#include "drivers/plasma/ws2812.hpp" #include "drivers/plasma/apa102.hpp" #include #define MP_OBJ_TO_PTR2(o, t) ((t *)(uintptr_t)(o)) // SDA/SCL on even/odd pins, I2C0/I2C1 on even/odd pairs of pins. #define IS_VALID_SCL(i2c, pin) (((pin) & 1) == 1 && (((pin) & 2) >> 1) == (i2c)) #define IS_VALID_SDA(i2c, pin) (((pin) & 1) == 0 && (((pin) & 2) >> 1) == (i2c)) using namespace plasma; extern "C" { #include "plasma.h" #include "py/builtin.h" typedef struct _mp_obj_float_t { mp_obj_base_t base; mp_float_t value; } mp_obj_float_t; const mp_obj_float_t const_float_1 = {{&mp_type_float}, 1.0f}; /********** WS2812 **********/ /***** Variables Struct *****/ typedef struct _PlasmaWS2812_obj_t { mp_obj_base_t base; WS2812* ws2812; void *buf; } _PlasmaWS2812_obj_t; /***** Print *****/ void PlasmaWS2812_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { (void)kind; //Unused input parameter _PlasmaWS2812_obj_t *self = MP_OBJ_TO_PTR2(self_in, _PlasmaWS2812_obj_t); mp_print_str(print, "WS2812("); mp_print_str(print, "num_leds = "); mp_obj_print_helper(print, mp_obj_new_int(self->ws2812->num_leds), PRINT_REPR); mp_print_str(print, ")"); } /***** Destructor ******/ mp_obj_t PlasmaWS2812___del__(mp_obj_t self_in) { _PlasmaWS2812_obj_t *self = MP_OBJ_TO_PTR2(self_in, _PlasmaWS2812_obj_t); delete self->ws2812; return mp_const_none; } /***** Constructor *****/ mp_obj_t PlasmaWS2812_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { _PlasmaWS2812_obj_t *self = nullptr; enum { ARG_num_leds, ARG_pio, ARG_sm, ARG_dat, ARG_freq, ARG_buffer, ARG_rgbw, ARG_color_order }; static const mp_arg_t allowed_args[] = { { MP_QSTR_num_leds, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_pio, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_sm, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_dat, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_freq, MP_ARG_INT, {.u_int = WS2812::DEFAULT_SERIAL_FREQ} }, { MP_QSTR_buffer, MP_ARG_OBJ, {.u_obj = nullptr} }, { MP_QSTR_rgbw, MP_ARG_BOOL, {.u_bool = false} }, { MP_QSTR_color_order, MP_ARG_INT, {.u_int = (uint8_t)WS2812::COLOR_ORDER::GRB} }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); int num_leds = args[ARG_num_leds].u_int; PIO pio = args[ARG_pio].u_int == 0 ? pio0 : pio1; int sm = args[ARG_sm].u_int; int dat = args[ARG_dat].u_int; int freq = args[ARG_freq].u_int; bool rgbw = args[ARG_rgbw].u_bool; WS2812::COLOR_ORDER color_order = (WS2812::COLOR_ORDER)args[ARG_color_order].u_int; void *buffer = nullptr; if (args[ARG_buffer].u_obj) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[ARG_buffer].u_obj, &bufinfo, MP_BUFFER_RW); buffer = bufinfo.buf; if(bufinfo.len < (size_t)(num_leds * 4)) { mp_raise_ValueError("Supplied buffer is too small for LED count!"); } } self = m_new_obj_with_finaliser(_PlasmaWS2812_obj_t); self->base.type = &PlasmaWS2812_type; self->buf = buffer; self->ws2812 = new WS2812(num_leds, pio, sm, dat, freq, rgbw, color_order, (WS2812::RGB *)buffer); return MP_OBJ_FROM_PTR(self); } mp_obj_t PlasmaWS2812_clear(mp_obj_t self_in) { _PlasmaWS2812_obj_t *self = MP_OBJ_TO_PTR2(self_in, _PlasmaWS2812_obj_t); self->ws2812->clear(); return mp_const_none; } mp_obj_t PlasmaWS2812_start(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_fps }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_fps, MP_ARG_INT, {.u_int = 60} } }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _PlasmaWS2812_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _PlasmaWS2812_obj_t); self->ws2812->start(args[ARG_fps].u_int); return mp_const_none; } mp_obj_t PlasmaWS2812_set_rgb(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_index, ARG_r, ARG_g, ARG_b, ARG_w }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_index, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_r, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_g, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_b, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_w, MP_ARG_INT, {.u_int = 0} } }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); int index = args[ARG_index].u_int; int r = args[ARG_r].u_int; int g = args[ARG_g].u_int; int b = args[ARG_b].u_int; int w = args[ARG_w].u_int; _PlasmaWS2812_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _PlasmaWS2812_obj_t); self->ws2812->set_rgb(index, r, g, b, w); return mp_const_none; } mp_obj_t PlasmaWS2812_set_hsv(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_index, ARG_h, ARG_s, ARG_v, ARG_w }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_index, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_hue, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_sat, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&const_float_1)} }, { MP_QSTR_val, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&const_float_1)} }, { MP_QSTR_w, MP_ARG_INT, {.u_int = 0} } }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); int index = args[ARG_index].u_int; float h = mp_obj_get_float(args[ARG_h].u_obj); float s = mp_obj_get_float(args[ARG_s].u_obj); float v = mp_obj_get_float(args[ARG_v].u_obj); int w = args[ARG_w].u_int; _PlasmaWS2812_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _PlasmaWS2812_obj_t); self->ws2812->set_hsv(index, h, s, v, w); return mp_const_none; } mp_obj_t PlasmaWS2812_get(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_index }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_index, MP_ARG_REQUIRED | MP_ARG_INT }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); int index = args[ARG_index].u_int; _PlasmaWS2812_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _PlasmaWS2812_obj_t); WS2812::RGB rgb = self->ws2812->get(index); mp_obj_t tuple[4]; tuple[0] = mp_obj_new_int(rgb.r); tuple[1] = mp_obj_new_float(rgb.g); tuple[2] = mp_obj_new_float(rgb.b); tuple[3] = mp_obj_new_float(rgb.w); return mp_obj_new_tuple(4, tuple); } /********** APA102 **********/ /***** Variables Struct *****/ typedef struct _PlasmaAPA102_obj_t { mp_obj_base_t base; APA102* apa102; void *buf; } _PlasmaAPA102_obj_t; /***** Print *****/ void PlasmaAPA102_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { (void)kind; //Unused input parameter _PlasmaAPA102_obj_t *self = MP_OBJ_TO_PTR2(self_in, _PlasmaAPA102_obj_t); mp_print_str(print, "APA102("); mp_print_str(print, "num_leds = "); mp_obj_print_helper(print, mp_obj_new_int(self->apa102->num_leds), PRINT_REPR); mp_print_str(print, ")"); } /***** Destructor ******/ mp_obj_t PlasmaAPA102___del__(mp_obj_t self_in) { _PlasmaAPA102_obj_t *self = MP_OBJ_TO_PTR2(self_in, _PlasmaAPA102_obj_t); delete self->apa102; return mp_const_none; } /***** Constructor *****/ mp_obj_t PlasmaAPA102_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { _PlasmaAPA102_obj_t *self = nullptr; enum { ARG_num_leds, ARG_pio, ARG_sm, ARG_dat, ARG_clk, ARG_freq, ARG_buffer }; static const mp_arg_t allowed_args[] = { { MP_QSTR_num_leds, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_pio, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_sm, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_dat, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_clk, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_freq, MP_ARG_INT, {.u_int = APA102::DEFAULT_SERIAL_FREQ} }, { MP_QSTR_buffer, MP_ARG_OBJ, {.u_obj = nullptr} }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); int num_leds = args[ARG_num_leds].u_int; PIO pio = args[ARG_pio].u_int == 0 ? pio0 : pio1; int sm = args[ARG_sm].u_int; int dat = args[ARG_dat].u_int; int clk = args[ARG_clk].u_int; int freq = args[ARG_freq].u_int; APA102::RGB *buffer = nullptr; if (args[ARG_buffer].u_obj) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[ARG_buffer].u_obj, &bufinfo, MP_BUFFER_RW); buffer = (APA102::RGB *)bufinfo.buf; if(bufinfo.len < (size_t)(num_leds * 4)) { mp_raise_ValueError("Supplied buffer is too small for LED count!"); } // If a bytearray is supplied it'll be raw, uninitialized bytes // iterate through the RGB elements and call "brightness" // to set up the SOF bytes, otherwise a flickery mess will happen! // Oh for such niceties as "placement new"... for(auto i = 0; i < num_leds; i++) { buffer[i].brightness(15); } } self = m_new_obj_with_finaliser(_PlasmaAPA102_obj_t); self->base.type = &PlasmaAPA102_type; self->buf = buffer; self->apa102 = new APA102(num_leds, pio, sm, dat, clk, freq, buffer); return MP_OBJ_FROM_PTR(self); } mp_obj_t PlasmaAPA102_clear(mp_obj_t self_in) { _PlasmaAPA102_obj_t *self = MP_OBJ_TO_PTR2(self_in, _PlasmaAPA102_obj_t); self->apa102->clear(); return mp_const_none; } mp_obj_t PlasmaAPA102_start(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_fps }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_fps, MP_ARG_INT, {.u_int = 60} } }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _PlasmaAPA102_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _PlasmaAPA102_obj_t); self->apa102->start(args[ARG_fps].u_int); return mp_const_none; } mp_obj_t PlasmaAPA102_set_brightness(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_brightness }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_brightness, MP_ARG_REQUIRED | MP_ARG_INT } }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); int brightness = args[ARG_brightness].u_int; _PlasmaAPA102_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _PlasmaAPA102_obj_t); self->apa102->set_brightness(brightness); return mp_const_none; } mp_obj_t PlasmaAPA102_set_rgb(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_index, ARG_r, ARG_g, ARG_b }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_index, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_r, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_g, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_b, MP_ARG_REQUIRED | MP_ARG_INT } }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); int index = args[ARG_index].u_int; int r = args[ARG_r].u_int; int g = args[ARG_g].u_int; int b = args[ARG_b].u_int; _PlasmaAPA102_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _PlasmaAPA102_obj_t); self->apa102->set_rgb(index, r, g, b); return mp_const_none; } mp_obj_t PlasmaAPA102_set_hsv(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_index, ARG_h, ARG_s, ARG_v }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_index, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_hue, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_sat, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&const_float_1)} }, { MP_QSTR_val, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&const_float_1)} } }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); int index = args[ARG_index].u_int; float h = mp_obj_get_float(args[ARG_h].u_obj); float s = mp_obj_get_float(args[ARG_s].u_obj); float v = mp_obj_get_float(args[ARG_v].u_obj); _PlasmaAPA102_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _PlasmaAPA102_obj_t); self->apa102->set_hsv(index, h, s, v); return mp_const_none; } mp_obj_t PlasmaAPA102_get(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_index }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_index, MP_ARG_REQUIRED | MP_ARG_INT }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); int index = args[ARG_index].u_int; _PlasmaAPA102_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _PlasmaAPA102_obj_t); APA102::RGB rgb = self->apa102->get(index); mp_obj_t tuple[4]; tuple[0] = mp_obj_new_int(rgb.r); tuple[1] = mp_obj_new_float(rgb.g); tuple[2] = mp_obj_new_float(rgb.b); tuple[3] = mp_obj_new_float(rgb.sof); return mp_obj_new_tuple(4, tuple); } }