#include #include "hardware/watchdog.h" #include "badger2040.hpp" #define MP_OBJ_TO_PTR2(o, t) ((t *)(uintptr_t)(o)) extern "C" { #include "badger2040.h" #include "py/builtin.h" #include "py/mpthread.h" extern uint32_t badger_buttons_on_wake; static bool Badger2040_wake_state_any() { return badger_buttons_on_wake > 0; } static bool Badger2040_wake_state_get(uint32_t pin) { return badger_buttons_on_wake & (0b1 << pin); } static bool Badger2040_wake_state_get_once(uint32_t pin) { uint32_t mask = 0b1 << pin; bool value = badger_buttons_on_wake & mask; badger_buttons_on_wake &= ~mask; return value; } std::string mp_obj_to_string_r(const mp_obj_t &obj) { if(mp_obj_is_str_or_bytes(obj)) { GET_STR_DATA_LEN(obj, str, str_len); return (const char*)str; } else if(mp_obj_is_float(obj)) mp_raise_TypeError("can't convert 'float' object to str implicitly"); else if(mp_obj_is_int(obj)) mp_raise_TypeError("can't convert 'int' object to str implicitly"); else if(mp_obj_is_bool(obj)) mp_raise_TypeError("can't convert 'bool' object to str implicitly"); else mp_raise_TypeError("can't convert object to str implicitly"); } typedef struct _mp_obj_float_t { mp_obj_base_t base; mp_float_t value; } mp_obj_float_t; const mp_obj_float_t const_float_1 = {{&mp_type_float}, 1.0f}; /********** WS2812 **********/ /***** Variables Struct *****/ typedef struct _Badger2040_obj_t { mp_obj_base_t base; pimoroni::Badger2040* badger2040; void *buf; } _Badger2040_obj_t; _Badger2040_obj_t *badger2040_obj; /***** Print *****/ void Badger2040_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { (void)kind; // Unused input parameter (void)self_in; //_Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t); mp_print_str(print, "Badger2040( "); mp_print_str(print, " )"); } /***** Destructor ******/ mp_obj_t Badger2040___del__(mp_obj_t self_in) { _Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t); // Try to ensure power is cut off when soft reset (IE: "Stop" in Thonny) self->badger2040->power_off(); delete self->badger2040; return mp_const_none; } /***** Constructor *****/ mp_obj_t Badger2040_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { enum { ARG_buffer }; static const mp_arg_t allowed_args[] = { { MP_QSTR_buffer, MP_ARG_OBJ, {.u_obj = nullptr} } }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); int width = 296; int height = 128; uint8_t *buffer = nullptr; if (args[ARG_buffer].u_obj) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[ARG_buffer].u_obj, &bufinfo, MP_BUFFER_RW); buffer = (uint8_t *)bufinfo.buf; if(bufinfo.len < (size_t)(width * height / 8)) { mp_raise_ValueError("Supplied buffer is too small!"); } } else { buffer = m_new(uint8_t, width * height / 8); } badger2040_obj = m_new_obj_with_finaliser(_Badger2040_obj_t); badger2040_obj->base.type = &Badger2040_type; badger2040_obj->buf = buffer; badger2040_obj->badger2040 = new pimoroni::Badger2040(buffer); badger2040_obj->badger2040->init(); return MP_OBJ_FROM_PTR(badger2040_obj); } mp_obj_t Badger2040_is_busy(mp_obj_t self_in) { _Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t); return self->badger2040->is_busy() ? mp_const_true : mp_const_false; } mp_obj_t Badger2040_update_speed(mp_obj_t self_in, mp_obj_t speed) { _Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t); self->badger2040->update_speed(mp_obj_get_int(speed)); return mp_const_none; } mp_obj_t Badger2040_update(mp_obj_t self_in) { _Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t); while(self->badger2040->is_busy()) { #ifdef MICROPY_EVENT_POLL_HOOK MICROPY_EVENT_POLL_HOOK #endif } absolute_time_t t_end = make_timeout_time_ms(self->badger2040->update_time()); self->badger2040->update(false); // Ensure blocking for the minimum amount of time // in cases where "is_busy" is unreliable. while(self->badger2040->is_busy() || absolute_time_diff_us(get_absolute_time(), t_end) > 0) { #ifdef MICROPY_EVENT_POLL_HOOK MICROPY_EVENT_POLL_HOOK #endif } self->badger2040->power_off(); return mp_const_none; } mp_obj_t Badger2040_partial_update(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_x, ARG_y, ARG_w, ARG_h }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_x, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_y, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_w, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_h, MP_ARG_REQUIRED | MP_ARG_INT } }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); int x = args[ARG_x].u_int; int y = args[ARG_y].u_int; int w = args[ARG_w].u_int; int h = args[ARG_h].u_int; _Badger2040_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Badger2040_obj_t); while(self->badger2040->is_busy()) { #ifdef MICROPY_EVENT_POLL_HOOK MICROPY_EVENT_POLL_HOOK #endif } absolute_time_t t_end = make_timeout_time_ms(self->badger2040->update_time()); self->badger2040->partial_update(x, y, w, h); // Ensure blocking for the minimum amount of time // in cases where "is_busy" is unreliable. while(self->badger2040->is_busy() || absolute_time_diff_us(t_end, get_absolute_time()) > 0) { #ifdef MICROPY_EVENT_POLL_HOOK MICROPY_EVENT_POLL_HOOK #endif } self->badger2040->power_off(); return mp_const_none; } mp_obj_t Badger2040_woken_by_button() { return Badger2040_wake_state_any() ? mp_const_true : mp_const_false; } mp_obj_t Badger2040_halt(mp_obj_t self_in) { _Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t); // Don't use the Badger halt so we can allow Micropython to be interrupted. gpio_put(pimoroni::Badger2040::ENABLE_3V3, 0); self->badger2040->update_button_states(); while (self->badger2040->button_states() == 0) { #ifdef MICROPY_EVENT_POLL_HOOK MICROPY_EVENT_POLL_HOOK #endif self->badger2040->update_button_states(); } //watchdog_reboot(0, SRAM_END, 0); return mp_const_none; } // sleep mp_obj_t Badger2040_invert(mp_obj_t self_in, mp_obj_t invert) { _Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t); self->badger2040->invert(invert == mp_const_true); return mp_const_none; } mp_obj_t Badger2040_led(mp_obj_t self_in, mp_obj_t brightness) { _Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t); self->badger2040->led(mp_obj_get_int(brightness)); return mp_const_none; } mp_obj_t Badger2040_font(mp_obj_t self_in, mp_obj_t font) { _Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t); self->badger2040->font(mp_obj_to_string_r(font)); return mp_const_none; } mp_obj_t Badger2040_pen(mp_obj_t self_in, mp_obj_t color) { _Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t); self->badger2040->pen(mp_obj_get_int(color)); return mp_const_none; } mp_obj_t Badger2040_thickness(mp_obj_t self_in, mp_obj_t thickness) { _Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t); self->badger2040->thickness(mp_obj_get_int(thickness)); return mp_const_none; } mp_obj_t Badger2040_pressed(mp_obj_t self_in, mp_obj_t button) { _Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t); self->badger2040->update_button_states(); bool wake_state = Badger2040_wake_state_get_once(mp_obj_get_int(button)); bool state = self->badger2040->pressed(mp_obj_get_int(button)); return (state || wake_state) ? mp_const_true : mp_const_false; } mp_obj_t Badger2040_pressed_to_wake(mp_obj_t button) { bool state = Badger2040_wake_state_get(mp_obj_get_int(button)); return state ? mp_const_true : mp_const_false; } // pressed // pressed_to_wake // wait_for_press - implement in terms of MicroPython! // update_button_states // button_states mp_obj_t Badger2040_clear(mp_obj_t self_in) { _Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t); self->badger2040->clear(); return mp_const_none; } mp_obj_t Badger2040_pixel(mp_obj_t self_in, mp_obj_t x, mp_obj_t y) { _Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t); self->badger2040->pixel(mp_obj_get_int(x), mp_obj_get_int(y)); return mp_const_none; } mp_obj_t Badger2040_command(mp_obj_t self_in, mp_obj_t reg, mp_obj_t data) { _Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t); mp_buffer_info_t bufinfo; mp_get_buffer_raise(data, &bufinfo, MP_BUFFER_RW); self->badger2040->debug_command(mp_obj_get_int(reg), bufinfo.len, (const uint8_t *)bufinfo.buf); return mp_const_none; } mp_obj_t Badger2040_line(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_x1, ARG_y1, ARG_x2, ARG_y2 }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_x1, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_y1, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_x2, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_r2, MP_ARG_REQUIRED | MP_ARG_INT } }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); int x1 = args[ARG_x1].u_int; int y1 = args[ARG_y1].u_int; int x2 = args[ARG_x2].u_int; int y2 = args[ARG_y2].u_int; _Badger2040_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Badger2040_obj_t); self->badger2040->line(x1, y1, x2, y2); return mp_const_none; } mp_obj_t Badger2040_rectangle(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_x1, ARG_y1, ARG_x2, ARG_y2 }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_x, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_y, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_w, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_h, MP_ARG_REQUIRED | MP_ARG_INT } }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); int x = args[ARG_x1].u_int; int y = args[ARG_y1].u_int; int w = args[ARG_x2].u_int; int h = args[ARG_y2].u_int; _Badger2040_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Badger2040_obj_t); self->badger2040->rectangle(x, y, w, h); return mp_const_none; } mp_obj_t Badger2040_image(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_data, ARG_w, ARG_h, ARG_x, ARG_y }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_w, MP_ARG_INT, {.u_int = 296} }, { MP_QSTR_h, MP_ARG_INT, {.u_int = 128} }, { MP_QSTR_x, MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_y, MP_ARG_INT, {.u_int = 0} } }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); int dw = args[ARG_w].u_int; int dh = args[ARG_h].u_int; int dx = args[ARG_x].u_int; int dy = args[ARG_y].u_int; mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[ARG_data].u_obj, &bufinfo, MP_BUFFER_RW); if(bufinfo.len < (size_t)(dw * dh / 8)) { mp_raise_ValueError("image: Supplied buffer is too small!"); } _Badger2040_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Badger2040_obj_t); self->badger2040->image((uint8_t *)bufinfo.buf, dw, dh, dx, dy); return mp_const_none; } mp_obj_t Badger2040_icon(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_data, ARG_icon_index, ARG_sheet_size, ARG_icon_size, ARG_dx, ARG_dy }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_icon_index, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_sheet_size, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_icon_size, MP_ARG_INT, {.u_int = 64} }, { MP_QSTR_dx, MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_dy, MP_ARG_INT, {.u_int = 0} } }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); int ssize = args[ARG_sheet_size].u_int; int isize = args[ARG_icon_size].u_int; int index = args[ARG_icon_index].u_int; int dx = args[ARG_dx].u_int; int dy = args[ARG_dy].u_int; mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[ARG_data].u_obj, &bufinfo, MP_BUFFER_RW); if(bufinfo.len < (size_t)(ssize * isize / 8)) { mp_raise_ValueError("icon: Supplied buffer is too small!"); } _Badger2040_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Badger2040_obj_t); self->badger2040->icon((uint8_t *)bufinfo.buf, ssize, isize, index, dx, dy); return mp_const_none; } mp_obj_t Badger2040_text(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_message, ARG_x, ARG_y, ARG_scale, ARG_rotation }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_message, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_x, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_y, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_scale, MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_rotation, MP_ARG_OBJ, {.u_obj = mp_const_none} } }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); std::string message = mp_obj_to_string_r(args[ARG_message].u_obj); int x = args[ARG_x].u_int; int y = args[ARG_y].u_int; float scale = 1.0f; if (args[ARG_scale].u_obj != mp_const_none) { scale = mp_obj_get_float(args[ARG_scale].u_obj); } float rotation = 0.0f; if (args[ARG_rotation].u_obj != mp_const_none) { rotation = mp_obj_get_float(args[ARG_rotation].u_obj); } _Badger2040_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Badger2040_obj_t); self->badger2040->text(message, x, y, scale, rotation); return mp_const_none; } mp_obj_t Badger2040_glyph(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_char, ARG_x, ARG_y, ARG_scale, ARG_rotation }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_char, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_x, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_y, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_scale, MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_rotation, MP_ARG_OBJ, {.u_obj = mp_const_none} } }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); int c = args[ARG_char].u_int; int x = args[ARG_x].u_int; int y = args[ARG_y].u_int; float scale = 1.0f; if (args[ARG_scale].u_obj != mp_const_none) { scale = mp_obj_get_float(args[ARG_scale].u_obj); } float rotation = 0.0f; if (args[ARG_rotation].u_obj != mp_const_none) { rotation = mp_obj_get_float(args[ARG_rotation].u_obj); } _Badger2040_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Badger2040_obj_t); self->badger2040->glyph(c, x, y, scale, rotation); return mp_const_none; } mp_obj_t Badger2040_measure_text(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_message, ARG_scale }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_message, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_scale, MP_ARG_OBJ, {.u_obj = mp_const_none} }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); std::string message = mp_obj_to_string_r(args[ARG_message].u_obj); float scale = 1.0f; if (args[ARG_scale].u_obj != mp_const_none) { scale = mp_obj_get_float(args[ARG_scale].u_obj); } _Badger2040_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Badger2040_obj_t); return mp_obj_new_int(self->badger2040->measure_text(message, scale)); } mp_obj_t Badger2040_measure_glyph(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_char, ARG_scale }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_char, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_scale, MP_ARG_OBJ, {.u_obj = mp_const_none} }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); int c = args[ARG_char].u_int; float scale = 1.0f; if (args[ARG_scale].u_obj != mp_const_none) { scale = mp_obj_get_float(args[ARG_scale].u_obj); } _Badger2040_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Badger2040_obj_t); return mp_obj_new_int(self->badger2040->measure_glyph(c, scale)); } #include "hardware/vreg.h" #include "hardware/clocks.h" #include "hardware/pll.h" mp_obj_t Badger2040_system_speed(mp_obj_t speed) { uint32_t sys_freq; uint32_t selected_speed = mp_obj_get_int(speed); if (gpio_get(pimoroni::Badger2040::VBUS_DETECT) && selected_speed < 2) { // If on USB never go slower than normal speed. selected_speed = 2; } switch (selected_speed) { case 4: // TURBO: 250 MHZ, 1.2V vreg_set_voltage(VREG_VOLTAGE_1_20); set_sys_clock_khz(250000, true); return mp_const_none; case 3: // FAST: 133 MHZ vreg_set_voltage(VREG_VOLTAGE_1_10); set_sys_clock_khz(133000, true); return mp_const_none; default: case 2: // NORMAL: 48 MHZ vreg_set_voltage(VREG_VOLTAGE_1_10); set_sys_clock_48mhz(); return mp_const_none; case 1: // SLOW: 12 MHZ, 1.0V sys_freq = 12 * MHZ; break; case 0: // VERY_SLOW: 3 MHZ, 1.0V sys_freq = 3 * MHZ; break; } // Set the configured clock speed, by dividing the USB PLL clock_configure(clk_sys, CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX, CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB, 48 * MHZ, sys_freq); clock_configure(clk_peri, 0, CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLK_SYS, sys_freq, sys_freq); clock_configure(clk_adc, 0, CLOCKS_CLK_ADC_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB, 48 * MHZ, sys_freq); // No longer using the SYS PLL so disable it pll_deinit(pll_sys); // Not using USB so stop the clock clock_stop(clk_usb); // Drop the core voltage vreg_set_voltage(VREG_VOLTAGE_1_00); return mp_const_none; } }