// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package deephash hashes a Go value recursively, in a predictable order, // without looping. The hash is only valid within the lifetime of a program. // Users should not store the hash on disk or send it over the network. // The hash is sufficiently strong and unique such that // Hash(x) == Hash(y) is an appropriate replacement for x == y. // // The definition of equality is identical to reflect.DeepEqual except: // - Floating-point values are compared based on the raw bits, // which means that NaNs (with the same bit pattern) are treated as equal. // - time.Time are compared based on whether they are the same instant in time // and also in the same zone offset. Monotonic measurements and zone names // are ignored as part of the hash. // - Types which implement interface { AppendTo([]byte) []byte } use // the AppendTo method to produce a textual representation of the value. // Thus, two values are equal if AppendTo produces the same bytes. // // WARNING: This package, like most of the tailscale.com Go module, // should be considered Tailscale-internal; we make no API promises. package deephash import ( "crypto/sha256" "encoding/binary" "encoding/hex" "fmt" "log" "math" "reflect" "sync" "time" "unsafe" "tailscale.com/util/sha256x" ) // There is much overlap between the theory of serialization and hashing. // A hash (useful for determining equality) can be produced by printing a value // and hashing the output. The format must: // * be deterministic such that the same value hashes to the same output, and // * be parsable such that the same value can be reproduced by the output. // // The logic below hashes a value by printing it to a hash.Hash. // To be parsable, it assumes that we know the Go type of each value: // * scalar types (e.g., bool or int32) are printed as fixed-width fields. // * list types (e.g., strings, slices, and AppendTo buffers) are prefixed // by a fixed-width length field, followed by the contents of the list. // * slices, arrays, and structs print each element/field consecutively. // * interfaces print with a 1-byte prefix indicating whether it is nil. // If non-nil, it is followed by a fixed-width field of the type index, // followed by the format of the underlying value. // * pointers print with a 1-byte prefix indicating whether the pointer is // 1) nil, 2) previously seen, or 3) newly seen. Previously seen pointers are // followed by a fixed-width field with the index of the previous pointer. // Newly seen pointers are followed by the format of the underlying value. // * maps print with a 1-byte prefix indicating whether the map pointer is // 1) nil, 2) previously seen, or 3) newly seen. Previously seen pointers // are followed by a fixed-width field of the index of the previous pointer. // Newly seen maps are printed as a fixed-width field with the XOR of the // hash of every map entry. With a sufficiently strong hash, this value is // theoretically "parsable" by looking up the hash in a magical map that // returns the set of entries for that given hash. // addressableValue is a reflect.Value that is guaranteed to be addressable // such that calling the Addr and Set methods do not panic. // // There is no compile magic that enforces this property, // but rather the need to construct this type makes it easier to examine each // construction site to ensure that this property is upheld. type addressableValue struct{ reflect.Value } // newAddressableValue constructs a new addressable value of type t. func newAddressableValue(t reflect.Type) addressableValue { return addressableValue{reflect.New(t).Elem()} // dereferenced pointer is always addressable } const scratchSize = 128 // hasher is reusable state for hashing a value. // Get one via hasherPool. type hasher struct { sha256x.Hash scratch [scratchSize]byte visitStack visitStack } // Sum is an opaque checksum type that is comparable. type Sum struct { sum [sha256.Size]byte } func (s1 *Sum) xor(s2 Sum) { for i := 0; i < sha256.Size; i++ { s1.sum[i] ^= s2.sum[i] } } func (s Sum) String() string { return hex.EncodeToString(s.sum[:]) } var ( seedOnce sync.Once seed uint64 ) func initSeed() { seed = uint64(time.Now().UnixNano()) } func (h *hasher) sum() (s Sum) { h.Sum(s.sum[:0]) return s } var hasherPool = &sync.Pool{ New: func() any { return new(hasher) }, } // Hash returns the hash of v. // For performance, this should be a non-nil pointer. func Hash(v any) (s Sum) { h := hasherPool.Get().(*hasher) defer hasherPool.Put(h) h.Reset() seedOnce.Do(initSeed) h.HashUint64(seed) rv := reflect.ValueOf(v) if rv.IsValid() { var va addressableValue if rv.Kind() == reflect.Pointer && !rv.IsNil() { va = addressableValue{rv.Elem()} // dereferenced pointer is always addressable } else { va = newAddressableValue(rv.Type()) va.Set(rv) } // Always treat the Hash input as an interface (it is), including hashing // its type, otherwise two Hash calls of different types could hash to the // same bytes off the different types and get equivalent Sum values. This is // the same thing that we do for reflect.Kind Interface in hashValue, but // the initial reflect.ValueOf from an interface value effectively strips // the interface box off so we have to do it at the top level by hand. h.hashType(va.Type()) h.hashValue(va, false) } return h.sum() } // HasherForType is like Hash, but it returns a Hash func that's specialized for // the provided reflect type, avoiding a map lookup per value. func HasherForType[T any]() func(T) Sum { var zeroT T t := reflect.TypeOf(zeroT) ti := getTypeInfo(t) var tiElem *typeInfo if t.Kind() == reflect.Pointer { tiElem = getTypeInfo(t.Elem()) } seedOnce.Do(initSeed) return func(v T) (s Sum) { h := hasherPool.Get().(*hasher) defer hasherPool.Put(h) h.Reset() h.HashUint64(seed) rv := reflect.ValueOf(v) if rv.IsValid() { if rv.Kind() == reflect.Pointer && !rv.IsNil() { va := addressableValue{rv.Elem()} // dereferenced pointer is always addressable h.hashType(va.Type()) h.hashValueWithType(va, tiElem, false) } else { va := newAddressableValue(rv.Type()) va.Set(rv) h.hashType(va.Type()) h.hashValueWithType(va, ti, false) } } return h.sum() } } // Update sets last to the hash of v and reports whether its value changed. func Update(last *Sum, v any) (changed bool) { sum := Hash(v) changed = sum != *last if changed { *last = sum } return changed } var appenderToType = reflect.TypeOf((*appenderTo)(nil)).Elem() type appenderTo interface { AppendTo([]byte) []byte } var ( uint8Type = reflect.TypeOf(byte(0)) timeTimeType = reflect.TypeOf(time.Time{}) ) // typeInfo describes properties of a type. // // A non-nil typeInfo is populated into the typeHasher map // when its type is first requested, before its func is created. // Its func field fn is only populated once the type has been created. // This is used for recursive types. type typeInfo struct { rtype reflect.Type canMemHash bool isRecursive bool // elemTypeInfo is the element type's typeInfo. // It's set when rtype is of Kind Ptr, Slice, Array, Map. elemTypeInfo *typeInfo // keyTypeInfo is the map key type's typeInfo. // It's set when rtype is of Kind Map. keyTypeInfo *typeInfo hashFuncOnce sync.Once hashFuncLazy typeHasherFunc // nil until created } // returns ok if it was handled; else slow path runs type typeHasherFunc func(h *hasher, v addressableValue) (ok bool) var typeInfoMap sync.Map // map[reflect.Type]*typeInfo var typeInfoMapPopulate sync.Mutex // just for adding to typeInfoMap func (ti *typeInfo) hasher() typeHasherFunc { ti.hashFuncOnce.Do(ti.buildHashFuncOnce) return ti.hashFuncLazy } func (ti *typeInfo) buildHashFuncOnce() { ti.hashFuncLazy = genTypeHasher(ti.rtype) } func (h *hasher) hashBoolv(v addressableValue) bool { var b byte if v.Bool() { b = 1 } h.HashUint8(b) return true } func (h *hasher) hashUint8v(v addressableValue) bool { h.HashUint8(uint8(v.Uint())) return true } func (h *hasher) hashInt8v(v addressableValue) bool { h.HashUint8(uint8(v.Int())) return true } func (h *hasher) hashUint16v(v addressableValue) bool { h.HashUint16(uint16(v.Uint())) return true } func (h *hasher) hashInt16v(v addressableValue) bool { h.HashUint16(uint16(v.Int())) return true } func (h *hasher) hashUint32v(v addressableValue) bool { h.HashUint32(uint32(v.Uint())) return true } func (h *hasher) hashInt32v(v addressableValue) bool { h.HashUint32(uint32(v.Int())) return true } func (h *hasher) hashUint64v(v addressableValue) bool { h.HashUint64(v.Uint()) return true } func (h *hasher) hashInt64v(v addressableValue) bool { h.HashUint64(uint64(v.Int())) return true } func hashStructAppenderTo(h *hasher, v addressableValue) bool { if !v.CanInterface() { return false // slow path } a := v.Addr().Interface().(appenderTo) size := h.scratch[:8] record := a.AppendTo(size) binary.LittleEndian.PutUint64(record, uint64(len(record)-len(size))) h.HashBytes(record) return true } // hashPointerAppenderTo hashes v, a reflect.Ptr, that implements appenderTo. func hashPointerAppenderTo(h *hasher, v addressableValue) bool { if !v.CanInterface() { return false // slow path } if v.IsNil() { h.HashUint8(0) // indicates nil return true } h.HashUint8(1) // indicates visiting a pointer a := v.Interface().(appenderTo) size := h.scratch[:8] record := a.AppendTo(size) binary.LittleEndian.PutUint64(record, uint64(len(record)-len(size))) h.HashBytes(record) return true } // fieldInfo describes a struct field. type fieldInfo struct { index int // index of field for reflect.Value.Field(n); -1 if invalid typeInfo *typeInfo canMemHash bool offset uintptr // when we can memhash the field size uintptr // when we can memhash the field } // mergeContiguousFieldsCopy returns a copy of f with contiguous memhashable fields // merged together. Such fields get a bogus index and fu value. func mergeContiguousFieldsCopy(in []fieldInfo) []fieldInfo { ret := make([]fieldInfo, 0, len(in)) var last *fieldInfo for _, f := range in { // Combine two fields if they're both contiguous & memhash-able. if f.canMemHash && last != nil && last.canMemHash && last.offset+last.size == f.offset { last.size += f.size last.index = -1 last.typeInfo = nil } else { ret = append(ret, f) last = &ret[len(ret)-1] } } return ret } // genHashStructFields generates a typeHasherFunc for t, which must be of kind Struct. func genHashStructFields(t reflect.Type) typeHasherFunc { fields := make([]fieldInfo, 0, t.NumField()) for i, n := 0, t.NumField(); i < n; i++ { sf := t.Field(i) if sf.Type.Size() == 0 { continue } fields = append(fields, fieldInfo{ index: i, typeInfo: getTypeInfo(sf.Type), canMemHash: canMemHash(sf.Type), offset: sf.Offset, size: sf.Type.Size(), }) } fields = mergeContiguousFieldsCopy(fields) return structHasher{fields}.hash } type structHasher struct { fields []fieldInfo } func (sh structHasher) hash(h *hasher, v addressableValue) bool { base := v.Addr().UnsafePointer() for _, f := range sh.fields { if f.canMemHash { h.HashBytes(unsafe.Slice((*byte)(unsafe.Pointer(uintptr(base)+f.offset)), f.size)) continue } va := addressableValue{v.Field(f.index)} // field is addressable if parent struct is addressable if !f.typeInfo.hasher()(h, va) { return false } } return true } // genHashPtrToMemoryRange returns a hasher where the reflect.Value is a Ptr to // the provided eleType. func genHashPtrToMemoryRange(eleType reflect.Type) typeHasherFunc { size := eleType.Size() return func(h *hasher, v addressableValue) bool { if v.IsNil() { h.HashUint8(0) // indicates nil } else { h.HashUint8(1) // indicates visiting a pointer h.HashBytes(unsafe.Slice((*byte)(v.UnsafePointer()), size)) } return true } } const debug = false func genTypeHasher(t reflect.Type) typeHasherFunc { if debug { log.Printf("generating func for %v", t) } switch t.Kind() { case reflect.Bool: return (*hasher).hashBoolv case reflect.Int8: return (*hasher).hashInt8v case reflect.Int16: return (*hasher).hashInt16v case reflect.Int32: return (*hasher).hashInt32v case reflect.Int, reflect.Int64: return (*hasher).hashInt64v case reflect.Uint8: return (*hasher).hashUint8v case reflect.Uint16: return (*hasher).hashUint16v case reflect.Uint32: return (*hasher).hashUint32v case reflect.Uint, reflect.Uintptr, reflect.Uint64: return (*hasher).hashUint64v case reflect.Float32: return (*hasher).hashFloat32v case reflect.Float64: return (*hasher).hashFloat64v case reflect.Complex64: return (*hasher).hashComplex64v case reflect.Complex128: return (*hasher).hashComplex128v case reflect.String: return (*hasher).hashString case reflect.Slice: et := t.Elem() if canMemHash(et) { return (*hasher).hashSliceMem } eti := getTypeInfo(et) return genHashSliceElements(eti) case reflect.Array: et := t.Elem() eti := getTypeInfo(et) return genHashArray(t, eti) case reflect.Struct: if t == timeTimeType { return (*hasher).hashTimev } if t.Implements(appenderToType) { return hashStructAppenderTo } return genHashStructFields(t) case reflect.Pointer: et := t.Elem() if canMemHash(et) { return genHashPtrToMemoryRange(et) } if t.Implements(appenderToType) { return hashPointerAppenderTo } if !typeIsRecursive(t) { eti := getTypeInfo(et) return func(h *hasher, v addressableValue) bool { if v.IsNil() { h.HashUint8(0) // indicates nil return true } h.HashUint8(1) // indicates visiting a pointer va := addressableValue{v.Elem()} // dereferenced pointer is always addressable return eti.hasher()(h, va) } } } return func(h *hasher, v addressableValue) bool { if debug { log.Printf("unhandled type %v", v.Type()) } return false } } // hashString hashes v, of kind String. func (h *hasher) hashString(v addressableValue) bool { s := v.String() h.HashUint64(uint64(len(s))) h.HashString(s) return true } func (h *hasher) hashFloat32v(v addressableValue) bool { h.HashUint32(math.Float32bits(float32(v.Float()))) return true } func (h *hasher) hashFloat64v(v addressableValue) bool { h.HashUint64(math.Float64bits(v.Float())) return true } func (h *hasher) hashComplex64v(v addressableValue) bool { c := complex64(v.Complex()) h.HashUint32(math.Float32bits(real(c))) h.HashUint32(math.Float32bits(imag(c))) return true } func (h *hasher) hashComplex128v(v addressableValue) bool { c := v.Complex() h.HashUint64(math.Float64bits(real(c))) h.HashUint64(math.Float64bits(imag(c))) return true } // hashTimev hashes v, of kind time.Time. func (h *hasher) hashTimev(v addressableValue) bool { // Include the zone offset (but not the name) to keep // Hash(t1) == Hash(t2) being semantically equivalent to // t1.Format(time.RFC3339Nano) == t2.Format(time.RFC3339Nano). t := *(*time.Time)(v.Addr().UnsafePointer()) _, offset := t.Zone() h.HashUint64(uint64(t.Unix())) h.HashUint32(uint32(t.Nanosecond())) h.HashUint32(uint32(offset)) return true } // hashSliceMem hashes v, of kind Slice, with a memhash-able element type. func (h *hasher) hashSliceMem(v addressableValue) bool { vLen := v.Len() h.HashUint64(uint64(vLen)) if vLen == 0 { return true } h.HashBytes(unsafe.Slice((*byte)(v.UnsafePointer()), v.Type().Elem().Size()*uintptr(vLen))) return true } func genHashArrayMem(n int, arraySize uintptr, efu *typeInfo) typeHasherFunc { return func(h *hasher, v addressableValue) bool { h.HashBytes(unsafe.Slice((*byte)(v.Addr().UnsafePointer()), arraySize)) return true } } func genHashArrayElements(n int, eti *typeInfo) typeHasherFunc { return func(h *hasher, v addressableValue) bool { for i := 0; i < n; i++ { va := addressableValue{v.Index(i)} // element is addressable if parent array is addressable if !eti.hasher()(h, va) { return false } } return true } } func noopHasherFunc(h *hasher, v addressableValue) bool { return true } func genHashArray(t reflect.Type, eti *typeInfo) typeHasherFunc { if t.Size() == 0 { return noopHasherFunc } et := t.Elem() if canMemHash(et) { return genHashArrayMem(t.Len(), t.Size(), eti) } n := t.Len() return genHashArrayElements(n, eti) } func genHashSliceElements(eti *typeInfo) typeHasherFunc { return sliceElementHasher{eti}.hash } type sliceElementHasher struct { eti *typeInfo } func (seh sliceElementHasher) hash(h *hasher, v addressableValue) bool { vLen := v.Len() h.HashUint64(uint64(vLen)) for i := 0; i < vLen; i++ { va := addressableValue{v.Index(i)} // slice elements are always addressable if !seh.eti.hasher()(h, va) { return false } } return true } func getTypeInfo(t reflect.Type) *typeInfo { if f, ok := typeInfoMap.Load(t); ok { return f.(*typeInfo) } typeInfoMapPopulate.Lock() defer typeInfoMapPopulate.Unlock() newTypes := map[reflect.Type]*typeInfo{} ti := getTypeInfoLocked(t, newTypes) for t, ti := range newTypes { typeInfoMap.Store(t, ti) } return ti } func getTypeInfoLocked(t reflect.Type, incomplete map[reflect.Type]*typeInfo) *typeInfo { if v, ok := typeInfoMap.Load(t); ok { return v.(*typeInfo) } if ti, ok := incomplete[t]; ok { return ti } ti := &typeInfo{ rtype: t, isRecursive: typeIsRecursive(t), canMemHash: canMemHash(t), } incomplete[t] = ti switch t.Kind() { case reflect.Map: ti.keyTypeInfo = getTypeInfoLocked(t.Key(), incomplete) fallthrough case reflect.Ptr, reflect.Slice, reflect.Array: ti.elemTypeInfo = getTypeInfoLocked(t.Elem(), incomplete) } return ti } // typeIsRecursive reports whether t has a path back to itself. // // For interfaces, it currently always reports true. func typeIsRecursive(t reflect.Type) bool { inStack := map[reflect.Type]bool{} var visitType func(t reflect.Type) (isRecursiveSoFar bool) visitType = func(t reflect.Type) (isRecursiveSoFar bool) { switch t.Kind() { case reflect.Bool, reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128, reflect.String, reflect.UnsafePointer, reflect.Func: return false } if t.Size() == 0 { return false } if inStack[t] { return true } inStack[t] = true defer func() { delete(inStack, t) }() switch t.Kind() { default: panic("unhandled kind " + t.Kind().String()) case reflect.Interface: // Assume the worst for now. TODO(bradfitz): in some cases // we should be able to prove that it's not recursive. Not worth // it for now. return true case reflect.Array, reflect.Chan, reflect.Pointer, reflect.Slice: return visitType(t.Elem()) case reflect.Map: if visitType(t.Key()) { return true } if visitType(t.Elem()) { return true } case reflect.Struct: if t.String() == "intern.Value" { // Otherwise its interface{} makes this return true. return false } for i, numField := 0, t.NumField(); i < numField; i++ { if visitType(t.Field(i).Type) { return true } } return false } return false } return visitType(t) } // canMemHash reports whether a slice of t can be hashed by looking at its // contiguous bytes in memory alone. (e.g. structs with gaps aren't memhashable) func canMemHash(t reflect.Type) bool { if t.Size() == 0 { return true } switch t.Kind() { case reflect.Bool, reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128: return true case reflect.Array: return canMemHash(t.Elem()) case reflect.Struct: var sumFieldSize uintptr for i, numField := 0, t.NumField(); i < numField; i++ { sf := t.Field(i) if !canMemHash(sf.Type) { return false } sumFieldSize += sf.Type.Size() } return sumFieldSize == t.Size() // ensure no gaps } return false } func (h *hasher) hashValue(v addressableValue, forceCycleChecking bool) { if !v.IsValid() { return } ti := getTypeInfo(v.Type()) h.hashValueWithType(v, ti, forceCycleChecking) } func (h *hasher) hashValueWithType(v addressableValue, ti *typeInfo, forceCycleChecking bool) { doCheckCycles := forceCycleChecking || ti.isRecursive if !doCheckCycles { hf := ti.hasher() if hf(h, v) { return } } // Generic handling. switch v.Kind() { default: panic(fmt.Sprintf("unhandled kind %v for type %v", v.Kind(), v.Type())) case reflect.Ptr: if v.IsNil() { h.HashUint8(0) // indicates nil return } if doCheckCycles { ptr := pointerOf(v) if idx, ok := h.visitStack.seen(ptr); ok { h.HashUint8(2) // indicates cycle h.HashUint64(uint64(idx)) return } h.visitStack.push(ptr) defer h.visitStack.pop(ptr) } h.HashUint8(1) // indicates visiting a pointer va := addressableValue{v.Elem()} // dereferenced pointer is always addressable h.hashValueWithType(va, ti.elemTypeInfo, doCheckCycles) case reflect.Struct: for i, n := 0, v.NumField(); i < n; i++ { va := addressableValue{v.Field(i)} // field is addressable if parent struct is addressable h.hashValue(va, doCheckCycles) } case reflect.Slice, reflect.Array: vLen := v.Len() if v.Kind() == reflect.Slice { h.HashUint64(uint64(vLen)) } if v.Type().Elem() == uint8Type && v.CanInterface() { if vLen > 0 && vLen <= scratchSize { // If it fits in scratch, avoid the Interface allocation. // It seems tempting to do this for all sizes, doing // scratchSize bytes at a time, but reflect.Slice seems // to allocate, so it's not a win. n := reflect.Copy(reflect.ValueOf(&h.scratch).Elem(), v.Value) h.HashBytes(h.scratch[:n]) return } fmt.Fprintf(h, "%s", v.Interface()) return } for i := 0; i < vLen; i++ { // TODO(dsnet): Perform cycle detection for slices, // which is functionally a list of pointers. // See https://github.com/google/go-cmp/blob/402949e8139bb890c71a707b6faf6dd05c92f4e5/cmp/compare.go#L438-L450 va := addressableValue{v.Index(i)} // slice elements are always addressable h.hashValueWithType(va, ti.elemTypeInfo, doCheckCycles) } case reflect.Interface: if v.IsNil() { h.HashUint8(0) // indicates nil return } // TODO: Use a valueCache here? va := newAddressableValue(v.Elem().Type()) va.Set(v.Elem()) h.HashUint8(1) // indicates visiting interface value h.hashType(va.Type()) h.hashValue(va, doCheckCycles) case reflect.Map: // Check for cycle. if doCheckCycles { ptr := pointerOf(v) if idx, ok := h.visitStack.seen(ptr); ok { h.HashUint8(2) // indicates cycle h.HashUint64(uint64(idx)) return } h.visitStack.push(ptr) defer h.visitStack.pop(ptr) } h.HashUint8(1) // indicates visiting a map h.hashMap(v, ti, doCheckCycles) case reflect.String: s := v.String() h.HashUint64(uint64(len(s))) h.HashString(s) case reflect.Bool: if v.Bool() { h.HashUint8(1) } else { h.HashUint8(0) } case reflect.Int8: h.HashUint8(uint8(v.Int())) case reflect.Int16: h.HashUint16(uint16(v.Int())) case reflect.Int32: h.HashUint32(uint32(v.Int())) case reflect.Int64, reflect.Int: h.HashUint64(uint64(v.Int())) case reflect.Uint8: h.HashUint8(uint8(v.Uint())) case reflect.Uint16: h.HashUint16(uint16(v.Uint())) case reflect.Uint32: h.HashUint32(uint32(v.Uint())) case reflect.Uint64, reflect.Uint, reflect.Uintptr: h.HashUint64(uint64(v.Uint())) case reflect.Float32: h.HashUint32(math.Float32bits(float32(v.Float()))) case reflect.Float64: h.HashUint64(math.Float64bits(float64(v.Float()))) case reflect.Complex64: h.HashUint32(math.Float32bits(real(complex64(v.Complex())))) h.HashUint32(math.Float32bits(imag(complex64(v.Complex())))) case reflect.Complex128: h.HashUint64(math.Float64bits(real(complex128(v.Complex())))) h.HashUint64(math.Float64bits(imag(complex128(v.Complex())))) } } type mapHasher struct { h hasher valKey, valElem valueCache // re-usable values for map iteration } var mapHasherPool = &sync.Pool{ New: func() any { return new(mapHasher) }, } type valueCache map[reflect.Type]addressableValue func (c *valueCache) get(t reflect.Type) addressableValue { v, ok := (*c)[t] if !ok { v = newAddressableValue(t) if *c == nil { *c = make(valueCache) } (*c)[t] = v } return v } // hashMap hashes a map in a sort-free manner. // It relies on a map being a functionally an unordered set of KV entries. // So long as we hash each KV entry together, we can XOR all // of the individual hashes to produce a unique hash for the entire map. func (h *hasher) hashMap(v addressableValue, ti *typeInfo, checkCycles bool) { mh := mapHasherPool.Get().(*mapHasher) defer mapHasherPool.Put(mh) var sum Sum if v.IsNil() { sum.sum[0] = 1 // something non-zero } k := mh.valKey.get(v.Type().Key()) e := mh.valElem.get(v.Type().Elem()) mh.h.visitStack = h.visitStack // always use the parent's visit stack to avoid cycles for iter := v.MapRange(); iter.Next(); { k.SetIterKey(iter) e.SetIterValue(iter) mh.h.Reset() mh.h.hashValueWithType(k, ti.keyTypeInfo, checkCycles) mh.h.hashValueWithType(e, ti.elemTypeInfo, checkCycles) sum.xor(mh.h.sum()) } h.HashBytes(append(h.scratch[:0], sum.sum[:]...)) // append into scratch to avoid heap allocation } // visitStack is a stack of pointers visited. // Pointers are pushed onto the stack when visited, and popped when leaving. // The integer value is the depth at which the pointer was visited. // The length of this stack should be zero after every hashing operation. type visitStack map[pointer]int func (v visitStack) seen(p pointer) (int, bool) { idx, ok := v[p] return idx, ok } func (v *visitStack) push(p pointer) { if *v == nil { *v = make(map[pointer]int) } (*v)[p] = len(*v) } func (v visitStack) pop(p pointer) { delete(v, p) } // pointer is a thin wrapper over unsafe.Pointer. // We only rely on comparability of pointers; we cannot rely on uintptr since // that would break if Go ever switched to a moving GC. type pointer struct{ p unsafe.Pointer } func pointerOf(v addressableValue) pointer { return pointer{unsafe.Pointer(v.Value.Pointer())} } // hashType hashes a reflect.Type. // The hash is only consistent within the lifetime of a program. func (h *hasher) hashType(t reflect.Type) { // This approach relies on reflect.Type always being backed by a unique // *reflect.rtype pointer. A safer approach is to use a global sync.Map // that maps reflect.Type to some arbitrary and unique index. // While safer, it requires global state with memory that can never be GC'd. rtypeAddr := reflect.ValueOf(t).Pointer() // address of *reflect.rtype h.HashUint64(uint64(rtypeAddr)) }