#include "servo_cluster.hpp" #include "pwm.hpp" #include namespace servo { ServoCluster::ServoCluster(PIO pio, uint sm, uint pin_mask, CalibrationType default_type, float freq, bool auto_phase, PWMCluster::Sequence *seq_buffer, PWMCluster::TransitionData *dat_buffer) : pwms(pio, sm, pin_mask, seq_buffer, dat_buffer), pwm_frequency(freq) { create_servo_states(default_type, auto_phase); } ServoCluster::ServoCluster(PIO pio, uint sm, uint pin_base, uint pin_count, CalibrationType default_type, float freq, bool auto_phase, PWMCluster::Sequence *seq_buffer, PWMCluster::TransitionData *dat_buffer) : pwms(pio, sm, pin_base, pin_count, seq_buffer, dat_buffer), pwm_frequency(freq) { create_servo_states(default_type, auto_phase); } ServoCluster::ServoCluster(PIO pio, uint sm, const uint8_t *pins, uint32_t length, CalibrationType default_type, float freq, bool auto_phase, PWMCluster::Sequence *seq_buffer, PWMCluster::TransitionData *dat_buffer) : pwms(pio, sm, pins, length, seq_buffer, dat_buffer), pwm_frequency(freq) { create_servo_states(default_type, auto_phase); } ServoCluster::ServoCluster(PIO pio, uint sm, std::initializer_list pins, CalibrationType default_type, float freq, bool auto_phase, PWMCluster::Sequence *seq_buffer, PWMCluster::TransitionData *dat_buffer) : pwms(pio, sm, pins, seq_buffer, dat_buffer), pwm_frequency(freq) { create_servo_states(default_type, auto_phase); } ServoCluster::ServoCluster(PIO pio, uint sm, uint pin_mask, const Calibration& calibration, float freq, bool auto_phase, PWMCluster::Sequence *seq_buffer, PWMCluster::TransitionData *dat_buffer) : pwms(pio, sm, pin_mask, seq_buffer, dat_buffer), pwm_frequency(freq) { create_servo_states(calibration, auto_phase); } ServoCluster::ServoCluster(PIO pio, uint sm, uint pin_base, uint pin_count, const Calibration& calibration, float freq, bool auto_phase, PWMCluster::Sequence *seq_buffer, PWMCluster::TransitionData *dat_buffer) : pwms(pio, sm, pin_base, pin_count, seq_buffer, dat_buffer), pwm_frequency(freq) { create_servo_states(calibration, auto_phase); } ServoCluster::ServoCluster(PIO pio, uint sm, const uint8_t *pins, uint32_t length, const Calibration& calibration, float freq, bool auto_phase, PWMCluster::Sequence *seq_buffer, PWMCluster::TransitionData *dat_buffer) : pwms(pio, sm, pins, length, seq_buffer, dat_buffer), pwm_frequency(freq) { create_servo_states(calibration, auto_phase); } ServoCluster::ServoCluster(PIO pio, uint sm, std::initializer_list pins, const Calibration& calibration, float freq, bool auto_phase, PWMCluster::Sequence *seq_buffer, PWMCluster::TransitionData *dat_buffer) : pwms(pio, sm, pins, seq_buffer, dat_buffer), pwm_frequency(freq) { create_servo_states(calibration, auto_phase); } ServoCluster::~ServoCluster() { delete[] states; delete[] servo_phases; } bool ServoCluster::init() { bool success = false; if(pwms.init()) { // Calculate a suitable pwm wrap period for this frequency uint32_t period; uint32_t div256; if(pimoroni::PWMCluster::calculate_pwm_factors(pwm_frequency, period, div256)) { pwm_period = period; // Update the pwm before setting the new wrap uint8_t servo_count = pwms.get_chan_count(); for(uint8_t servo = 0; servo < servo_count; servo++) { pwms.set_chan_level(servo, 0, false); pwms.set_chan_offset(servo, (uint32_t)(servo_phases[servo] * (float)pwm_period), false); } // Set the new wrap (should be 1 less than the period to get full 0 to 100%) pwms.set_wrap(pwm_period, true); // NOTE Minus 1 not needed here. Maybe should change Wrap behaviour so it is needed, for consistency with hardware pwm? // Apply the new divider // This is done after loading new PWM values to avoid a lockup condition uint8_t div = div256 >> 8; uint8_t mod = div256 % 256; pwms.set_clkdiv_int_frac(div, mod); success = true; } } return success; } uint8_t ServoCluster::count() const { return pwms.get_chan_count(); } uint8_t ServoCluster::pin(uint8_t servo) const { return pwms.get_chan_pin(servo); } void ServoCluster::enable(uint8_t servo, bool load) { assert(servo < pwms.get_chan_count()); float new_pulse = states[servo].enable_with_return(); apply_pulse(servo, new_pulse, load); } void ServoCluster::enable(const uint8_t *servos, uint8_t length, bool load) { assert(servos != nullptr); for(uint8_t i = 0; i < length; i++) { enable(servos[i], false); } if(load) pwms.load_pwm(); } void ServoCluster::enable(std::initializer_list servos, bool load) { for(auto servo : servos) { enable(servo, false); } if(load) pwms.load_pwm(); } void ServoCluster::enable_all(bool load) { uint8_t servo_count = pwms.get_chan_count(); for(uint8_t servo = 0; servo < servo_count; servo++) { enable(servo, false); } if(load) pwms.load_pwm(); } void ServoCluster::disable(uint8_t servo, bool load) { assert(servo < pwms.get_chan_count()); float new_pulse = states[servo].disable_with_return(); apply_pulse(servo, new_pulse, load); } void ServoCluster::disable(const uint8_t *servos, uint8_t length, bool load) { assert(servos != nullptr); for(uint8_t i = 0; i < length; i++) { disable(servos[i], false); } if(load) pwms.load_pwm(); } void ServoCluster::disable(std::initializer_list servos, bool load) { for(auto servo : servos) { disable(servo, false); } if(load) pwms.load_pwm(); } void ServoCluster::disable_all(bool load) { uint8_t servo_count = pwms.get_chan_count(); for(uint8_t servo = 0; servo < servo_count; servo++) { disable(servo, false); } if(load) pwms.load_pwm(); } bool ServoCluster::is_enabled(uint8_t servo) const { assert(servo < pwms.get_chan_count()); return states[servo].is_enabled(); } float ServoCluster::pulse(uint8_t servo) const { assert(servo < pwms.get_chan_count()); return states[servo].get_pulse(); } void ServoCluster::pulse(uint8_t servo, float pulse, bool load) { assert(servo < pwms.get_chan_count()); float new_pulse = states[servo].set_pulse_with_return(pulse); apply_pulse(servo, new_pulse, load); } void ServoCluster::pulse(const uint8_t *servos, uint8_t length, float pulse, bool load) { assert(servos != nullptr); for(uint8_t i = 0; i < length; i++) { this->pulse(servos[i], pulse, false); } if(load) pwms.load_pwm(); } void ServoCluster::pulse(std::initializer_list servos, float pulse, bool load) { for(auto servo : servos) { this->pulse(servo, pulse, false); } if(load) pwms.load_pwm(); } void ServoCluster::all_to_pulse(float pulse, bool load) { uint8_t servo_count = pwms.get_chan_count(); for(uint8_t servo = 0; servo < servo_count; servo++) { this->pulse(servo, pulse, false); } if(load) pwms.load_pwm(); } float ServoCluster::value(uint8_t servo) const { assert(servo < pwms.get_chan_count()); return states[servo].get_value(); } void ServoCluster::value(uint8_t servo, float value, bool load) { assert(servo < pwms.get_chan_count()); float new_pulse = states[servo].set_value_with_return(value); apply_pulse(servo, new_pulse, load); } void ServoCluster::value(const uint8_t *servos, uint8_t length, float value, bool load) { assert(servos != nullptr); for(uint8_t i = 0; i < length; i++) { this->value(servos[i], value, false); } if(load) pwms.load_pwm(); } void ServoCluster::value(std::initializer_list servos, float value, bool load) { for(auto servo : servos) { this->value(servo, value, false); } if(load) pwms.load_pwm(); } void ServoCluster::all_to_value(float value, bool load) { uint8_t servo_count = pwms.get_chan_count(); for(uint8_t servo = 0; servo < servo_count; servo++) { this->value(servo, value, false); } if(load) pwms.load_pwm(); } float ServoCluster::phase(uint8_t servo) const { assert(servo < pwms.get_chan_count()); return servo_phases[servo]; } void ServoCluster::phase(uint8_t servo, float phase, bool load) { assert(servo < pwms.get_chan_count()); servo_phases[servo] = MIN(MAX(phase, 0.0f), 1.0f); pwms.set_chan_offset(servo, (uint32_t)(servo_phases[servo] * (float)pwms.get_wrap()), load); } void ServoCluster::phase(const uint8_t *servos, uint8_t length, float phase, bool load) { assert(servos != nullptr); for(uint8_t i = 0; i < length; i++) { this->phase(servos[i], phase, false); } if(load) pwms.load_pwm(); } void ServoCluster::phase(std::initializer_list servos, float phase, bool load) { for(auto servo : servos) { this->phase(servo, phase, false); } if(load) pwms.load_pwm(); } void ServoCluster::all_to_phase(float phase, bool load) { uint8_t servo_count = pwms.get_chan_count(); for(uint8_t servo = 0; servo < servo_count; servo++) { this->phase(servo, phase, false); } if(load) pwms.load_pwm(); } float ServoCluster::frequency() const { return pwm_frequency; } bool ServoCluster::frequency(float freq) { bool success = false; if((freq >= ServoState::MIN_FREQUENCY) && (freq <= ServoState::MAX_FREQUENCY)) { // Calculate a suitable pwm wrap period for this frequency uint32_t period; uint32_t div256; if(pimoroni::PWMCluster::calculate_pwm_factors(freq, period, div256)) { pwm_period = period; pwm_frequency = freq; // Update the pwm before setting the new wrap uint8_t servo_count = pwms.get_chan_count(); for(uint servo = 0; servo < servo_count; servo++) { if(states[servo].is_enabled()) { apply_pulse(servo, states[servo].get_pulse(), false); } pwms.set_chan_offset(servo, (uint32_t)(servo_phases[servo] * (float)pwm_period), false); } // Set the new wrap (should be 1 less than the period to get full 0 to 100%) pwms.set_wrap(pwm_period, true); // Apply the new divider uint16_t div = div256 >> 8; uint8_t mod = div256 % 256; pwms.set_clkdiv_int_frac(div, mod); success = true; } } return success; } float ServoCluster::min_value(uint8_t servo) const { assert(servo < pwms.get_chan_count()); return states[servo].get_min_value(); } float ServoCluster::mid_value(uint8_t servo) const { assert(servo < pwms.get_chan_count()); return states[servo].get_mid_value(); } float ServoCluster::max_value(uint8_t servo) const { assert(servo < pwms.get_chan_count()); return states[servo].get_max_value(); } void ServoCluster::to_min(uint8_t servo, bool load) { assert(servo < pwms.get_chan_count()); float new_pulse = states[servo].to_min_with_return(); apply_pulse(servo, new_pulse, load); } void ServoCluster::to_min(const uint8_t *servos, uint8_t length, bool load) { assert(servos != nullptr); for(uint8_t i = 0; i < length; i++) { to_min(servos[i], false); } if(load) pwms.load_pwm(); } void ServoCluster::to_min(std::initializer_list servos, bool load) { for(auto servo : servos) { to_min(servo, false); } if(load) pwms.load_pwm(); } void ServoCluster::all_to_min(bool load) { uint8_t servo_count = pwms.get_chan_count(); for(uint8_t servo = 0; servo < servo_count; servo++) { to_min(servo, false); } if(load) pwms.load_pwm(); } void ServoCluster::to_mid(uint8_t servo, bool load) { assert(servo < pwms.get_chan_count()); float new_pulse = states[servo].to_mid_with_return(); apply_pulse(servo, new_pulse, load); } void ServoCluster::to_mid(const uint8_t *servos, uint8_t length, bool load) { assert(servos != nullptr); for(uint8_t i = 0; i < length; i++) { to_mid(servos[i], false); } if(load) pwms.load_pwm(); } void ServoCluster::to_mid(std::initializer_list servos, bool load) { for(auto servo : servos) { to_mid(servo, false); } if(load) pwms.load_pwm(); } void ServoCluster::all_to_mid(bool load) { uint8_t servo_count = pwms.get_chan_count(); for(uint8_t servo = 0; servo < servo_count; servo++) { to_mid(servo, false); } if(load) pwms.load_pwm(); } void ServoCluster::to_max(uint8_t servo, bool load) { assert(servo < pwms.get_chan_count()); float new_pulse = states[servo].to_max_with_return(); apply_pulse(servo, new_pulse, load); } void ServoCluster::to_max(const uint8_t *servos, uint8_t length, bool load) { assert(servos != nullptr); for(uint8_t i = 0; i < length; i++) { to_max(servos[i], false); } if(load) pwms.load_pwm(); } void ServoCluster::to_max(std::initializer_list servos, bool load) { for(auto servo : servos) { to_max(servo, false); } if(load) pwms.load_pwm(); } void ServoCluster::all_to_max(bool load) { uint8_t servo_count = pwms.get_chan_count(); for(uint8_t servo = 0; servo < servo_count; servo++) { to_max(servo, false); } if(load) pwms.load_pwm(); } void ServoCluster::to_percent(uint8_t servo, float in, float in_min, float in_max, bool load) { assert(servo < pwms.get_chan_count()); float new_pulse = states[servo].to_percent_with_return(in, in_min, in_max); apply_pulse(servo, new_pulse, load); } void ServoCluster::to_percent(const uint8_t *servos, uint8_t length, float in, float in_min, float in_max, bool load) { assert(servos != nullptr); for(uint8_t i = 0; i < length; i++) { to_percent(servos[i], in, in_min, in_max, false); } if(load) pwms.load_pwm(); } void ServoCluster::to_percent(std::initializer_list servos, float in, float in_min, float in_max, bool load) { for(auto servo : servos) { to_percent(servo, in, in_min, in_max, false); } if(load) pwms.load_pwm(); } void ServoCluster::all_to_percent(float in, float in_min, float in_max, bool load) { uint8_t servo_count = pwms.get_chan_count(); for(uint8_t servo = 0; servo < servo_count; servo++) { to_percent(servo, in, in_min, in_max, false); } if(load) pwms.load_pwm(); } void ServoCluster::to_percent(uint8_t servo, float in, float in_min, float in_max, float value_min, float value_max, bool load) { assert(servo < pwms.get_chan_count()); float new_pulse = states[servo].to_percent_with_return(in, in_min, in_max, value_min, value_max); apply_pulse(servo, new_pulse, load); } void ServoCluster::to_percent(const uint8_t *servos, uint8_t length, float in, float in_min, float in_max, float value_min, float value_max, bool load) { assert(servos != nullptr); for(uint8_t i = 0; i < length; i++) { to_percent(servos[i], in, in_min, in_max, value_min, value_max, false); } if(load) pwms.load_pwm(); } void ServoCluster::to_percent(std::initializer_list servos, float in, float in_min, float in_max, float value_min, float value_max, bool load) { for(auto servo : servos) { to_percent(servo, in, in_min, in_max, value_min, value_max, false); } if(load) pwms.load_pwm(); } void ServoCluster::all_to_percent(float in, float in_min, float in_max, float value_min, float value_max, bool load) { uint8_t servo_count = pwms.get_chan_count(); for(uint8_t servo = 0; servo < servo_count; servo++) { to_percent(servo, in, in_min, in_max, value_min, value_max, false); } if(load) pwms.load_pwm(); } Calibration& ServoCluster::calibration(uint8_t servo) { assert(servo < pwms.get_chan_count()); return states[servo].calibration(); } const Calibration& ServoCluster::calibration(uint8_t servo) const { assert(servo < pwms.get_chan_count()); return states[servo].calibration(); } void ServoCluster::load() { pwms.load_pwm(); } void ServoCluster::apply_pulse(uint8_t servo, float pulse, bool load) { pwms.set_chan_level(servo, ServoState::pulse_to_level(pulse, pwm_period, pwm_frequency), load); } void ServoCluster::create_servo_states(CalibrationType default_type, bool auto_phase) { uint8_t servo_count = pwms.get_chan_count(); if(servo_count > 0) { states = new ServoState[servo_count]; servo_phases = new float[servo_count]; for(uint servo = 0; servo < servo_count; servo++) { states[servo] = ServoState(default_type); servo_phases[servo] = (auto_phase) ? (float)servo / (float)servo_count : 0.0f; } } } void ServoCluster::create_servo_states(const Calibration& calibration, bool auto_phase) { uint8_t servo_count = pwms.get_chan_count(); if(servo_count > 0) { states = new ServoState[servo_count]; servo_phases = new float[servo_count]; for(uint servo = 0; servo < servo_count; servo++) { states[servo] = ServoState(calibration); servo_phases[servo] = (auto_phase) ? (float)servo / (float)servo_count : 0.0f; } } } };