#include "pico_graphics.hpp" namespace pimoroni { PicoGraphics_PenP4::PicoGraphics_PenP4(uint16_t width, uint16_t height, void *frame_buffer) : PicoGraphics(width, height, frame_buffer) { this->pen_type = PEN_P4; if(this->frame_buffer == nullptr) { this->frame_buffer = (void *)(new uint8_t[buffer_size(width, height)]); } for(auto i = 0u; i < palette_size; i++) { palette[i] = { uint8_t(i << 4), uint8_t(i << 4), uint8_t(i << 4) }; used[i] = false; } cache_built = false; } void PicoGraphics_PenP4::set_pen(uint c) { color = c & 0xf; } void PicoGraphics_PenP4::set_pen(uint8_t r, uint8_t g, uint8_t b) { int pen = RGB(r, g, b).closest(palette, palette_size); if(pen != -1) color = pen; } int PicoGraphics_PenP4::update_pen(uint8_t i, uint8_t r, uint8_t g, uint8_t b) { i &= 0xf; used[i] = true; palette[i] = {r, g, b}; cache_built = false; return i; } int PicoGraphics_PenP4::create_pen(uint8_t r, uint8_t g, uint8_t b) { // Create a colour and place it in the palette if there's space for(auto i = 0u; i < palette_size; i++) { if(!used[i]) { palette[i] = {r, g, b}; used[i] = true; cache_built = false; return i; } } return -1; } int PicoGraphics_PenP4::reset_pen(uint8_t i) { palette[i] = {0, 0, 0}; used[i] = false; cache_built = false; return i; } void PicoGraphics_PenP4::set_pixel(const Point &p) { // pointer to byte in framebuffer that contains this pixel uint8_t *buf = (uint8_t *)frame_buffer; uint8_t *f = &buf[(p.x / 2) + (p.y * bounds.w / 2)]; uint8_t o = (~p.x & 0b1) * 4; // bit offset within byte uint8_t m = ~(0b1111 << o); // bit mask for byte uint8_t b = color << o; // bit value shifted to position *f &= m; // clear bits *f |= b; // set value } void PicoGraphics_PenP4::set_pixel_span(const Point &p, uint l) { // pointer to byte in framebuffer that contains this pixel uint8_t *buf = (uint8_t *)frame_buffer; uint8_t *f = &buf[(p.x / 2) + (p.y * bounds.w / 2)]; // doubled up color value, so the color is stored in both nibbles uint8_t cc = color | (color << 4); // handle the first pixel if not byte aligned if(p.x & 0b1) {*f &= 0b11110000; *f |= (cc & 0b00001111); f++; l--;} // write any double nibble pixels while(l > 1) {*f++ = cc; l -= 2;} // handle the last pixel if not byte aligned if(l) {*f &= 0b00001111; *f |= (cc & 0b11110000);} } void PicoGraphics_PenP4::get_dither_candidates(const RGB &col, const RGB *palette, size_t len, std::array &candidates) { RGB error; for(size_t i = 0; i < candidates.size(); i++) { candidates[i] = (col + error).closest(palette, len); error += (col - palette[candidates[i]]); } // sort by a rough approximation of luminance, this ensures that neighbouring // pixels in the dither matrix are at extreme opposites of luminence // giving a more balanced output std::sort(candidates.begin(), candidates.end(), [palette](int a, int b) { return palette[a].luminance() > palette[b].luminance(); }); } void PicoGraphics_PenP4::set_pixel_dither(const Point &p, const RGB &c) { if(!bounds.contains(p)) return; uint used_palette_entries = 0; for(auto i = 0u; i < palette_size; i++) { if(!used[i]) break; used_palette_entries++; } if(!cache_built) { for(uint i = 0; i < 512; i++) { RGB cache_col((i & 0x1C0) >> 1, (i & 0x38) << 2, (i & 0x7) << 5); get_dither_candidates(cache_col, palette, used_palette_entries, candidate_cache[i]); } cache_built = true; } uint cache_key = ((c.r & 0xE0) << 1) | ((c.g & 0xE0) >> 2) | ((c.b & 0xE0) >> 5); //get_dither_candidates(c, palette, 256, candidates); // find the pattern coordinate offset uint pattern_index = (p.x & 0b11) | ((p.y & 0b11) << 2); // set the pixel //color = candidates[pattern[pattern_index]]; color = candidate_cache[cache_key][dither16_pattern[pattern_index]]; set_pixel(p); } void PicoGraphics_PenP4::scanline_convert(PenType type, conversion_callback_func callback) { if(type == PEN_RGB565) { // Cache the RGB888 palette as RGB565 RGB565 cache[palette_size]; for(auto i = 0u; i < palette_size; i++) { cache[i] = palette[i].to_rgb565(); } // Treat our void* frame_buffer as uint8_t uint8_t *src = (uint8_t *)frame_buffer; // Allocate a per-row temporary buffer uint16_t row_buf[bounds.w]; for(auto y = 0; y < bounds.h; y++) { /*if(scanline_interrupt != nullptr) { scanline_interrupt(y); // Cache the RGB888 palette as RGB565 for(auto i = 0u; i < 16; i++) { cache[i] = palette[i].to_rgb565(); } }*/ for(auto x = 0; x < bounds.w; x++) { uint8_t c = src[(bounds.w * y / 2) + (x / 2)]; uint8_t o = (~x & 0b1) * 4; // bit offset within byte uint8_t b = (c >> o) & 0xf; // bit value shifted to position row_buf[x] = cache[b]; } // Callback to the driver with the row data callback(row_buf, bounds.w * sizeof(RGB565)); } } } }