#include "calibration.hpp" namespace servo { Calibration::Point::Point() : pulse(0.0f), value(0.0f) { } Calibration::Point::Point(float pulse, float value) : pulse(pulse), value(value) { } Calibration::Calibration() : calibration(nullptr), calibration_size(0), limit_lower(true), limit_upper(true) { } Calibration::Calibration(CalibrationType default_type) : Calibration() { apply_default(default_type); } Calibration::Calibration(const Calibration &other) : calibration(nullptr), calibration_size(0), limit_lower(other.limit_lower), limit_upper(other.limit_upper) { uint size = other.size(); apply_blank(size); for(uint i = 0; i < size; i++) { calibration[i] = other.calibration[i]; } } Calibration::~Calibration() { if(calibration != nullptr) { delete[] calibration; calibration = nullptr; } } Calibration& Calibration::operator=(const Calibration &other) { uint size = other.size(); apply_blank(size); for(uint i = 0; i < size; i++) { calibration[i] = other.calibration[i]; } limit_lower = other.limit_lower; limit_upper = other.limit_upper; return *this; } Calibration::Point& Calibration::operator[](uint8_t index) const { return calibration[index]; } void Calibration::apply_blank(uint size) { if(calibration != nullptr) { delete[] calibration; } if(size > 0) { calibration = new Point[size]; calibration_size = size; } else { calibration = nullptr; calibration_size = 0; } } void Calibration::apply_two_point(float min_pulse, float max_pulse, float min_value, float max_value) { apply_blank(2); calibration[0] = Point(min_pulse, min_value); calibration[1] = Point(max_pulse, max_value); } void Calibration::apply_three_point(float min_pulse, float mid_pulse, float max_pulse, float min_value, float mid_value, float max_value) { apply_blank(3); calibration[0] = Point(min_pulse, min_value); calibration[1] = Point(mid_pulse, mid_value); calibration[2] = Point(max_pulse, max_value); } void Calibration::apply_uniform(uint size, float min_pulse, float max_pulse, float min_value, float max_value) { apply_blank(size); if(size > 0) { float size_minus_one = (float)(size - 1); for(uint i = 0; i < size; i++) { float pulse = Calibration::map_float((float)i, 0.0f, size_minus_one, min_pulse, max_pulse); float value = Calibration::map_float((float)i, 0.0f, size_minus_one, min_value, max_value); calibration[i] = Point(pulse, value); } } } void Calibration::apply_default(CalibrationType default_type) { switch(default_type) { default: case ANGULAR: apply_three_point(DEFAULT_MIN_PULSE, DEFAULT_MID_PULSE, DEFAULT_MAX_PULSE, -90.0f, 0.0f, +90.0f); break; case LINEAR: apply_two_point(DEFAULT_MIN_PULSE, DEFAULT_MAX_PULSE, 0.0f, 1.0f); break; case CONTINUOUS: apply_three_point(DEFAULT_MIN_PULSE, DEFAULT_MID_PULSE, DEFAULT_MAX_PULSE, -1.0f, 0.0f, +1.0f); break; } } uint Calibration::size() const { return calibration_size; } Calibration::Point* Calibration::point_at(uint8_t index) const { if(index < calibration_size) { return &calibration[index]; } return nullptr; } Calibration::Point* Calibration::first_point() const { if(calibration_size > 0) { return &calibration[0]; } return nullptr; } Calibration::Point* Calibration::last_point() const { if(calibration_size > 0) { return &calibration[calibration_size - 1]; } return nullptr; } bool Calibration::has_lower_limit() const { return limit_lower; } bool Calibration::has_upper_limit() const { return limit_upper; } void Calibration::limit_to_calibration(bool lower, bool upper) { limit_lower = lower; limit_upper = upper; } bool Calibration::value_to_pulse(float value, float &pulse_out, float &value_out) const { bool success = false; if(calibration_size >= 2) { uint8_t last = calibration_size - 1; value_out = value; // Is the value below the bottom most calibration point? if(value < calibration[0].value) { // Should the value be limited to the calibration or projected below it? if(limit_lower) { pulse_out = calibration[0].pulse; value_out = calibration[0].value; } else { pulse_out = map_float(value, calibration[0].value, calibration[1].value, calibration[0].pulse, calibration[1].pulse); } } // Is the value above the top most calibration point? else if(value > calibration[last].value) { // Should the value be limited to the calibration or projected above it? if(limit_upper) { pulse_out = calibration[last].pulse; value_out = calibration[last].value; } else { pulse_out = map_float(value, calibration[last - 1].value, calibration[last].value, calibration[last - 1].pulse, calibration[last].pulse); } } else { // The value must between two calibration points, so iterate through them to find which ones for(uint8_t i = 0; i < last; i++) { if(value <= calibration[i + 1].value) { pulse_out = map_float(value, calibration[i].value, calibration[i + 1].value, calibration[i].pulse, calibration[i + 1].pulse); break; // No need to continue checking so break out of the loop } } } // Clamp the pulse between the hard limits if(pulse_out < LOWER_HARD_LIMIT || pulse_out > UPPER_HARD_LIMIT) { pulse_out = MIN(MAX(pulse_out, LOWER_HARD_LIMIT), UPPER_HARD_LIMIT); // Is the pulse below the bottom most calibration point? if(pulse_out < calibration[0].pulse) { value_out = map_float(pulse_out, calibration[0].pulse, calibration[1].pulse, calibration[0].value, calibration[1].value); } // Is the pulse above the top most calibration point? else if(pulse_out > calibration[last].pulse) { value_out = map_float(pulse_out, calibration[last - 1].pulse, calibration[last].pulse, calibration[last - 1].value, calibration[last].value); } else { // The pulse must between two calibration points, so iterate through them to find which ones for(uint8_t i = 0; i < last; i++) { if(pulse_out <= calibration[i + 1].pulse) { value_out = map_float(pulse_out, calibration[i].pulse, calibration[i + 1].pulse, calibration[i].value, calibration[i + 1].value); break; // No need to continue checking so break out of the loop } } } } success = true; } return success; } bool Calibration::pulse_to_value(float pulse, float &value_out, float &pulse_out) const { bool success = false; if(calibration_size >= 2) { uint8_t last = calibration_size - 1; // Clamp the pulse between the hard limits pulse_out = MIN(MAX(pulse, LOWER_HARD_LIMIT), UPPER_HARD_LIMIT); // Is the pulse below the bottom most calibration point? if(pulse_out < calibration[0].pulse) { // Should the pulse be limited to the calibration or projected below it? if(limit_lower) { value_out = calibration[0].value; pulse_out = calibration[0].pulse; } else { value_out = map_float(pulse, calibration[0].pulse, calibration[1].pulse, calibration[0].value, calibration[1].value); } } // Is the pulse above the top most calibration point? else if(pulse > calibration[last].pulse) { // Should the pulse be limited to the calibration or projected above it? if(limit_upper) { value_out = calibration[last].value; pulse_out = calibration[last].pulse; } else { value_out = map_float(pulse, calibration[last - 1].pulse, calibration[last].pulse, calibration[last - 1].value, calibration[last].value); } } else { // The pulse must between two calibration points, so iterate through them to find which ones for(uint8_t i = 0; i < last; i++) { if(pulse <= calibration[i + 1].pulse) { value_out = map_float(pulse, calibration[i].pulse, calibration[i + 1].pulse, calibration[i].value, calibration[i + 1].value); break; // No need to continue checking so break out of the loop } } } success = true; } return success; } float Calibration::map_float(float in, float in_min, float in_max, float out_min, float out_max) { return (((in - in_min) * (out_max - out_min)) / (in_max - in_min)) + out_min; } };