } while(i>=4) { *(stbsp__uint32*)bf=0x20202020; bf+=4; i-=4; } while (i--) *bf++=' '; stbsp__chk_cb_buf(1); } } break; default: // unknown, just copy code s = num + STBSP__NUMSZ -1; *s = f[0]; l = 1; fw=pr=fl=0; lead[0]=0; tail[0]=0; pr = 0; dp = 0; cs = 0; goto scopy; } ++f; } endfmt: if (!callback) *bf = 0; else stbsp__flush_cb(); done: return tlen + (int)(bf-buf); } // cleanup #undef STBSP__LEFTJUST #undef STBSP__LEADINGPLUS #undef STBSP__LEADINGSPACE #undef STBSP__LEADING_0X #undef STBSP__LEADINGZERO #undef STBSP__INTMAX #undef STBSP__TRIPLET_COMMA #undef STBSP__NEGATIVE #undef STBSP__METRIC_SUFFIX #undef STBSP__NUMSZ #undef stbsp__chk_cb_bufL #undef stbsp__chk_cb_buf #undef stbsp__flush_cb #undef stbsp__cb_buf_clamp // ============================================================================ // wrapper functions STBSP__PUBLICDEF int STB_SPRINTF_DECORATE( sprintf )( char * buf, char const * fmt, ... ) { va_list va; va_start( va, fmt ); return STB_SPRINTF_DECORATE( vsprintfcb )( 0, 0, buf, fmt, va ); } typedef struct stbsp__context { char * buf; int count; char tmp[ STB_SPRINTF_MIN ]; } stbsp__context; static char * stbsp__clamp_callback( char * buf, void * user, int len ) { stbsp__context * c = (stbsp__context*)user; if ( len > c->count ) len = c->count; if (len) { if ( buf != c->buf ) { char * s, * d, * se; d = c->buf; s = buf; se = buf+len; do{ *d++ = *s++; } while (sbuf += len; c->count -= len; } if ( c->count <= 0 ) return 0; return ( c->count >= STB_SPRINTF_MIN ) ? c->buf : c->tmp; // go direct into buffer if you can } STBSP__PUBLICDEF int STB_SPRINTF_DECORATE( vsnprintf )( char * buf, int count, char const * fmt, va_list va ) { stbsp__context c; int l; if ( count == 0 ) return 0; c.buf = buf; c.count = count; STB_SPRINTF_DECORATE( vsprintfcb )( stbsp__clamp_callback, &c, stbsp__clamp_callback(0,&c,0), fmt, va ); // zero-terminate l = (int)( c.buf - buf ); if ( l >= count ) // should never be greater, only equal (or less) than count l = count - 1; buf[l] = 0; return l; } STBSP__PUBLICDEF int STB_SPRINTF_DECORATE( snprintf )( char * buf, int count, char const * fmt, ... ) { va_list va; va_start( va, fmt ); return STB_SPRINTF_DECORATE( vsnprintf )( buf, count, fmt, va ); } STBSP__PUBLICDEF int STB_SPRINTF_DECORATE( vsprintf )( char * buf, char const * fmt, va_list va ) { return STB_SPRINTF_DECORATE( vsprintfcb )( 0, 0, buf, fmt, va ); } // ======================================================================= // low level float utility functions #ifndef STB_SPRINTF_NOFLOAT // copies d to bits w/ strict aliasing (this compiles to nothing on /Ox) #define STBSP__COPYFP(dest,src) { int cn; for(cn=0;cn<8;cn++) ((char*)&dest)[cn]=((char*)&src)[cn]; } // get float info static stbsp__int32 stbsp__real_to_parts( stbsp__int64 * bits, stbsp__int32 * expo, double value ) { double d; stbsp__int64 b = 0; // load value and round at the frac_digits d = value; STBSP__COPYFP( b, d ); *bits = b & ((((stbsp__uint64)1)<<52)-1); *expo = (stbsp__int32) (((b >> 52) & 2047)-1023); return (stbsp__int32)(b >> 63); } static double const stbsp__bot[23]={1e+000,1e+001,1e+002,1e+003,1e+004,1e+005,1e+006,1e+007,1e+008,1e+009,1e+010,1e+011,1e+012,1e+013,1e+014,1e+015,1e+016,1e+017,1e+018,1e+019,1e+020,1e+021,1e+022}; static double const stbsp__negbot[22]={1e-001,1e-002,1e-003,1e-004,1e-005,1e-006,1e-007,1e-008,1e-009,1e-010,1e-011,1e-012,1e-013,1e-014,1e-015,1e-016,1e-017,1e-018,1e-019,1e-020,1e-021,1e-022}; static double const stbsp__negboterr[22]={-5.551115123125783e-018,-2.0816681711721684e-019,-2.0816681711721686e-020,-4.7921736023859299e-021,-8.1803053914031305e-022,4.5251888174113741e-023,4.5251888174113739e-024,-2.0922560830128471e-025,-6.2281591457779853e-026,-3.6432197315497743e-027,6.0503030718060191e-028,2.0113352370744385e-029,-3.0373745563400371e-030,1.1806906454401013e-032,-7.7705399876661076e-032,2.0902213275965398e-033,-7.1542424054621921e-034,-7.1542424054621926e-035,2.4754073164739869e-036,5.4846728545790429e-037,9.2462547772103625e-038,-4.8596774326570872e-039}; static double const stbsp__top[13]={1e+023,1e+046,1e+069,1e+092,1e+115,1e+138,1e+161,1e+184,1e+207,1e+230,1e+253,1e+276,1e+299}; static double const stbsp__negtop[13]={1e-023,1e-046,1e-069,1e-092,1e-115,1e-138,1e-161,1e-184,1e-207,1e-230,1e-253,1e-276,1e-299}; static double const stbsp__toperr[13]={8388608,6.8601809640529717e+028,-7.253143638152921e+052,-4.3377296974619174e+075,-1.5559416129466825e+098,-3.2841562489204913e+121,-3.7745893248228135e+144,-1.7356668416969134e+167,-3.8893577551088374e+190,-9.9566444326005119e+213,6.3641293062232429e+236,-5.2069140800249813e+259,-5.2504760255204387e+282}; static double const stbsp__negtoperr[13]={3.9565301985100693e-040,-2.299904345391321e-063,3.6506201437945798e-086,1.1875228833981544e-109,-5.0644902316928607e-132,-6.7156837247865426e-155,-2.812077463003139e-178,-5.7778912386589953e-201,7.4997100559334532e-224,-4.6439668915134491e-247,-6.3691100762962136e-270,-9.436808465446358e-293,8.0970921678014997e-317}; #if defined(_MSC_VER) && (_MSC_VER<=1200) static stbsp__uint64 const stbsp__powten[20]={1,10,100,1000, 10000,100000,1000000,10000000, 100000000,1000000000,10000000000,100000000000, 1000000000000,10000000000000,100000000000000,1000000000000000, 10000000000000000,100000000000000000,1000000000000000000,10000000000000000000U }; #define stbsp__tento19th ((stbsp__uint64)1000000000000000000) #else static stbsp__uint64 const stbsp__powten[20]={1,10,100,1000, 10000,100000,1000000,10000000, 100000000,1000000000,10000000000ULL,100000000000ULL, 1000000000000ULL,10000000000000ULL,100000000000000ULL,1000000000000000ULL, 10000000000000000ULL,100000000000000000ULL,1000000000000000000ULL,10000000000000000000ULL }; #define stbsp__tento19th (1000000000000000000ULL) #endif #define stbsp__ddmulthi(oh,ol,xh,yh) \ { \ double ahi=0,alo,bhi=0,blo; \ stbsp__int64 bt; \ oh = xh * yh; \ STBSP__COPYFP(bt,xh); bt&=((~(stbsp__uint64)0)<<27); STBSP__COPYFP(ahi,bt); alo = xh-ahi; \ STBSP__COPYFP(bt,yh); bt&=((~(stbsp__uint64)0)<<27); STBSP__COPYFP(bhi,bt); blo = yh-bhi; \ ol = ((ahi*bhi-oh)+ahi*blo+alo*bhi)+alo*blo; \ } #define stbsp__ddtoS64(ob,xh,xl) \ { \ double ahi=0,alo,vh,t;\ ob = (stbsp__int64)ph;\ vh=(double)ob;\ ahi = ( xh - vh );\ t = ( ahi - xh );\ alo = (xh-(ahi-t))-(vh+t);\ ob += (stbsp__int64)(ahi+alo+xl);\ } #define stbsp__ddrenorm(oh,ol) { double s; s=oh+ol; ol=ol-(s-oh); oh=s; } #define stbsp__ddmultlo(oh,ol,xh,xl,yh,yl) \ ol = ol + ( xh*yl + xl*yh ); \ #define stbsp__ddmultlos(oh,ol,xh,yl) \ ol = ol + ( xh*yl ); \ static void stbsp__raise_to_power10( double *ohi, double *olo, double d, stbsp__int32 power ) // power can be -323 to +350 { double ph, pl; if ((power>=0) && (power<=22)) { stbsp__ddmulthi(ph,pl,d,stbsp__bot[power]); } else { stbsp__int32 e,et,eb; double p2h,p2l; e=power; if (power<0) e=-e; et = (e*0x2c9)>>14;/* %23 */ if (et>13) et=13; eb = e-(et*23); ph = d; pl = 0.0; if (power<0) { if (eb) { --eb; stbsp__ddmulthi(ph,pl,d,stbsp__negbot[eb]); stbsp__ddmultlos(ph,pl,d,stbsp__negboterr[eb]); } if (et) { stbsp__ddrenorm(ph,pl); --et; stbsp__ddmulthi(p2h,p2l,ph,stbsp__negtop[et]); stbsp__ddmultlo(p2h,p2l,ph,pl,stbsp__negtop[et],stbsp__negtoperr[et]); ph=p2h;pl=p2l; } } else { if (eb) { e = eb; if (eb>22) eb=22; e -= eb; stbsp__ddmulthi(ph,pl,d,stbsp__bot[eb]); if ( e ) { stbsp__ddrenorm(ph,pl); stbsp__ddmulthi(p2h,p2l,ph,stbsp__bot[e]); stbsp__ddmultlos(p2h,p2l,stbsp__bot[e],pl); ph=p2h;pl=p2l; } } if (et) { stbsp__ddrenorm(ph,pl); --et; stbsp__ddmulthi(p2h,p2l,ph,stbsp__top[et]); stbsp__ddmultlo(p2h,p2l,ph,pl,stbsp__top[et],stbsp__toperr[et]); ph=p2h;pl=p2l; } } } stbsp__ddrenorm(ph,pl); *ohi = ph; *olo = pl; } // given a float value, returns the significant bits in bits, and the position of the // decimal point in decimal_pos. +/-INF and NAN are specified by special values // returned in the decimal_pos parameter. // frac_digits is absolute normally, but if you want from first significant digits (got %g and %e), or in 0x80000000 static stbsp__int32 stbsp__real_to_str( char const * * start, stbsp__uint32 * len, char *out, stbsp__int32 * decimal_pos, double value, stbsp__uint32 frac_digits ) { double d; stbsp__int64 bits = 0; stbsp__int32 expo, e, ng, tens; d = value; STBSP__COPYFP(bits,d); expo = (stbsp__int32) ((bits >> 52) & 2047); ng = (stbsp__int32)(bits >> 63); if (ng) d=-d; if ( expo == 2047 ) // is nan or inf? { *start = (bits&((((stbsp__uint64)1)<<52)-1)) ? "NaN" : "Inf"; *decimal_pos = STBSP__SPECIAL; *len = 3; return ng; } if ( expo == 0 ) // is zero or denormal { if ((bits<<1)==0) // do zero { *decimal_pos = 1; *start = out; out[0] = '0'; *len = 1; return ng; } // find the right expo for denormals { stbsp__int64 v = ((stbsp__uint64)1)<<51; while ((bits&v)==0) { --expo; v >>= 1; } } } // find the decimal exponent as well as the decimal bits of the value { double ph,pl; // log10 estimate - very specifically tweaked to hit or undershoot by no more than 1 of log10 of all expos 1..2046 tens=expo-1023; tens = (tens<0)?((tens*617)/2048):(((tens*1233)/4096)+1); // move the significant bits into position and stick them into an int stbsp__raise_to_power10( &ph, &pl, d, 18-tens ); // get full as much precision from double-double as possible stbsp__ddtoS64( bits, ph,pl ); // check if we undershot if ( ((stbsp__uint64)bits) >= stbsp__tento19th ) ++tens; } // now do the rounding in integer land frac_digits = ( frac_digits & 0x80000000 ) ? ( (frac_digits&0x7ffffff) + 1 ) : ( tens + frac_digits ); if ( ( frac_digits < 24 ) ) { stbsp__uint32 dg = 1; if ((stbsp__uint64)bits >= stbsp__powten[9] ) dg=10; while( (stbsp__uint64)bits >= stbsp__powten[dg] ) { ++dg; if (dg==20) goto noround; } if ( frac_digits < dg ) { stbsp__uint64 r; // add 0.5 at the right position and round e = dg - frac_digits; if ( (stbsp__uint32)e >= 24 ) goto noround; r = stbsp__powten[e]; bits = bits + (r/2); if ( (stbsp__uint64)bits >= stbsp__powten[dg] ) ++tens; bits /= r; } noround:; } // kill long trailing runs of zeros if ( bits ) { stbsp__uint32 n; for(;;) { if ( bits<=0xffffffff ) break; if (bits%1000) goto donez; bits/=1000; } n = (stbsp__uint32)bits; while ((n%1000)==0) n/=1000; bits=n; donez:; } // convert to string out += 64; e = 0; for(;;) { stbsp__uint32 n; char * o = out-8; // do the conversion in chunks of U32s (avoid most 64-bit divides, worth it, constant denomiators be damned) if (bits>=100000000) { n = (stbsp__uint32)( bits % 100000000); bits /= 100000000; } else {n = (stbsp__uint32)bits; bits = 0; } while(n) { out-=2; *(stbsp__uint16*)out=*(stbsp__uint16*)&stbsp__digitpair[(n%100)*2]; n/=100; e+=2; } if (bits==0) { if ((e) && (out[0]=='0')) { ++out; --e; } break; } while( out!=o ) { *--out ='0'; ++e; } } *decimal_pos = tens; *start = out; *len = e; return ng; } #undef stbsp__ddmulthi #undef stbsp__ddrenorm #undef stbsp__ddmultlo #undef stbsp__ddmultlos #undef STBSP__SPECIAL #undef STBSP__COPYFP #endif // STB_SPRINTF_NOFLOAT // clean up #undef stbsp__uint16 #undef stbsp__uint32 #undef stbsp__int32 #undef stbsp__uint64 #undef stbsp__int64 #undef STBSP__UNALIGNED #endif // STB_SPRINTF_IMPLEMENTATION