#include "motor_cluster.hpp" #include "pwm.hpp" #include namespace motor { MotorCluster::MotorCluster(PIO pio, uint sm, uint pin_mask, CalibrationType default_type, float freq, bool auto_phase, PWMCluster::Sequence *seq_buffer, PWMCluster::TransitionData *dat_buffer) : pwms(pio, sm, pin_mask, seq_buffer, dat_buffer), pwm_frequency(freq) { create_motor_states(default_type, auto_phase); } MotorCluster::MotorCluster(PIO pio, uint sm, uint pin_base, uint pin_count, CalibrationType default_type, float freq, bool auto_phase, PWMCluster::Sequence *seq_buffer, PWMCluster::TransitionData *dat_buffer) : pwms(pio, sm, pin_base, pin_count, seq_buffer, dat_buffer), pwm_frequency(freq) { create_motor_states(default_type, auto_phase); } MotorCluster::MotorCluster(PIO pio, uint sm, const uint8_t *pins, uint32_t length, CalibrationType default_type, float freq, bool auto_phase, PWMCluster::Sequence *seq_buffer, PWMCluster::TransitionData *dat_buffer) : pwms(pio, sm, pins, length, seq_buffer, dat_buffer), pwm_frequency(freq) { create_motor_states(default_type, auto_phase); } MotorCluster::MotorCluster(PIO pio, uint sm, std::initializer_list pins, CalibrationType default_type, float freq, bool auto_phase, PWMCluster::Sequence *seq_buffer, PWMCluster::TransitionData *dat_buffer) : pwms(pio, sm, pins, seq_buffer, dat_buffer), pwm_frequency(freq) { create_motor_states(default_type, auto_phase); } MotorCluster::MotorCluster(PIO pio, uint sm, uint pin_mask, const Calibration& calibration, float freq, bool auto_phase, PWMCluster::Sequence *seq_buffer, PWMCluster::TransitionData *dat_buffer) : pwms(pio, sm, pin_mask, seq_buffer, dat_buffer), pwm_frequency(freq) { create_motor_states(calibration, auto_phase); } MotorCluster::MotorCluster(PIO pio, uint sm, uint pin_base, uint pin_count, const Calibration& calibration, float freq, bool auto_phase, PWMCluster::Sequence *seq_buffer, PWMCluster::TransitionData *dat_buffer) : pwms(pio, sm, pin_base, pin_count, seq_buffer, dat_buffer), pwm_frequency(freq) { create_motor_states(calibration, auto_phase); } MotorCluster::MotorCluster(PIO pio, uint sm, const uint8_t *pins, uint32_t length, const Calibration& calibration, float freq, bool auto_phase, PWMCluster::Sequence *seq_buffer, PWMCluster::TransitionData *dat_buffer) : pwms(pio, sm, pins, length, seq_buffer, dat_buffer), pwm_frequency(freq) { create_motor_states(calibration, auto_phase); } MotorCluster::MotorCluster(PIO pio, uint sm, std::initializer_list pins, const Calibration& calibration, float freq, bool auto_phase, PWMCluster::Sequence *seq_buffer, PWMCluster::TransitionData *dat_buffer) : pwms(pio, sm, pins, seq_buffer, dat_buffer), pwm_frequency(freq) { create_motor_states(calibration, auto_phase); } MotorCluster::~MotorCluster() { delete[] states; delete[] motor_phases; } bool MotorCluster::init() { bool success = false; if(pwms.init()) { // Calculate a suitable pwm wrap period for this frequency uint32_t period; uint32_t div256; if(pimoroni::PWMCluster::calculate_pwm_factors(pwm_frequency, period, div256)) { pwm_period = period; // Update the pwm before setting the new wrap uint8_t motor_count = pwms.get_chan_count(); for(uint8_t motor = 0; motor < motor_count; motor++) { pwms.set_chan_level(motor, 0, false); pwms.set_chan_offset(motor, (uint32_t)(motor_phases[motor] * (float)pwm_period), false); } // Set the new wrap (should be 1 less than the period to get full 0 to 100%) pwms.set_wrap(pwm_period, true); // NOTE Minus 1 not needed here. Maybe should change Wrap behaviour so it is needed, for consistency with hardware pwm? // Apply the new divider // This is done after loading new PWM speeds to avoid a lockup condition uint8_t div = div256 >> 8; uint8_t mod = div256 % 256; pwms.set_clkdiv_int_frac(div, mod); success = true; } } return success; } uint8_t MotorCluster::count() const { return pwms.get_chan_count(); } uint8_t MotorCluster::pin(uint8_t motor) const { return pwms.get_chan_pin(motor); } void MotorCluster::enable(uint8_t motor, bool load) { assert(motor < pwms.get_chan_count()); float new_pulse = states[motor].enable(); apply_pulse(motor, new_pulse, load); } void MotorCluster::enable(const uint8_t *motors, uint8_t length, bool load) { assert(motors != nullptr); for(uint8_t i = 0; i < length; i++) { enable(motors[i], false); } if(load) pwms.load_pwm(); } void MotorCluster::enable(std::initializer_list motors, bool load) { for(auto motor : motors) { enable(motor, false); } if(load) pwms.load_pwm(); } void MotorCluster::enable_all(bool load) { uint8_t motor_count = pwms.get_chan_count(); for(uint8_t motor = 0; motor < motor_count; motor++) { enable(motor, false); } if(load) pwms.load_pwm(); } void MotorCluster::disable(uint8_t motor, bool load) { assert(motor < pwms.get_chan_count()); float new_pulse = states[motor].disable(); apply_pulse(motor, new_pulse, load); } void MotorCluster::disable(const uint8_t *motors, uint8_t length, bool load) { assert(motors != nullptr); for(uint8_t i = 0; i < length; i++) { disable(motors[i], false); } if(load) pwms.load_pwm(); } void MotorCluster::disable(std::initializer_list motors, bool load) { for(auto motor : motors) { disable(motor, false); } if(load) pwms.load_pwm(); } void MotorCluster::disable_all(bool load) { uint8_t motor_count = pwms.get_chan_count(); for(uint8_t motor = 0; motor < motor_count; motor++) { disable(motor, false); } if(load) pwms.load_pwm(); } bool MotorCluster::is_enabled(uint8_t motor) const { assert(motor < pwms.get_chan_count()); return states[motor].is_enabled(); } float MotorCluster::pulse(uint8_t motor) const { assert(motor < pwms.get_chan_count()); return states[motor].get_pulse(); } void MotorCluster::pulse(uint8_t motor, float pulse, bool load) { assert(motor < pwms.get_chan_count()); float new_pulse = states[motor].set_pulse_with_return(pulse); apply_pulse(motor, new_pulse, load); } void MotorCluster::pulse(const uint8_t *motors, uint8_t length, float pulse, bool load) { assert(motors != nullptr); for(uint8_t i = 0; i < length; i++) { this->pulse(motors[i], pulse, false); } if(load) pwms.load_pwm(); } void MotorCluster::pulse(std::initializer_list motors, float pulse, bool load) { for(auto motor : motors) { this->pulse(motor, pulse, false); } if(load) pwms.load_pwm(); } void MotorCluster::all_to_pulse(float pulse, bool load) { uint8_t motor_count = pwms.get_chan_count(); for(uint8_t motor = 0; motor < motor_count; motor++) { this->pulse(motor, pulse, false); } if(load) pwms.load_pwm(); } float MotorCluster::speed(uint8_t motor) const { assert(motor < pwms.get_chan_count()); return states[motor].get_speed(); } void MotorCluster::speed(uint8_t motor, float speed, bool load) { assert(motor < pwms.get_chan_count()); float new_pulse = states[motor].set_speed_with_return(speed); apply_pulse(motor, new_pulse, load); } void MotorCluster::speed(const uint8_t *motors, uint8_t length, float speed, bool load) { assert(motors != nullptr); for(uint8_t i = 0; i < length; i++) { this->speed(motors[i], speed, false); } if(load) pwms.load_pwm(); } void MotorCluster::speed(std::initializer_list motors, float speed, bool load) { for(auto motor : motors) { this->speed(motor, speed, false); } if(load) pwms.load_pwm(); } void MotorCluster::all_to_speed(float speed, bool load) { uint8_t motor_count = pwms.get_chan_count(); for(uint8_t motor = 0; motor < motor_count; motor++) { this->speed(motor, speed, false); } if(load) pwms.load_pwm(); } float MotorCluster::phase(uint8_t motor) const { assert(motor < pwms.get_chan_count()); return motor_phases[motor]; } void MotorCluster::phase(uint8_t motor, float phase, bool load) { assert(motor < pwms.get_chan_count()); motor_phases[motor] = MIN(MAX(phase, 0.0f), 1.0f); pwms.set_chan_offset(motor, (uint32_t)(motor_phases[motor] * (float)pwms.get_wrap()), load); } void MotorCluster::phase(const uint8_t *motors, uint8_t length, float phase, bool load) { assert(motors != nullptr); for(uint8_t i = 0; i < length; i++) { this->phase(motors[i], phase, false); } if(load) pwms.load_pwm(); } void MotorCluster::phase(std::initializer_list motors, float phase, bool load) { for(auto motor : motors) { this->phase(motor, phase, false); } if(load) pwms.load_pwm(); } void MotorCluster::all_to_phase(float phase, bool load) { uint8_t motor_count = pwms.get_chan_count(); for(uint8_t motor = 0; motor < motor_count; motor++) { this->phase(motor, phase, false); } if(load) pwms.load_pwm(); } float MotorCluster::frequency() const { return pwm_frequency; } bool MotorCluster::frequency(float freq) { bool success = false; if((freq >= MotorState::MIN_FREQUENCY) && (freq <= MotorState::MAX_FREQUENCY)) { // Calculate a suitable pwm wrap period for this frequency uint32_t period; uint32_t div256; if(pimoroni::PWMCluster::calculate_pwm_factors(freq, period, div256)) { pwm_period = period; pwm_frequency = freq; // Update the pwm before setting the new wrap uint8_t motor_count = pwms.get_chan_count(); for(uint motor = 0; motor < motor_count; motor++) { if(states[motor].is_enabled()) { apply_pulse(motor, states[motor].get_pulse(), false); } pwms.set_chan_offset(motor, (uint32_t)(motor_phases[motor] * (float)pwm_period), false); } // Set the new wrap (should be 1 less than the period to get full 0 to 100%) pwms.set_wrap(pwm_period, true); // Apply the new divider uint16_t div = div256 >> 8; uint8_t mod = div256 % 256; pwms.set_clkdiv_int_frac(div, mod); success = true; } } return success; } float MotorCluster::min_speed(uint8_t motor) const { assert(is_assigned(motor)); return states[motor].get_min_speed(); } float MotorCluster::mid_speed(uint8_t motor) const { assert(is_assigned(motor)); return states[motor].get_mid_speed(); } float MotorCluster::max_speed(uint8_t motor) const { assert(is_assigned(motor)); return states[motor].get_max_speed(); } void MotorCluster::to_min(uint8_t motor, bool load) { assert(is_assigned(motor)); float new_pulse = states[motor].to_min_with_return(); apply_pulse(motor, new_pulse, load); } void MotorCluster::to_min(const uint8_t *motors, uint8_t length, bool load) { assert(motors != nullptr); for(uint8_t i = 0; i < length; i++) { to_min(motors[i], false); } if(load) pwms.load_pwm(); } void MotorCluster::to_min(std::initializer_list motors, bool load) { for(auto motor : motors) { to_min(motor, false); } if(load) pwms.load_pwm(); } void MotorCluster::all_to_min(bool load) { uint8_t motor_count = pwms.get_chan_count(); for(uint8_t motor = 0; motor < motor_count; motor++) { to_min(motor, false); } if(load) pwms.load_pwm(); } void MotorCluster::to_mid(uint8_t motor, bool load) { assert(is_assigned(motor)); float new_pulse = states[motor].to_mid_with_return(); apply_pulse(motor, new_pulse, load); } void MotorCluster::to_mid(const uint8_t *motors, uint8_t length, bool load) { assert(motors != nullptr); for(uint8_t i = 0; i < length; i++) { to_mid(motors[i], false); } if(load) pwms.load_pwm(); } void MotorCluster::to_mid(std::initializer_list motors, bool load) { for(auto motor : motors) { to_mid(motor, false); } if(load) pwms.load_pwm(); } void MotorCluster::all_to_mid(bool load) { uint8_t motor_count = pwms.get_chan_count(); for(uint8_t motor = 0; motor < motor_count; motor++) { to_mid(motor, false); } if(load) pwms.load_pwm(); } void MotorCluster::to_max(uint8_t motor, bool load) { assert(is_assigned(motor)); float new_pulse = states[motor].to_max_with_return(); apply_pulse(motor, new_pulse, load); } void MotorCluster::to_max(const uint8_t *motors, uint8_t length, bool load) { assert(motors != nullptr); for(uint8_t i = 0; i < length; i++) { to_max(motors[i], false); } if(load) pwms.load_pwm(); } void MotorCluster::to_max(std::initializer_list motors, bool load) { for(auto motor : motors) { to_max(motor, false); } if(load) pwms.load_pwm(); } void MotorCluster::all_to_max(bool load) { uint8_t motor_count = pwms.get_chan_count(); for(uint8_t motor = 0; motor < motor_count; motor++) { to_max(motor, false); } if(load) pwms.load_pwm(); } void MotorCluster::to_percent(uint8_t motor, float in, float in_min, float in_max, bool load) { assert(is_assigned(motor)); float new_pulse = states[motor].to_percent_with_return(in, in_min, in_max); apply_pulse(motor, new_pulse, load); } void MotorCluster::to_percent(const uint8_t *motors, uint8_t length, float in, float in_min, float in_max, bool load) { assert(motors != nullptr); for(uint8_t i = 0; i < length; i++) { to_percent(motors[i], in, in_min, in_max, false); } if(load) pwms.load_pwm(); } void MotorCluster::to_percent(std::initializer_list motors, float in, float in_min, float in_max, bool load) { for(auto motor : motors) { to_percent(motor, in, in_min, in_max, false); } if(load) pwms.load_pwm(); } void MotorCluster::all_to_percent(float in, float in_min, float in_max, bool load) { uint8_t motor_count = pwms.get_chan_count(); for(uint8_t motor = 0; motor < motor_count; motor++) { to_percent(motor, in, in_min, in_max, false); } if(load) pwms.load_pwm(); } void MotorCluster::to_percent(uint8_t motor, float in, float in_min, float in_max, float speed_min, float speed_max, bool load) { assert(is_assigned(motor)); float new_pulse = states[motor].to_percent_with_return(in, in_min, in_max, speed_min, speed_max); apply_pulse(motor, new_pulse, load); } void MotorCluster::to_percent(const uint8_t *motors, uint8_t length, float in, float in_min, float in_max, float speed_min, float speed_max, bool load) { assert(motors != nullptr); for(uint8_t i = 0; i < length; i++) { to_percent(motors[i], in, in_min, in_max, speed_min, speed_max, false); } if(load) pwms.load_pwm(); } void MotorCluster::to_percent(std::initializer_list motors, float in, float in_min, float in_max, float speed_min, float speed_max, bool load) { for(auto motor : motors) { to_percent(motor, in, in_min, in_max, speed_min, speed_max, false); } if(load) pwms.load_pwm(); } void MotorCluster::all_to_percent(float in, float in_min, float in_max, float speed_min, float speed_max, bool load) { uint8_t motor_count = pwms.get_chan_count(); for(uint8_t motor = 0; motor < motor_count; motor++) { to_percent(motor, in, in_min, in_max, speed_min, speed_max, false); } if(load) pwms.load_pwm(); } Calibration& MotorCluster::calibration(uint8_t motor) { assert(is_assigned(motor)); return states[motor].calibration(); } const Calibration& MotorCluster::calibration(uint8_t motor) const { assert(is_assigned(motor)); return states[motor].calibration(); } void MotorCluster::load() { pwms.load_pwm(); } void MotorCluster::apply_pulse(uint8_t motor, float pulse, bool load) { pwms.set_chan_level(motor, MotorState::pulse_to_level(pulse, pwm_period, pwm_frequency), load); } void MotorCluster::create_motor_states(CalibrationType default_type, bool auto_phase) { uint8_t motor_count = pwms.get_chan_count(); if(motor_count > 0) { states = new MotorState[motor_count]; motor_phases = new float[motor_count]; for(uint motor = 0; motor < motor_count; motor++) { states[motor] = MotorState(default_type); motor_phases[motor] = (auto_phase) ? (float)motor / (float)motor_count : 0.0f; } } } void MotorCluster::create_motor_states(const Calibration& calibration, bool auto_phase) { uint8_t motor_count = pwms.get_chan_count(); if(motor_count > 0) { states = new MotorState[motor_count]; motor_phases = new float[motor_count]; for(uint motor = 0; motor < motor_count; motor++) { states[motor] = MotorState(calibration); motor_phases[motor] = (auto_phase) ? (float)motor / (float)motor_count : 0.0f; } } } };