#include #include #include #include #include #include "as7343.hpp" namespace pimoroni { bool AS7343::init() { if(interrupt != PIN_UNUSED) { gpio_set_function(interrupt, GPIO_FUNC_SIO); gpio_set_dir(interrupt, GPIO_IN); gpio_pull_up(interrupt); } uint8_t aux_id, revision_id, hardware_id; get_version(aux_id, revision_id, hardware_id); if(hardware_id != HARDWARE_ID) { return false; } reset(); bank_select(0); // Enable all 7 channels in output FIFO i2c->set_bits(address, reg::FIFO_MAP, 0, FIFO_MAP_CH5 | FIFO_MAP_CH4 | FIFO_MAP_CH3 | FIFO_MAP_CH2 | FIFO_MAP_CH1 | FIFO_MAP_CH0 | FIFO_MAP_ASTATUS); // Set the PON bit i2c->reg_write_uint8(address, reg::ENABLE, ENABLE_WEN | ENABLE_SP_EN | ENABLE_PON); return true; } void AS7343::reset() { i2c->reg_write_uint8(address, reg::CONTROL, CONTROL_SW_RESET); sleep_ms(1000); } i2c_inst_t* AS7343::get_i2c() const { return i2c->get_i2c(); } int AS7343::get_sda() const { return i2c->get_sda(); } int AS7343::get_scl() const { return i2c->get_scl(); } int AS7343::get_int() const { return interrupt; } void AS7343::bank_select(uint8_t bank) { if(bank == 1) { i2c->set_bits(address, reg::CFG0, 0, CFG0_BANK); } else { i2c->clear_bits(address, reg::CFG0, 0, CFG0_BANK); } } void AS7343::get_version(uint8_t &auxid, uint8_t &revid, uint8_t &hwid) { bank_select(1); auxid = i2c->reg_read_uint8(address, reg::AUXID) & 0b00001111; revid = i2c->reg_read_uint8(address, reg::REVID) & 0b00000111; hwid = i2c->reg_read_uint8(address, reg::ID); bank_select(0); } void AS7343::set_gain(float gain) { if(gain == 0.5f) { i2c->reg_write_uint8(address, reg::CFG1, 0); } else { uint16_t ugain = (uint16_t)gain; uint16_t bitlength = 0; while(ugain > 0) { bitlength++; ugain >>= 1; } i2c->reg_write_uint8(address, reg::CFG1, bitlength & 0x1f); } } void AS7343::set_channels(channel_count channel_count) { this->read_cycles = uint8_t(channel_count) / 6; this->ch_count = (uint8_t)channel_count; uint8_t temp = i2c->reg_read_uint8(address, reg::CFG20) & ~CFG20_18_CH; switch(channel_count) { case channel_count::SIX_CHANNEL: temp |= CFG20_6_CH; break; case channel_count::TWELVE_CHANNEL: temp |= CFG20_12_CH; break; case channel_count::EIGHTEEN_CHANNEL: temp |= CFG20_18_CH; break; } i2c->reg_write_uint8(address, reg::CFG20, temp); } void AS7343::set_illumination_current(float current) { current -= 4; current /= 2.0f; uint8_t temp = i2c->reg_read_uint8(address, reg::LED) & 0b10000000; temp |= (uint8_t)current; i2c->reg_write_uint8(address, reg::LED, temp); } void AS7343::set_illumination_led(bool state) { uint8_t temp = i2c->reg_read_uint8(address, reg::LED) & 0b01111111; temp |= state ? 0x80 : 0x00; i2c->reg_write_uint8(address, reg::LED, temp); } void AS7343::set_measurement_time(float measurement_time_ms) { constexpr float resolution = 2.78f; i2c->reg_write_uint8(address, reg::WTIME, (uint8_t)((measurement_time_ms - resolution) / resolution)); } void AS7343::set_integration_time(float integration_time_us, uint8_t repeat) { constexpr float resolution = 2.78f; constexpr float max_astep = (65534 + 1) * resolution; if (integration_time_us <= max_astep) { i2c->reg_write_uint8(address, reg::ATIME, repeat - 1); i2c->reg_write_uint16(address, reg::ASTEP, (uint16_t)((integration_time_us - resolution) / resolution) & 0xfffe); } else { // Time out of range... } } void AS7343::start_measurement() { if(running) return; i2c->set_bits(address, reg::ENABLE, 0, ENABLE_SMUXEN); running = true; } void AS7343::stop_measurement() { i2c->set_bits(address, reg::ENABLE, 0, ENABLE_SMUXEN); running = false; } void AS7343::read_fifo(uint16_t *buf) { uint16_t expected_results = read_cycles * 7; uint16_t result_slot = 0; start_measurement(); while (i2c->reg_read_uint8(address, reg::FIFO_LVL) < expected_results) { sleep_ms(1); } while (i2c->reg_read_uint8(address, reg::FIFO_LVL) > 0 && expected_results > 0) { buf[result_slot] = i2c->reg_read_uint16(address, reg::FDATA); expected_results--; result_slot++; } } AS7343::reading AS7343::read() { reading result; read_fifo((uint16_t *)&result); return result; } }