import gc import time import math from plasma import WS2812 from motor import Motor, motor2040 from encoder import Encoder, MMME_CPR from pimoroni import Button, PID, REVERSED_DIR """ A demonstration of driving all four of Motor 2040's motor outputs between positions, with the help of their attached encoders and PID control. Press "Boot" to exit the program. """ GEAR_RATIO = 50 # The gear ratio of the motors COUNTS_PER_REV = MMME_CPR * GEAR_RATIO # The counts per revolution of each motor's output shaft SPEED_SCALE = 5.4 # The scaling to apply to each motor's speed to match its real-world speed UPDATES = 100 # How many times to update the motor per second UPDATE_RATE = 1 / UPDATES TIME_FOR_EACH_MOVE = 2 # The time to travel between each value UPDATES_PER_MOVE = TIME_FOR_EACH_MOVE * UPDATES PRINT_DIVIDER = 4 # How many of the updates should be printed (i.e. 2 would be every other update) # LED constant BRIGHTNESS = 0.4 # The brightness of the LEDs # PID values POS_KP = 0.14 # Position proportional (P) gain POS_KI = 0.0 # Position integral (I) gain POS_KD = 0.0022 # Position derivative (D) gain # Free up hardware resources ahead of creating a new Encoder gc.collect() # Create a list of motors with a given speed scale MOTOR_PINS = [motor2040.MOTOR_A, motor2040.MOTOR_B, motor2040.MOTOR_C, motor2040.MOTOR_D] motors = [Motor(pins, speed_scale=SPEED_SCALE, deadzone=0.05) for pins in MOTOR_PINS] # Create a list of encoders, using PIO 0, with the given counts per revolution ENCODER_PINS = [motor2040.ENCODER_A, motor2040.ENCODER_B, motor2040.ENCODER_C, motor2040.ENCODER_D] ENCODER_NAMES = ["A", "B", "C", "D"] encoders = [Encoder(0, i, ENCODER_PINS[i], counts_per_rev=COUNTS_PER_REV, count_microsteps=True) for i in range(motor2040.NUM_MOTORS)] # Reverse the direction of the B and D motors and encoders motors[1].direction(REVERSED_DIR) motors[3].direction(REVERSED_DIR) encoders[1].direction(REVERSED_DIR) encoders[3].direction(REVERSED_DIR) # Create the LED, using PIO 1 and State Machine 0 led = WS2812(motor2040.NUM_LEDS, 1, 0, motor2040.LED_DATA) # Create the user button user_sw = Button(motor2040.USER_SW) # Create PID objects for position control pos_pids = [PID(POS_KP, POS_KI, POS_KD, UPDATE_RATE) for i in range(motor2040.NUM_MOTORS)] # Start updating the LED led.start() # Enable the motor to get started for m in motors: m.enable() update = 0 print_count = 0 # Set the initial and end values start_value = 0.0 end_value = 270.0 captures = [None] * motor2040.NUM_MOTORS # Continually move the motor until the user button is pressed while user_sw.raw() is not True: # Capture the state of all the encoders for i in range(motor2040.NUM_MOTORS): captures[i] = encoders[i].capture() # Calculate how far along this movement to be percent_along = min(update / UPDATES_PER_MOVE, 1.0) for i in range(motor2040.NUM_MOTORS): # Move the motor between values using cosine pos_pids[i].setpoint = (((-math.cos(percent_along * math.pi) + 1.0) / 2.0) * (end_value - start_value)) + start_value # Calculate the velocity to move the motor closer to the position setpoint vel = pos_pids[i].calculate(captures[i].degrees, captures[i].degrees_per_second) # Set the new motor driving speed motors[i].speed(vel) # Update the LED led.set_hsv(0, percent_along, 1.0, BRIGHTNESS) # Print out the current motor values and their setpoints, but only on every multiple if print_count == 0: for i in range(len(motors)): print(ENCODER_NAMES[i], "=", captures[i].degrees, end=", ") print() # Increment the print count, and wrap it print_count = (print_count + 1) % PRINT_DIVIDER update += 1 # Move along in time # Have we reached the end of this movement? if update >= UPDATES_PER_MOVE: update = 0 # Reset the counter # Swap the start and end values temp = start_value start_value = end_value end_value = temp time.sleep(UPDATE_RATE) # Stop all the motors for m in motors: m.disable() # Turn off the LED bar led.clear()