#include "apa102.hpp" namespace plasma { APA102::APA102(uint num_leds, PIO pio, uint sm, uint pin_dat, uint pin_clk, uint freq, RGB* buffer) : buffer(buffer), num_leds(num_leds), pio(pio), sm(sm) { pio_program_offset = pio_add_program(pio, &apa102_program); pio_sm_set_pins_with_mask(pio, sm, 0, (1u << pin_clk) | (1u << pin_dat)); pio_sm_set_pindirs_with_mask(pio, sm, ~0u, (1u << pin_clk) | (1u << pin_dat)); pio_gpio_init(pio, pin_clk); pio_gpio_init(pio, pin_dat); pio_sm_config c = apa102_program_get_default_config(pio_program_offset); sm_config_set_out_pins(&c, pin_dat, 1); sm_config_set_sideset_pins(&c, pin_clk); sm_config_set_out_shift(&c, false, true, 32); sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX); // The PIO program transmits 1 bit every 2 execution cycles float div = (float)clock_get_hz(clk_sys) / (2 * freq); sm_config_set_clkdiv(&c, div); pio_sm_init(pio, sm, pio_program_offset, &c); pio_sm_set_enabled(pio, sm, true); dma_channel = dma_claim_unused_channel(true); dma_channel_config config = dma_channel_get_default_config(dma_channel); channel_config_set_bswap(&config, true); channel_config_set_dreq(&config, pio_get_dreq(pio, sm, true)); channel_config_set_transfer_data_size(&config, DMA_SIZE_32); channel_config_set_read_increment(&config, true); dma_channel_configure(dma_channel, &config, &pio->txf[sm], NULL, 0, false); if(this->buffer == nullptr) { this->buffer = new RGB[num_leds]; managed_buffer = true; } } bool APA102::dma_timer_callback(struct repeating_timer *t) { ((APA102*)t->user_data)->update(); return true; } void APA102::update(bool blocking) { if(dma_channel_is_busy(dma_channel) && !blocking) return; while(dma_channel_is_busy(dma_channel)) {}; // Block waiting for DMA finish pio->txf[sm] = 0x00000000; // Output the APA102 start-of-frame bytes dma_channel_set_trans_count(dma_channel, num_leds, false); dma_channel_set_read_addr(dma_channel, buffer, true); if (!blocking) return; while(dma_channel_is_busy(dma_channel)) {}; // Block waiting for DMA finish // This is necessary to prevent a single LED remaining lit when clearing and updating. // This code will only run in *blocking* mode since it's assumed non-blocking will be continuously updating anyway. // Yes this will slow down LED updates... don't use blocking mode unless you're clearing LEDs before shutdown, // or you *really* want to avoid actively driving your APA102s for some reason. for(auto x = 0u; x < (num_leds / 16) + 1; x++) { pio->txf[sm] = 0x00000000; // Some delay is needed, since the PIO is async // and this could be happening during a destructor/MicroPython soft reset sleep_ms(1); // Chosen by fair dice roll } } bool APA102::start(uint fps) { add_repeating_timer_ms(-(1000 / fps), dma_timer_callback, (void*)this, &timer); return true; } bool APA102::stop() { return cancel_repeating_timer(&timer); } void APA102::clear() { for (auto i = 0u; i < num_leds; ++i) { set_rgb(i, 0, 0, 0); } } void APA102::set_hsv(uint32_t index, float h, float s, float v) { float i = floor(h * 6.0f); float f = h * 6.0f - i; v *= 255.0f; uint8_t p = v * (1.0f - s); uint8_t q = v * (1.0f - f * s); uint8_t t = v * (1.0f - (1.0f - f) * s); switch (int(i) % 6) { case 0: set_rgb(index, v, t, p); break; case 1: set_rgb(index, q, v, p); break; case 2: set_rgb(index, p, v, t); break; case 3: set_rgb(index, p, q, v); break; case 4: set_rgb(index, t, p, v); break; case 5: set_rgb(index, v, p, q); break; } } void APA102::set_rgb(uint32_t index, uint8_t r, uint8_t g, uint8_t b) { buffer[index].rgb(r, g, b); } void APA102::set_brightness(uint8_t b) { for (auto i = 0u; i < num_leds; ++i) { buffer[i].brightness(b); } } }