#include #include #include #include #include "pico_display_2.hpp" using namespace pimoroni; uint16_t buffer[PicoDisplay2::WIDTH * PicoDisplay2::HEIGHT]; PicoDisplay2 pico_display(buffer); // HSV Conversion expects float inputs in the range of 0.00-1.00 for each channel // Outputs are rgb in the range 0-255 for each channel void from_hsv(float h, float s, float v, uint8_t &r, uint8_t &g, uint8_t &b) { float i = floor(h * 6.0f); float f = h * 6.0f - i; v *= 255.0f; uint8_t p = v * (1.0f - s); uint8_t q = v * (1.0f - f * s); uint8_t t = v * (1.0f - (1.0f - f) * s); switch (int(i) % 6) { case 0: r = v; g = t; b = p; break; case 1: r = q; g = v; b = p; break; case 2: r = p; g = v; b = t; break; case 3: r = p; g = q; b = v; break; case 4: r = t; g = p; b = v; break; case 5: r = v; g = p; b = q; break; } } int main() { pico_display.init(); pico_display.set_backlight(255); struct pt { float x; float y; uint8_t r; float dx; float dy; uint16_t pen; }; std::vector shapes; for(int i = 0; i < 100; i++) { pt shape; shape.x = rand() % pico_display.bounds.w; shape.y = rand() % pico_display.bounds.h; shape.r = (rand() % 10) + 3; shape.dx = float(rand() % 255) / 64.0f; shape.dy = float(rand() % 255) / 64.0f; shape.pen = pico_display.create_pen(rand() % 255, rand() % 255, rand() % 255); shapes.push_back(shape); } Point text_location(0, 0); while(true) { if(pico_display.is_pressed(pico_display.A)) text_location.x -= 1; if(pico_display.is_pressed(pico_display.B)) text_location.x += 1; if(pico_display.is_pressed(pico_display.X)) text_location.y -= 1; if(pico_display.is_pressed(pico_display.Y)) text_location.y += 1; pico_display.set_pen(120, 40, 60); pico_display.clear(); for(auto &shape : shapes) { shape.x += shape.dx; shape.y += shape.dy; if((shape.x - shape.r) < 0) { shape.dx *= -1; shape.x = shape.r; } if((shape.x + shape.r) >= pico_display.bounds.w) { shape.dx *= -1; shape.x = pico_display.bounds.w - shape.r; } if((shape.y - shape.r) < 0) { shape.dy *= -1; shape.y = shape.r; } if((shape.y + shape.r) >= pico_display.bounds.h) { shape.dy *= -1; shape.y = pico_display.bounds.h - shape.r; } pico_display.set_pen(shape.pen); pico_display.circle(Point(shape.x, shape.y), shape.r); } // Since HSV takes a float from 0.0 to 1.0 indicating hue, // then we can divide millis by the number of milliseconds // we want a full colour cycle to take. 5000 = 5 sec. uint8_t r = 0, g = 0, b = 0; from_hsv((float)millis() / 5000.0f, 1.0f, 0.5f + sinf(millis() / 100.0f / 3.14159f) * 0.5f, r, g, b); pico_display.set_led(r, g, b); pico_display.set_pen(255, 255, 255); pico_display.text("Hello World", text_location, 320); // update screen pico_display.update(); } return 0; }