#include "servo.hpp" #include namespace servo { Calibration::CalibrationPoint::CalibrationPoint() : pulse(0.0f), value(0.0f) { } Calibration::CalibrationPoint::CalibrationPoint(uint16_t pulse, float value) : pulse(pulse), value(value) { } Calibration::Calibration() : calibration(nullptr), calibration_points(0), limit_lower(true), limit_upper(true) { create_default_calibration(); } Calibration::~Calibration() { if(calibration != nullptr) { delete[] calibration; calibration = nullptr; } } void Calibration::create_default_calibration() { create_three_point_calibration(DEFAULT_MIN_PULSE, DEFAULT_MID_PULSE, DEFAULT_MAX_PULSE); } bool Calibration::create_blank_calibration(uint num_points) { bool success = false; if(num_points >= 2) { if(calibration != nullptr) delete[] calibration; calibration = new CalibrationPoint[num_points]; calibration_points = num_points; success = true; } return success; } void Calibration::create_three_point_calibration(float minus_pulse, float zero_pulse, float plus_pulse, float value_extent) { create_blank_calibration(3); calibration[0] = CalibrationPoint(minus_pulse, -value_extent); calibration[1] = CalibrationPoint(zero_pulse, 0.0f); calibration[2] = CalibrationPoint(plus_pulse, +value_extent); } bool Calibration::create_uniform_calibration(uint num_points, float min_pulse, float min_value, float max_pulse, float max_value) { bool success = false; if(create_blank_calibration(num_points)) { float points_minus_one = (float)(num_points - 1); for(uint i = 0; i < num_points; i++) { float pulse = ((max_pulse - min_pulse) * (float)i) / points_minus_one; float value = ((max_value - min_value) * (float)i) / points_minus_one; calibration[i] = CalibrationPoint(pulse, value); } success = true; } return success; } uint Calibration::points() { return calibration_points; } bool Calibration::get_point(uint8_t index, CalibrationPoint& point_out) { bool success = false; if(index < calibration_points) { point_out = CalibrationPoint(calibration[index]); success = true; } return success; } void Calibration::set_point(uint8_t index, const CalibrationPoint& point) { if(index < calibration_points) { calibration[index] = CalibrationPoint(point); } } void Calibration::limit_to_calibration(bool lower, bool upper) { limit_lower = lower; limit_upper = upper; } uint32_t Converter::pulse_to_level(float pulse, uint32_t resolution) { if(pulse != 0) { // Constrain the level to hardcoded limits to protect the servo pulse = MIN(MAX(pulse, LOWER_HARD_LIMIT), UPPER_HARD_LIMIT); } return (uint32_t)((pulse * (float)resolution) / SERVO_PERIOD); } uint32_t Converter::pulse_to_level(uint16_t pulse, uint32_t resolution) { if(pulse != 0) { // Constrain the level to hardcoded limits to protect the servo pulse = MIN(MAX(pulse, LOWER_HARD_LIMIT_I), UPPER_HARD_LIMIT_I); } return (uint32_t)(((uint64_t)pulse * (uint64_t)resolution) / SERVO_PERIOD); } float Converter::value_to_pulse(float value) { float pulse = 0; if(calibration_points >= 2) { uint8_t last = calibration_points - 1; // Is the value below the bottom most calibration point? if(value < calibration[0].value) { // Should the value be limited to the calibration or projected below it? if(limit_lower) pulse = calibration[0].pulse; else pulse = map_pulse(value, calibration[0].value, calibration[1].value, calibration[0].pulse, calibration[1].pulse); } // Is the value above the top most calibration point? else if(value > calibration[last].value) { // Should the value be limited to the calibration or projected above it? if(limit_upper) pulse = calibration[last].pulse; else pulse = map_pulse(value, calibration[last - 1].value, calibration[last].value, calibration[last - 1].pulse, calibration[last].pulse); } else { // The value must between two calibration points, so iterate through them to find which ones for(uint8_t i = 0; i < last; i++) { if(value <= calibration[i + 1].value) { pulse = map_pulse(value, calibration[i].value, calibration[i + 1].value, calibration[i].pulse, calibration[i + 1].pulse); break; // No need to continue checking so break out of the loop } } } } return pulse; } float Converter::map_pulse(float value, float min_value, float max_value, float min_pulse, float max_pulse) { return (((value - min_value) * (max_pulse - min_pulse)) / (max_value - min_value)) + min_pulse; } Servo::Servo(uint pin) : pin(pin) { }; Servo::~Servo() { gpio_set_function(pin, GPIO_FUNC_NULL); } bool Servo::init() { pwm_cfg = pwm_get_default_config(); pwm_config_set_wrap(&pwm_cfg, 20000 - 1); float div = clock_get_hz(clk_sys) / 1000000; pwm_config_set_clkdiv(&pwm_cfg, div); pwm_init(pwm_gpio_to_slice_num(pin), &pwm_cfg, true); gpio_set_function(pin, GPIO_FUNC_PWM); return true; } void Servo::set_value(float value) { float pulse = converter.value_to_pulse(value); uint16_t level = (uint16_t)converter.pulse_to_level(pulse, 20000); pwm_set_gpio_level(pin, level); } // void RGBLED::set_brightness(uint8_t brightness) { // led_brightness = brightness; // update_pwm(); // } // void RGBLED::set_hsv(float h, float s, float v) { // float i = floor(h * 6.0f); // float f = h * 6.0f - i; // v *= 255.0f; // uint8_t p = v * (1.0f - s); // uint8_t q = v * (1.0f - f * s); // uint8_t t = v * (1.0f - (1.0f - f) * s); // switch (int(i) % 6) { // case 0: led_r = v; led_g = t; led_b = p; break; // case 1: led_r = q; led_g = v; led_b = p; break; // case 2: led_r = p; led_g = v; led_b = t; break; // case 3: led_r = p; led_g = q; led_b = v; break; // case 4: led_r = t; led_g = p; led_b = v; break; // case 5: led_r = v; led_g = p; led_b = q; break; // } // update_pwm(); // } // void RGBLED::update_pwm() { // uint16_t r16 = GAMMA[led_r]; // uint16_t g16 = GAMMA[led_g]; // uint16_t b16 = GAMMA[led_b]; // r16 *= led_brightness; // g16 *= led_brightness; // b16 *= led_brightness; // if(polarity == Polarity::ACTIVE_LOW) { // r16 = UINT16_MAX - r16; // g16 = UINT16_MAX - g16; // b16 = UINT16_MAX - b16; // } // pwm_set_gpio_level(pin_r, r16); // pwm_set_gpio_level(pin_g, g16); // pwm_set_gpio_level(pin_b, b16); // } };