#include "drivers/servo/servo.hpp" #include "drivers/servo/servo_cluster.hpp" #include #define MP_OBJ_TO_PTR2(o, t) ((t *)(uintptr_t)(o)) using namespace servo; extern "C" { #include "servo.h" #include "py/builtin.h" typedef struct _mp_obj_float_t { mp_obj_base_t base; mp_float_t value; } mp_obj_float_t; const mp_obj_float_t const_float_1 = {{&mp_type_float}, 1.0f}; /********** Calibration **********/ /***** Variables Struct *****/ typedef struct _Calibration_obj_t { mp_obj_base_t base; Calibration *calibration; bool owner; } _Calibtration_obj_t; /***** Print *****/ void Calibration_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { (void)kind; //Unused input parameter _Calibtration_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Calibtration_obj_t); Calibration* calib = self->calibration; mp_print_str(print, "Calibration("); uint size = calib->size(); mp_print_str(print, "size = "); mp_obj_print_helper(print, mp_obj_new_int(size), PRINT_REPR); mp_print_str(print, ", points = {"); for(uint i = 0; i < size; i++) { Calibration::Point *point = calib->point_at(i); mp_print_str(print, "{"); mp_obj_print_helper(print, mp_obj_new_float(point->pulse), PRINT_REPR); mp_print_str(print, ", "); mp_obj_print_helper(print, mp_obj_new_float(point->value), PRINT_REPR); mp_print_str(print, "}"); if(i < size - 1) mp_print_str(print, ", "); } mp_print_str(print, "})"); } /***** Destructor ******/ mp_obj_t Calibration___del__(mp_obj_t self_in) { _Calibtration_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Calibtration_obj_t); if(self->owner) delete self->calibration; return mp_const_none; } /***** Constructor *****/ mp_obj_t Calibration_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { _Calibtration_obj_t *self = nullptr; enum { ARG_type }; static const mp_arg_t allowed_args[] = { { MP_QSTR_type, MP_ARG_INT, {.u_int = (uint8_t)servo::CalibrationType::ANGULAR} }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); servo::CalibrationType calibration_type = (servo::CalibrationType)args[ARG_type].u_int; self = m_new_obj_with_finaliser(_Calibtration_obj_t); self->base.type = &Calibration_type; self->calibration = new Calibration(calibration_type); self->owner = true; return MP_OBJ_FROM_PTR(self); } /***** Methods *****/ mp_obj_t Calibration_create_blank_calibration(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_size }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_size, MP_ARG_REQUIRED | MP_ARG_INT }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _Calibration_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Calibration_obj_t); int size = args[ARG_size].u_int; if(size < 0) mp_raise_ValueError("size out of range. Expected 0 or greater"); else self->calibration->create_blank_calibration((uint)size); return mp_const_none; } mp_obj_t Calibration_create_two_point_calibration(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_min_pulse, ARG_max_pulse, ARG_min_value, ARG_max_value }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_min_pulse, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_max_pulse, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_min_value, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_max_value, MP_ARG_REQUIRED | MP_ARG_OBJ }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _Calibration_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Calibration_obj_t); float min_pulse = mp_obj_get_float(args[ARG_min_pulse].u_obj); float max_pulse = mp_obj_get_float(args[ARG_max_pulse].u_obj); float min_value = mp_obj_get_float(args[ARG_min_value].u_obj); float max_value = mp_obj_get_float(args[ARG_max_value].u_obj); self->calibration->create_two_point_calibration(min_pulse, max_pulse, min_value, max_value); return mp_const_none; } mp_obj_t Calibration_create_three_point_calibration(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_min_pulse, ARG_mid_pulse, ARG_max_pulse, ARG_min_value, ARG_mid_value, ARG_max_value }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_min_pulse, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_mid_pulse, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_max_pulse, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_min_value, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_mid_value, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_max_value, MP_ARG_REQUIRED | MP_ARG_OBJ }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _Calibration_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Calibration_obj_t); float min_pulse = mp_obj_get_float(args[ARG_min_pulse].u_obj); float mid_pulse = mp_obj_get_float(args[ARG_mid_pulse].u_obj); float max_pulse = mp_obj_get_float(args[ARG_max_pulse].u_obj); float min_value = mp_obj_get_float(args[ARG_min_value].u_obj); float mid_value = mp_obj_get_float(args[ARG_mid_value].u_obj); float max_value = mp_obj_get_float(args[ARG_max_value].u_obj); self->calibration->create_three_point_calibration(min_pulse, mid_pulse, max_pulse, min_value, mid_value, max_value); return mp_const_none; } mp_obj_t Calibration_create_uniform_calibration(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_size, ARG_min_pulse, ARG_max_pulse, ARG_min_value, ARG_max_value }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_size, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_min_pulse, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_max_pulse, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_min_value, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_max_value, MP_ARG_REQUIRED | MP_ARG_OBJ }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _Calibration_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Calibration_obj_t); int size = args[ARG_size].u_int; if(size < 0) mp_raise_ValueError("size out of range. Expected 0 or greater"); else { float min_pulse = mp_obj_get_float(args[ARG_min_pulse].u_obj); float max_pulse = mp_obj_get_float(args[ARG_max_pulse].u_obj); float min_value = mp_obj_get_float(args[ARG_min_value].u_obj); float max_value = mp_obj_get_float(args[ARG_max_value].u_obj); self->calibration->create_uniform_calibration((uint)size, min_pulse, max_pulse, min_value, max_value); } return mp_const_none; } mp_obj_t Calibration_create_default_calibration(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_type }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_type, MP_ARG_REQUIRED | MP_ARG_INT }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _Calibration_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Calibration_obj_t); servo::CalibrationType calibration_type = (servo::CalibrationType)args[ARG_type].u_int; self->calibration->create_default_calibration(calibration_type); return mp_const_none; } mp_obj_t Calibration_size(mp_obj_t self_in) { _Calibration_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Calibration_obj_t); return mp_obj_new_int(self->calibration->size()); } mp_obj_t Calibration_point_at(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { if(n_args <= 2) { enum { ARG_self, ARG_index }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_index, MP_ARG_REQUIRED | MP_ARG_INT }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _Calibration_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Calibration_obj_t); int index = args[ARG_index].u_int; if(index < 0 || index >= (int)self->calibration->size()) mp_raise_ValueError("index out of range. Expected 0 to size()-1"); else { Calibration::Point *point = self->calibration->point_at((uint)index); mp_obj_t tuple[2]; tuple[0] = mp_obj_new_float(point->pulse); tuple[1] = mp_obj_new_float(point->value); return mp_obj_new_tuple(2, tuple); } } else { enum { ARG_self, ARG_index, ARG_point }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_index, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_point, MP_ARG_REQUIRED | MP_ARG_OBJ }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _Calibration_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Calibration_obj_t); int index = args[ARG_index].u_int; if(index < 0 || index >= (int)self->calibration->size()) mp_raise_ValueError("index out of range. Expected 0 to size()-1"); else { Calibration::Point *point = self->calibration->point_at((uint)index); const mp_obj_t object = args[ARG_point].u_obj; if(mp_obj_is_type(object, &mp_type_list)) { mp_obj_list_t *list = MP_OBJ_TO_PTR2(object, mp_obj_list_t); if(list->len == 2) { point->pulse = mp_obj_get_float(list->items[0]); point->value = mp_obj_get_float(list->items[1]); } else { mp_raise_ValueError("list must contain two numbers"); } } else if(!mp_obj_is_type(object, &mp_type_tuple)) { mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR2(object, mp_obj_tuple_t); if(tuple->len == 2) { point->pulse = mp_obj_get_float(tuple->items[0]); point->value = mp_obj_get_float(tuple->items[1]); } else { mp_raise_ValueError("tuple must contain two numbers"); } } else { mp_raise_TypeError("can't convert object to list or tuple"); } } return mp_const_none; } } mp_obj_t Calibration_first_point(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { if(n_args <= 1) { enum { ARG_self }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _Calibration_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Calibration_obj_t); Calibration::Point *point = self->calibration->first_point(); mp_obj_t tuple[2]; tuple[0] = mp_obj_new_float(point->pulse); tuple[1] = mp_obj_new_float(point->value); return mp_obj_new_tuple(2, tuple); } else { enum { ARG_self, ARG_point }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_point, MP_ARG_REQUIRED | MP_ARG_OBJ }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _Calibration_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Calibration_obj_t); Calibration::Point *point = self->calibration->first_point(); const mp_obj_t object = args[ARG_point].u_obj; if(mp_obj_is_type(object, &mp_type_list)) { mp_obj_list_t *list = MP_OBJ_TO_PTR2(object, mp_obj_list_t); if(list->len == 2) { point->pulse = mp_obj_get_float(list->items[0]); point->value = mp_obj_get_float(list->items[1]); } else { mp_raise_ValueError("list must contain two numbers"); } } else if(!mp_obj_is_type(object, &mp_type_tuple)) { mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR2(object, mp_obj_tuple_t); if(tuple->len == 2) { point->pulse = mp_obj_get_float(tuple->items[0]); point->value = mp_obj_get_float(tuple->items[1]); } else { mp_raise_ValueError("tuple must contain two numbers"); } } else { mp_raise_TypeError("can't convert object to list or tuple"); } return mp_const_none; } } mp_obj_t Calibration_last_point(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { if(n_args <= 1) { enum { ARG_self }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _Calibration_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Calibration_obj_t); Calibration::Point *point = self->calibration->last_point(); mp_obj_t tuple[2]; tuple[0] = mp_obj_new_float(point->pulse); tuple[1] = mp_obj_new_float(point->value); return mp_obj_new_tuple(2, tuple); } else { enum { ARG_self, ARG_point }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_point, MP_ARG_REQUIRED | MP_ARG_OBJ }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _Calibration_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Calibration_obj_t); Calibration::Point *point = self->calibration->last_point(); const mp_obj_t object = args[ARG_point].u_obj; if(mp_obj_is_type(object, &mp_type_list)) { mp_obj_list_t *list = MP_OBJ_TO_PTR2(object, mp_obj_list_t); if(list->len == 2) { point->pulse = mp_obj_get_float(list->items[0]); point->value = mp_obj_get_float(list->items[1]); } else { mp_raise_ValueError("list must contain two numbers"); } } else if(!mp_obj_is_type(object, &mp_type_tuple)) { mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR2(object, mp_obj_tuple_t); if(tuple->len == 2) { point->pulse = mp_obj_get_float(tuple->items[0]); point->value = mp_obj_get_float(tuple->items[1]); } else { mp_raise_ValueError("tuple must contain two numbers"); } } else { mp_raise_TypeError("can't convert object to list or tuple"); } return mp_const_none; } } mp_obj_t Calibration_limit_to_calibration(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_lower, ARG_upper }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_lower, MP_ARG_REQUIRED | MP_ARG_BOOL }, { MP_QSTR_upper, MP_ARG_REQUIRED | MP_ARG_BOOL }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _Calibration_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Calibration_obj_t); bool lower = args[ARG_lower].u_bool; bool upper = args[ARG_upper].u_bool; self->calibration->limit_to_calibration(lower, upper); return mp_const_none; } mp_obj_t Calibration_value_to_pulse(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_value }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_value, MP_ARG_REQUIRED | MP_ARG_OBJ }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _Calibration_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Calibration_obj_t); float value = mp_obj_get_float(args[ARG_value].u_obj); float pulse_out, value_out; if(self->calibration->value_to_pulse(value, pulse_out, value_out)) { mp_obj_t tuple[2]; tuple[0] = mp_obj_new_float(pulse_out); tuple[1] = mp_obj_new_float(value_out); return mp_obj_new_tuple(2, tuple); } else { mp_raise_msg(&mp_type_RuntimeError, "Unable to convert value to pulse. Calibration invalid"); } return mp_const_none; } mp_obj_t Calibration_pulse_to_value(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_pulse }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_pulse, MP_ARG_REQUIRED | MP_ARG_OBJ }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _Calibration_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Calibration_obj_t); float pulse = mp_obj_get_float(args[ARG_pulse].u_obj); float value_out, pulse_out; if(self->calibration->pulse_to_value(pulse, value_out, pulse_out)) { mp_obj_t tuple[2]; tuple[0] = mp_obj_new_float(pulse_out); tuple[1] = mp_obj_new_float(value_out); return mp_obj_new_tuple(2, tuple); } else { mp_raise_msg(&mp_type_RuntimeError, "Unable to convert pulse to value. Calibration invalid"); } return mp_const_none; } /********** Servo **********/ /***** Variables Struct *****/ typedef struct _Servo_obj_t { mp_obj_base_t base; Servo* servo; } _Servo_obj_t; /***** Print *****/ void Servo_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { (void)kind; //Unused input parameter _Servo_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Servo_obj_t); mp_print_str(print, "Servo("); mp_print_str(print, "pin = "); mp_obj_print_helper(print, mp_obj_new_int(self->servo->get_pin()), PRINT_REPR); mp_print_str(print, ", enabled = "); mp_obj_print_helper(print, self->servo->is_enabled() ? mp_const_true : mp_const_false, PRINT_REPR); mp_print_str(print, ", pulse = "); mp_obj_print_helper(print, mp_obj_new_float(self->servo->get_pulse()), PRINT_REPR); mp_print_str(print, ", value = "); mp_obj_print_helper(print, mp_obj_new_float(self->servo->get_value()), PRINT_REPR); mp_print_str(print, ", freq = "); mp_obj_print_helper(print, mp_obj_new_float(self->servo->get_frequency()), PRINT_REPR); mp_print_str(print, ")"); } /***** Destructor ******/ mp_obj_t Servo___del__(mp_obj_t self_in) { _Servo_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Servo_obj_t); delete self->servo; return mp_const_none; } /***** Constructor *****/ mp_obj_t Servo_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { _Servo_obj_t *self = nullptr; enum { ARG_pin, ARG_type }; static const mp_arg_t allowed_args[] = { { MP_QSTR_pin, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_type, MP_ARG_INT, {.u_int = (uint8_t)servo::CalibrationType::ANGULAR} }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); int pin = args[ARG_pin].u_int; servo::CalibrationType calibration_type = (servo::CalibrationType)args[ARG_type].u_int; self = m_new_obj_with_finaliser(_Servo_obj_t); self->base.type = &Servo_type; self->servo = new Servo(pin, calibration_type); self->servo->init(); return MP_OBJ_FROM_PTR(self); } /***** Methods *****/ extern mp_obj_t Servo_pin(mp_obj_t self_in) { _Servo_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Servo_obj_t); return mp_obj_new_int(self->servo->get_pin()); } extern mp_obj_t Servo_enable(mp_obj_t self_in) { _Servo_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Servo_obj_t); self->servo->enable(); return mp_const_none; } extern mp_obj_t Servo_disable(mp_obj_t self_in) { _Servo_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Servo_obj_t); self->servo->disable(); return mp_const_none; } extern mp_obj_t Servo_is_enabled(mp_obj_t self_in) { _Servo_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Servo_obj_t); return self->servo->is_enabled() ? mp_const_true : mp_const_false; } extern mp_obj_t Servo_value(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { if(n_args <= 1) { enum { ARG_self }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _Servo_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Servo_obj_t); return mp_obj_new_float(self->servo->get_value()); } else { enum { ARG_self, ARG_value }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_value, MP_ARG_REQUIRED | MP_ARG_OBJ }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _Servo_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Servo_obj_t); float value = mp_obj_get_float(args[ARG_value].u_obj); self->servo->set_value(value); return mp_const_none; } } extern mp_obj_t Servo_pulse(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { if(n_args <= 1) { enum { ARG_self }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _Servo_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Servo_obj_t); return mp_obj_new_float(self->servo->get_pulse()); } else { enum { ARG_self, ARG_pulse }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_pulse, MP_ARG_REQUIRED | MP_ARG_OBJ }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _Servo_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Servo_obj_t); float pulse = mp_obj_get_float(args[ARG_pulse].u_obj); self->servo->set_pulse(pulse); return mp_const_none; } } extern mp_obj_t Servo_frequency(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { if(n_args <= 1) { enum { ARG_self }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _Servo_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Servo_obj_t); return mp_obj_new_float(self->servo->get_frequency()); } else { enum { ARG_self, ARG_freq }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_freq, MP_ARG_REQUIRED | MP_ARG_OBJ }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _Servo_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Servo_obj_t); float freq = mp_obj_get_float(args[ARG_freq].u_obj); if(!self->servo->set_frequency(freq)) mp_raise_ValueError("freq out of range. Expected 10Hz to 350Hz"); else return mp_const_none; } } extern mp_obj_t Servo_min_value(mp_obj_t self_in) { _Servo_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Servo_obj_t); return mp_obj_new_float(self->servo->get_min_value()); } extern mp_obj_t Servo_mid_value(mp_obj_t self_in) { _Servo_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Servo_obj_t); return mp_obj_new_float(self->servo->get_mid_value()); } extern mp_obj_t Servo_max_value(mp_obj_t self_in) { _Servo_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Servo_obj_t); return mp_obj_new_float(self->servo->get_max_value()); } extern mp_obj_t Servo_to_min(mp_obj_t self_in) { _Servo_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Servo_obj_t); self->servo->to_min(); return mp_const_none; } extern mp_obj_t Servo_to_mid(mp_obj_t self_in) { _Servo_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Servo_obj_t); self->servo->to_mid(); return mp_const_none; } extern mp_obj_t Servo_to_max(mp_obj_t self_in) { _Servo_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Servo_obj_t); self->servo->to_max(); return mp_const_none; } extern mp_obj_t Servo_to_percent(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { if(n_args <= 2) { enum { ARG_self, ARG_in }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_in, MP_ARG_REQUIRED | MP_ARG_OBJ }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _Servo_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Servo_obj_t); float in = mp_obj_get_float(args[ARG_in].u_obj); self->servo->to_percent(in); } else if(n_args <= 4) { enum { ARG_self, ARG_in, ARG_in_min, ARG_in_max }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_in, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_in_min, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_in_max, MP_ARG_REQUIRED | MP_ARG_OBJ }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _Servo_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Servo_obj_t); float in = mp_obj_get_float(args[ARG_in].u_obj); float in_min = mp_obj_get_float(args[ARG_in_min].u_obj); float in_max = mp_obj_get_float(args[ARG_in_max].u_obj); self->servo->to_percent(in, in_min, in_max); } else { enum { ARG_self, ARG_in, ARG_in_min, ARG_in_max, ARG_value_min, ARG_value_max }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_in, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_in_min, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_in_max, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_value_min, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_value_max, MP_ARG_REQUIRED | MP_ARG_OBJ } }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _Servo_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Servo_obj_t); float in = mp_obj_get_float(args[ARG_in].u_obj); float in_min = mp_obj_get_float(args[ARG_in_min].u_obj); float in_max = mp_obj_get_float(args[ARG_in_max].u_obj); float value_min = mp_obj_get_float(args[ARG_value_min].u_obj); float value_max = mp_obj_get_float(args[ARG_value_max].u_obj); self->servo->to_percent(in, in_min, in_max, value_min, value_max); } return mp_const_none; } extern mp_obj_t Servo_calibration(mp_obj_t self_in) { _Servo_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Servo_obj_t); // NOTE This seems to work, in that it give MP access to the calibration object // Could very easily mess up in weird ways once object deletion is considered _Calibration_obj_t *calib = m_new_obj_with_finaliser(_Calibration_obj_t); calib->base.type = &Calibration_type; calib->calibration = &self->servo->calibration(); calib->owner = false; return MP_OBJ_FROM_PTR(calib); } /********** ServoCluster **********/ /***** Variables Struct *****/ typedef struct _ServoCluster_obj_t { mp_obj_base_t base; ServoCluster* cluster; } _ServoCluster_obj_t; /***** Print *****/ void ServoCluster_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { (void)kind; //Unused input parameter _ServoCluster_obj_t *self = MP_OBJ_TO_PTR2(self_in, _ServoCluster_obj_t); mp_print_str(print, "ServoCluster("); mp_print_str(print, "pins = {"); uint pin_mask = self->cluster->get_pin_mask(); bool first = true; for(uint pin = 0; pin < NUM_BANK0_GPIOS; pin++) { if(pimoroni::PWMCluster::bit_in_mask(pin, pin_mask)) { if(!first) { mp_print_str(print, ", "); } mp_obj_print_helper(print, mp_obj_new_int(pin), PRINT_REPR); first = false; } } mp_print_str(print, "})"); } /***** Destructor ******/ mp_obj_t ServoCluster___del__(mp_obj_t self_in) { _ServoCluster_obj_t *self = MP_OBJ_TO_PTR2(self_in, _ServoCluster_obj_t); delete self->cluster; return mp_const_none; } /***** Constructor *****/ mp_obj_t ServoCluster_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { _ServoCluster_obj_t *self = nullptr; // TODO /*enum { ARG_num_leds, ARG_pio, ARG_sm, ARG_dat, ARG_clk, ARG_freq, ARG_buffer }; static const mp_arg_t allowed_args[] = { { MP_QSTR_num_leds, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_pio, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_sm, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_dat, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_clk, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_freq, MP_ARG_INT, {.u_int = APA102::DEFAULT_SERIAL_FREQ} }, { MP_QSTR_buffer, MP_ARG_OBJ, {.u_obj = nullptr} }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); int num_leds = args[ARG_num_leds].u_int; PIO pio = args[ARG_pio].u_int == 0 ? pio0 : pio1; int sm = args[ARG_sm].u_int; int dat = args[ARG_dat].u_int; int clk = args[ARG_clk].u_int; int freq = args[ARG_freq].u_int; APA102::RGB *buffer = nullptr; if (args[ARG_buffer].u_obj) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[ARG_buffer].u_obj, &bufinfo, MP_BUFFER_RW); buffer = (APA102::RGB *)bufinfo.buf; if(bufinfo.len < (size_t)(num_leds * 4)) { mp_raise_ValueError("Supplied buffer is too small for LED count!"); } // If a bytearray is supplied it'll be raw, uninitialized bytes // iterate through the RGB elements and call "brightness" // to set up the SOF bytes, otherwise a flickery mess will happen! // Oh for such niceties as "placement new"... for(auto i = 0; i < num_leds; i++) { buffer[i].brightness(15); } }*/ self = m_new_obj_with_finaliser(_ServoCluster_obj_t); self->base.type = &ServoCluster_type; self->cluster = new ServoCluster(pio1, 0, 0b11111100); //TODO Expose parameters self->cluster->init(); return MP_OBJ_FROM_PTR(self); } /***** Methods *****/ extern mp_obj_t ServoCluster_pin_mask(mp_obj_t self_in) { _ServoCluster_obj_t *self = MP_OBJ_TO_PTR2(self_in, _ServoCluster_obj_t); return mp_obj_new_int(self->cluster->get_pin_mask()); } extern mp_obj_t ServoCluster_enable(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_servo }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_servo, MP_ARG_REQUIRED | MP_ARG_INT }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _ServoCluster_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _ServoCluster_obj_t); int servo = args[ARG_servo].u_int; if(!self->cluster->is_assigned((uint)servo)) mp_raise_ValueError("servo not assigned to this cluster"); else self->cluster->enable((uint)servo); return mp_const_none; } extern mp_obj_t ServoCluster_disable(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_servo }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_servo, MP_ARG_REQUIRED | MP_ARG_INT }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _ServoCluster_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _ServoCluster_obj_t); int servo = args[ARG_servo].u_int; if(!self->cluster->is_assigned((uint)servo)) mp_raise_ValueError("servo not assigned to this cluster"); else self->cluster->disable((uint)servo); return mp_const_none; } extern mp_obj_t ServoCluster_is_enabled(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_servo }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_servo, MP_ARG_REQUIRED | MP_ARG_INT }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _ServoCluster_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _ServoCluster_obj_t); int servo = args[ARG_servo].u_int; if(!self->cluster->is_assigned((uint)servo)) mp_raise_ValueError("servo not assigned to this cluster"); else return self->cluster->is_enabled((uint)servo) ? mp_const_true : mp_const_false; } extern mp_obj_t ServoCluster_value(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { if(n_args <= 2) { enum { ARG_self, ARG_servo }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_servo, MP_ARG_REQUIRED | MP_ARG_INT }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _ServoCluster_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _ServoCluster_obj_t); int servo = args[ARG_servo].u_int; if(!self->cluster->is_assigned((uint)servo)) mp_raise_ValueError("servo not assigned to this cluster"); else return mp_obj_new_float(self->cluster->get_value((uint)servo)); } else { enum { ARG_self, ARG_servo, ARG_value }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_servo, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_value, MP_ARG_REQUIRED | MP_ARG_OBJ }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _ServoCluster_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _ServoCluster_obj_t); int servo = args[ARG_servo].u_int; if(!self->cluster->is_assigned((uint)servo)) mp_raise_ValueError("servo not assigned to this cluster"); else { float value = mp_obj_get_float(args[ARG_value].u_obj); self->cluster->set_value((uint)servo, value); } return mp_const_none; } } extern mp_obj_t ServoCluster_pulse(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { if(n_args <= 2) { enum { ARG_self, ARG_servo }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_servo, MP_ARG_REQUIRED | MP_ARG_INT }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _ServoCluster_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _ServoCluster_obj_t); int servo = args[ARG_servo].u_int; if(!self->cluster->is_assigned((uint)servo)) mp_raise_ValueError("servo not assigned to this cluster"); else return mp_obj_new_float(self->cluster->get_pulse((uint)servo)); } else { enum { ARG_self, ARG_servo, ARG_pulse }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_servo, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_pulse, MP_ARG_REQUIRED | MP_ARG_OBJ }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _ServoCluster_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _ServoCluster_obj_t); int servo = args[ARG_servo].u_int; if(!self->cluster->is_assigned((uint)servo)) mp_raise_ValueError("servo not assigned to this cluster"); else { float pulse = mp_obj_get_float(args[ARG_pulse].u_obj); self->cluster->set_pulse((uint)servo, pulse); } return mp_const_none; } } extern mp_obj_t ServoCluster_frequency(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { if(n_args <= 1) { enum { ARG_self }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _ServoCluster_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _ServoCluster_obj_t); return mp_obj_new_float(self->cluster->get_frequency()); } else { enum { ARG_self, ARG_freq }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_freq, MP_ARG_REQUIRED | MP_ARG_OBJ }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _ServoCluster_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _ServoCluster_obj_t); float freq = mp_obj_get_float(args[ARG_freq].u_obj); if(!self->cluster->set_frequency(freq)) mp_raise_ValueError("freq out of range. Expected 10Hz to 350Hz"); else return mp_const_none; } } extern mp_obj_t ServoCluster_min_value(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_servo }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_servo, MP_ARG_REQUIRED | MP_ARG_INT }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _ServoCluster_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _ServoCluster_obj_t); int servo = args[ARG_servo].u_int; if(!self->cluster->is_assigned((uint)servo)) mp_raise_ValueError("servo not assigned to this cluster"); else return mp_obj_new_float(self->cluster->get_min_value((uint)servo)); } extern mp_obj_t ServoCluster_mid_value(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_servo }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_servo, MP_ARG_REQUIRED | MP_ARG_INT }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _ServoCluster_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _ServoCluster_obj_t); int servo = args[ARG_servo].u_int; if(!self->cluster->is_assigned((uint)servo)) mp_raise_ValueError("servo not assigned to this cluster"); else return mp_obj_new_float(self->cluster->get_mid_value((uint)servo)); } extern mp_obj_t ServoCluster_max_value(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_servo }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_servo, MP_ARG_REQUIRED | MP_ARG_INT }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _ServoCluster_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _ServoCluster_obj_t); int servo = args[ARG_servo].u_int; if(!self->cluster->is_assigned((uint)servo)) mp_raise_ValueError("servo not assigned to this cluster"); else return mp_obj_new_float(self->cluster->get_max_value((uint)servo)); } extern mp_obj_t ServoCluster_to_min(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_servo }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_servo, MP_ARG_REQUIRED | MP_ARG_INT }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _ServoCluster_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _ServoCluster_obj_t); int servo = args[ARG_servo].u_int; if(!self->cluster->is_assigned((uint)servo)) mp_raise_ValueError("servo not assigned to this cluster"); else self->cluster->to_min((uint)servo); return mp_const_none; } extern mp_obj_t ServoCluster_to_mid(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_servo }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_servo, MP_ARG_REQUIRED | MP_ARG_INT }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _ServoCluster_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _ServoCluster_obj_t); int servo = args[ARG_servo].u_int; if(!self->cluster->is_assigned((uint)servo)) mp_raise_ValueError("servo not assigned to this cluster"); else self->cluster->to_mid((uint)servo); return mp_const_none; } extern mp_obj_t ServoCluster_to_max(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_servo }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_servo, MP_ARG_REQUIRED | MP_ARG_INT }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _ServoCluster_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _ServoCluster_obj_t); int servo = args[ARG_servo].u_int; if(!self->cluster->is_assigned((uint)servo)) mp_raise_ValueError("servo not assigned to this cluster"); else self->cluster->to_max((uint)servo); return mp_const_none; } extern mp_obj_t ServoCluster_to_percent(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { if(n_args <= 2) { enum { ARG_self, ARG_servo, ARG_in }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_servo, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_in, MP_ARG_REQUIRED | MP_ARG_OBJ }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _ServoCluster_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _ServoCluster_obj_t); int servo = args[ARG_servo].u_int; if(!self->cluster->is_assigned((uint)servo)) mp_raise_ValueError("servo not assigned to this cluster"); else { float in = mp_obj_get_float(args[ARG_in].u_obj); self->cluster->to_percent((uint)servo, in); } } else if(n_args <= 4) { enum { ARG_self, ARG_servo, ARG_in, ARG_in_min, ARG_in_max }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_servo, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_in, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_in_min, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_in_max, MP_ARG_REQUIRED | MP_ARG_OBJ }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _ServoCluster_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _ServoCluster_obj_t); int servo = args[ARG_servo].u_int; if(!self->cluster->is_assigned((uint)servo)) mp_raise_ValueError("servo not assigned to this cluster"); else { float in = mp_obj_get_float(args[ARG_in].u_obj); float in_min = mp_obj_get_float(args[ARG_in_min].u_obj); float in_max = mp_obj_get_float(args[ARG_in_max].u_obj); self->cluster->to_percent((uint)servo, in, in_min, in_max); } } else { enum { ARG_self, ARG_servo, ARG_in, ARG_in_min, ARG_in_max, ARG_value_min, ARG_value_max }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_servo, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_in, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_in_min, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_in_max, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_value_min, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_value_max, MP_ARG_REQUIRED | MP_ARG_OBJ } }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _ServoCluster_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _ServoCluster_obj_t); int servo = args[ARG_servo].u_int; if(!self->cluster->is_assigned((uint)servo)) mp_raise_ValueError("servo not assigned to this cluster"); else { float in = mp_obj_get_float(args[ARG_in].u_obj); float in_min = mp_obj_get_float(args[ARG_in_min].u_obj); float in_max = mp_obj_get_float(args[ARG_in_max].u_obj); float value_min = mp_obj_get_float(args[ARG_value_min].u_obj); float value_max = mp_obj_get_float(args[ARG_value_max].u_obj); self->cluster->to_percent((uint)servo, in, in_min, in_max, value_min, value_max); } } return mp_const_none; } extern mp_obj_t ServoCluster_calibration(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_self, ARG_servo }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_servo, MP_ARG_REQUIRED | MP_ARG_INT }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); _ServoCluster_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _ServoCluster_obj_t); int servo = args[ARG_servo].u_int; if(!self->cluster->is_assigned((uint)servo)) mp_raise_ValueError("servo not assigned to this cluster"); else { // NOTE This seems to work, in that it give MP access to the calibration object // Could very easily mess up in weird ways once object deletion is considered _Calibration_obj_t *calib = m_new_obj_with_finaliser(_Calibration_obj_t); calib->base.type = &Calibration_type; calib->calibration = self->cluster->calibration((uint)servo); calib->owner = false; return MP_OBJ_FROM_PTR(calib); } return mp_const_none; } }