#include "st7789.hpp" #include #include namespace pimoroni { uint8_t madctl; uint16_t caset[2] = {0, 0}; uint16_t raset[2] = {0, 0}; enum MADCTL : uint8_t { ROW_ORDER = 0b10000000, COL_ORDER = 0b01000000, SWAP_XY = 0b00100000, // AKA "MV" SCAN_ORDER = 0b00010000, RGB = 0b00001000, HORIZ_ORDER = 0b00000100 }; enum reg { SWRESET = 0x01, TEOFF = 0x34, TEON = 0x35, MADCTL = 0x36, COLMOD = 0x3A, GCTRL = 0xB7, VCOMS = 0xBB, LCMCTRL = 0xC0, VDVVRHEN = 0xC2, VRHS = 0xC3, VDVS = 0xC4, FRCTRL2 = 0xC6, PWCTRL1 = 0xD0, PORCTRL = 0xB2, GMCTRP1 = 0xE0, GMCTRN1 = 0xE1, INVOFF = 0x20, SLPOUT = 0x11, DISPON = 0x29, GAMSET = 0x26, DISPOFF = 0x28, RAMWR = 0x2C, INVON = 0x21, CASET = 0x2A, RASET = 0x2B, PWMFRSEL = 0xCC }; void ST7789::init() { command(reg::SWRESET); sleep_ms(150); // Common init command(reg::TEON); // enable frame sync signal if used command(reg::COLMOD, 1, "\x05"); // 16 bits per pixel command(reg::PORCTRL, 5, "\x0c\x0c\x00\x33\x33"); command(reg::LCMCTRL, 1, "\x2c"); command(reg::VDVVRHEN, 1, "\x01"); command(reg::VRHS, 1, "\x12"); command(reg::VDVS, 1, "\x20"); command(reg::PWCTRL1, 2, "\xa4\xa1"); command(reg::FRCTRL2, 1, "\x0f"); if(width == 240 && height == 240) { command(reg::GCTRL, 1, "\x14"); command(reg::VCOMS, 1, "\x37"); command(reg::GMCTRP1, 14, "\xD0\x04\x0D\x11\x13\x2B\x3F\x54\x4C\x18\x0D\x0B\x1F\x23"); command(reg::GMCTRN1, 14, "\xD0\x04\x0C\x11\x13\x2C\x3F\x44\x51\x2F\x1F\x1F\x20\x23"); } if(width == 320 && height == 240) { command(reg::GCTRL, 1, "\x35"); command(reg::VCOMS, 1, "\x1f"); command(0xd6, 1, "\xa1"); // ??? command(reg::GMCTRP1, 14, "\xD0\x08\x11\x08\x0C\x15\x39\x33\x50\x36\x13\x14\x29\x2D"); command(reg::GMCTRN1, 14, "\xD0\x08\x10\x08\x06\x06\x39\x44\x51\x0B\x16\x14\x2F\x31"); } command(reg::INVON); // set inversion mode command(reg::SLPOUT); // leave sleep mode command(reg::DISPON); // turn display on sleep_ms(100); configure_display(rotation); if(bl != PIN_UNUSED) { //update(); // Send the new buffer to the display to clear any previous content sleep_ms(50); // Wait for the update to apply set_backlight(255); // Turn backlight on now surprises have passed } } void ST7789::configure_display(Rotation rotate) { bool rotate180 = rotate == ROTATE_180 || rotate == ROTATE_90; if(rotate == ROTATE_90 || rotate == ROTATE_270) { std::swap(width, height); } // 240x240 Square and Round LCD Breakouts if(width == 240 && height == 240) { caset[0] = 0; caset[1] = 239; if(round) { raset[0] = 40; raset[1] = 279; } else { raset[0] = rotate180 ? 80 : 0; raset[1] = rotate180 ? 329 : 239; } madctl = rotate180 ? (MADCTL::COL_ORDER | MADCTL::ROW_ORDER) : 0; if (rotate == ROTATE_90) madctl |= MADCTL::SWAP_XY; madctl |= MADCTL::HORIZ_ORDER; } // Pico Display if(width == 240 && height == 135) { caset[0] = 40; // 240 cols caset[1] = 279; raset[0] = 53; // 135 rows raset[1] = 187; madctl = rotate180 ? MADCTL::ROW_ORDER : MADCTL::COL_ORDER; madctl |= MADCTL::SWAP_XY | MADCTL::SCAN_ORDER; } // Pico Display at 90 degree rotation if(width == 135 && height == 240) { caset[0] = 52; // 135 cols caset[1] = 186; raset[0] = 40; // 240 rows raset[1] = 279; madctl = rotate180 ? (MADCTL::COL_ORDER | MADCTL::ROW_ORDER) : 0; } // Pico Display 2.0 if(width == 320 && height == 240) { caset[0] = 0; caset[1] = 319; raset[0] = 0; raset[1] = 239; madctl = rotate180 ? MADCTL::ROW_ORDER : MADCTL::COL_ORDER; madctl |= MADCTL::SWAP_XY | MADCTL::SCAN_ORDER; } // Pico Display 2.0 at 90 degree rotation if(width == 240 && height == 320) { caset[0] = 0; caset[1] = 239; raset[0] = 0; raset[1] = 319; madctl = rotate180 ? (MADCTL::COL_ORDER | MADCTL::ROW_ORDER) : 0; } // Byte swap the 16bit rows/cols values caset[0] = __builtin_bswap16(caset[0]); caset[1] = __builtin_bswap16(caset[1]); raset[0] = __builtin_bswap16(raset[0]); raset[1] = __builtin_bswap16(raset[1]); command(reg::CASET, 4, (char *)caset); command(reg::RASET, 4, (char *)raset); command(reg::MADCTL, 1, (char *)&madctl); } void ST7789::write_blocking_parallel(const uint8_t *src, size_t len) { uint32_t mask = 0xff << d0; while(len--) { gpio_put(wr_sck, false); uint8_t v = *src++; gpio_put_masked(mask, v << d0); asm("nop;"); gpio_put(wr_sck, true); asm("nop;"); } } void ST7789::command(uint8_t command, size_t len, const char *data) { gpio_put(dc, 0); // command mode gpio_put(cs, 0); if(spi) { spi_write_blocking(spi, &command, 1); } else { write_blocking_parallel(&command, 1); } if(data) { gpio_put(dc, 1); // data mode if(spi) { spi_write_blocking(spi, (const uint8_t*)data, len); } else { write_blocking_parallel((const uint8_t*)data, len); } } gpio_put(cs, 1); } void ST7789::update(PicoGraphics *graphics) { command(reg::RAMWR, width * height * sizeof(uint16_t), (const char*)graphics->get_data()); } void ST7789::update(PicoGraphics *graphics) { uint8_t command = reg::RAMWR; gpio_put(dc, 0); // command mode gpio_put(cs, 0); if(spi) { spi_write_blocking(spi, &command, 1); } else { write_blocking_parallel(&command, 1); } gpio_put(dc, 1); // data mode uint16_t row_buf[width]; for(auto y = 0u; y < height; y++) { graphics->get_data(y, &row_buf); // TODO: Add DMA->SPI / PIO while we prep the next row if(spi) { spi_write_blocking(spi, (const uint8_t*)row_buf, width * sizeof(uint16_t)); } else { write_blocking_parallel((const uint8_t*)row_buf, width * sizeof(uint16_t)); } } gpio_put(cs, 1); } void ST7789::update(PicoGraphics *graphics) { uint8_t command = reg::RAMWR; gpio_put(dc, 0); // command mode gpio_put(cs, 0); if(spi) { spi_write_blocking(spi, &command, 1); } else { write_blocking_parallel(&command, 1); } gpio_put(dc, 1); // data mode uint16_t row_buf[width]; for(auto y = 0u; y < height; y++) { graphics->get_data(y, &row_buf); // TODO: Add DMA->SPI / PIO while we prep the next row if(spi) { spi_write_blocking(spi, (const uint8_t*)row_buf, width * sizeof(uint16_t)); } else { write_blocking_parallel((const uint8_t*)row_buf, width * sizeof(uint16_t)); } } gpio_put(cs, 1); } void ST7789::update(PicoGraphics *graphics) { uint8_t command = reg::RAMWR; gpio_put(dc, 0); // command mode gpio_put(cs, 0); if(spi) { spi_write_blocking(spi, &command, 1); } else { write_blocking_parallel(&command, 1); } gpio_put(dc, 1); // data mode uint16_t row_buf[width]; for(auto y = 0u; y < height; y++) { graphics->get_data(y, &row_buf); // TODO: Add DMA->SPI / PIO while we prep the next row if(spi) { spi_write_blocking(spi, (const uint8_t*)row_buf, width * sizeof(uint16_t)); } else { write_blocking_parallel((const uint8_t*)row_buf, width * sizeof(uint16_t)); } } gpio_put(cs, 1); } /* // Native 16-bit framebuffer update void ST7789::update() { command(reg::RAMWR, width * height * sizeof(uint16_t), (const char*)frame_buffer); } // 8-bit framebuffer with palette conversion update void ST7789::update(uint16_t *palette) { uint8_t command = reg::RAMWR; uint16_t row[width]; gpio_put(dc, 0); // command mode gpio_put(cs, 0); if(spi) { spi_write_blocking(spi, &command, 1); } else { write_blocking_parallel(&command, 1); } gpio_put(dc, 1); // data mode for(auto y = 0u; y < height; y++) { for(auto x = 0u; x < width; x++) { auto i = y * width + x; row[x] = palette[((uint8_t *)frame_buffer)[i]]; } // TODO: Add DMA->SPI / PIO while we prep the next row if(spi) { spi_write_blocking(spi, (const uint8_t*)row, width * sizeof(uint16_t)); } else { write_blocking_parallel((const uint8_t*)row, width * sizeof(uint16_t)); } } gpio_put(cs, 1); } */ void ST7789::set_backlight(uint8_t brightness) { // gamma correct the provided 0-255 brightness value onto a // 0-65535 range for the pwm counter float gamma = 2.8; uint16_t value = (uint16_t)(pow((float)(brightness) / 255.0f, gamma) * 65535.0f + 0.5f); pwm_set_gpio_level(bl, value); } }