// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package netstack wires up gVisor's netstack into Tailscale. package netstack import ( "context" "errors" "fmt" "io" "log" "net" "os/exec" "runtime" "strconv" "strings" "sync" "sync/atomic" "time" "inet.af/netaddr" "inet.af/netstack/tcpip" "inet.af/netstack/tcpip/adapters/gonet" "inet.af/netstack/tcpip/buffer" "inet.af/netstack/tcpip/header" "inet.af/netstack/tcpip/link/channel" "inet.af/netstack/tcpip/network/ipv4" "inet.af/netstack/tcpip/network/ipv6" "inet.af/netstack/tcpip/stack" "inet.af/netstack/tcpip/transport/icmp" "inet.af/netstack/tcpip/transport/tcp" "inet.af/netstack/tcpip/transport/udp" "inet.af/netstack/waiter" "tailscale.com/net/packet" "tailscale.com/net/tsaddr" "tailscale.com/net/tsdial" "tailscale.com/net/tstun" "tailscale.com/syncs" "tailscale.com/types/logger" "tailscale.com/types/netmap" "tailscale.com/wgengine" "tailscale.com/wgengine/filter" "tailscale.com/wgengine/magicsock" ) const debugNetstack = false // Impl contains the state for the netstack implementation, // and implements wgengine.FakeImpl to act as a userspace network // stack when Tailscale is running in fake mode. type Impl struct { // ForwardTCPIn, if non-nil, handles forwarding an inbound TCP // connection. // TODO(bradfitz): provide mechanism for tsnet to reject a // port other than accepting it and closing it. ForwardTCPIn func(c net.Conn, port uint16) // ProcessLocalIPs is whether netstack should handle incoming // traffic directed at the Node.Addresses (local IPs). // It can only be set before calling Start. ProcessLocalIPs bool // ProcessSubnets is whether netstack should handle incoming // traffic destined to non-local IPs (i.e. whether it should // be a subnet router). // It can only be set before calling Start. ProcessSubnets bool ipstack *stack.Stack linkEP *channel.Endpoint tundev *tstun.Wrapper e wgengine.Engine mc *magicsock.Conn logf logger.Logf dialer *tsdial.Dialer // atomicIsLocalIPFunc holds a func that reports whether an IP // is a local (non-subnet) Tailscale IP address of this // machine. It's always a non-nil func. It's changed on netmap // updates. atomicIsLocalIPFunc atomic.Value // of func(netaddr.IP) bool mu sync.Mutex // connsOpenBySubnetIP keeps track of number of connections open // for each subnet IP temporarily registered on netstack for active // TCP connections, so they can be unregistered when connections are // closed. connsOpenBySubnetIP map[netaddr.IP]int } const nicID = 1 const mtu = 1500 // Create creates and populates a new Impl. func Create(logf logger.Logf, tundev *tstun.Wrapper, e wgengine.Engine, mc *magicsock.Conn, dialer *tsdial.Dialer) (*Impl, error) { if mc == nil { return nil, errors.New("nil magicsock.Conn") } if tundev == nil { return nil, errors.New("nil tundev") } if logf == nil { return nil, errors.New("nil logger") } if e == nil { return nil, errors.New("nil Engine") } if dialer == nil { return nil, errors.New("nil Dialer") } ipstack := stack.New(stack.Options{ NetworkProtocols: []stack.NetworkProtocolFactory{ipv4.NewProtocol, ipv6.NewProtocol}, TransportProtocols: []stack.TransportProtocolFactory{tcp.NewProtocol, udp.NewProtocol, icmp.NewProtocol4, icmp.NewProtocol6}, }) linkEP := channel.New(512, mtu, "") if tcpipProblem := ipstack.CreateNIC(nicID, linkEP); tcpipProblem != nil { return nil, fmt.Errorf("could not create netstack NIC: %v", tcpipProblem) } // By default the netstack NIC will only accept packets for the IPs // registered to it. Since in some cases we dynamically register IPs // based on the packets that arrive, the NIC needs to accept all // incoming packets. The NIC won't receive anything it isn't meant to // since Wireguard will only send us packets that are meant for us. ipstack.SetPromiscuousMode(nicID, true) // Add IPv4 and IPv6 default routes, so all incoming packets from the Tailscale side // are handled by the one fake NIC we use. ipv4Subnet, _ := tcpip.NewSubnet(tcpip.Address(strings.Repeat("\x00", 4)), tcpip.AddressMask(strings.Repeat("\x00", 4))) ipv6Subnet, _ := tcpip.NewSubnet(tcpip.Address(strings.Repeat("\x00", 16)), tcpip.AddressMask(strings.Repeat("\x00", 16))) ipstack.SetRouteTable([]tcpip.Route{ { Destination: ipv4Subnet, NIC: nicID, }, { Destination: ipv6Subnet, NIC: nicID, }, }) ns := &Impl{ logf: logf, ipstack: ipstack, linkEP: linkEP, tundev: tundev, e: e, mc: mc, dialer: dialer, connsOpenBySubnetIP: make(map[netaddr.IP]int), } ns.atomicIsLocalIPFunc.Store(tsaddr.NewContainsIPFunc(nil)) return ns, nil } // wrapProtoHandler returns protocol handler h wrapped in a version // that dynamically reconfigures ns's subnet addresses as needed for // outbound traffic. func (ns *Impl) wrapProtoHandler(h func(stack.TransportEndpointID, *stack.PacketBuffer) bool) func(stack.TransportEndpointID, *stack.PacketBuffer) bool { return func(tei stack.TransportEndpointID, pb *stack.PacketBuffer) bool { addr := tei.LocalAddress ip, ok := netaddr.FromStdIP(net.IP(addr)) if !ok { ns.logf("netstack: could not parse local address for incoming connection") return false } if !ns.isLocalIP(ip) { ns.addSubnetAddress(ip) } return h(tei, pb) } } // Start sets up all the handlers so netstack can start working. Implements // wgengine.FakeImpl. func (ns *Impl) Start() error { ns.e.AddNetworkMapCallback(ns.updateIPs) // size = 0 means use default buffer size const tcpReceiveBufferSize = 0 const maxInFlightConnectionAttempts = 16 tcpFwd := tcp.NewForwarder(ns.ipstack, tcpReceiveBufferSize, maxInFlightConnectionAttempts, ns.acceptTCP) udpFwd := udp.NewForwarder(ns.ipstack, ns.acceptUDP) ns.ipstack.SetTransportProtocolHandler(tcp.ProtocolNumber, ns.wrapProtoHandler(tcpFwd.HandlePacket)) ns.ipstack.SetTransportProtocolHandler(udp.ProtocolNumber, ns.wrapProtoHandler(udpFwd.HandlePacket)) go ns.injectOutbound() ns.tundev.PostFilterIn = ns.injectInbound return nil } func (ns *Impl) addSubnetAddress(ip netaddr.IP) { ns.mu.Lock() ns.connsOpenBySubnetIP[ip]++ needAdd := ns.connsOpenBySubnetIP[ip] == 1 ns.mu.Unlock() // Only register address into netstack for first concurrent connection. if needAdd { pa := tcpip.ProtocolAddress{ AddressWithPrefix: tcpip.AddressWithPrefix{ Address: tcpip.Address(ip.IPAddr().IP), PrefixLen: int(ip.BitLen()), }, } if ip.Is4() { pa.Protocol = ipv4.ProtocolNumber } else if ip.Is6() { pa.Protocol = ipv6.ProtocolNumber } ns.ipstack.AddProtocolAddress(nicID, pa, stack.AddressProperties{ PEB: stack.CanBePrimaryEndpoint, // zero value default ConfigType: stack.AddressConfigStatic, // zero value default }) } } func (ns *Impl) removeSubnetAddress(ip netaddr.IP) { ns.mu.Lock() defer ns.mu.Unlock() ns.connsOpenBySubnetIP[ip]-- // Only unregister address from netstack after last concurrent connection. if ns.connsOpenBySubnetIP[ip] == 0 { ns.ipstack.RemoveAddress(nicID, tcpip.Address(ip.IPAddr().IP)) delete(ns.connsOpenBySubnetIP, ip) } } func ipPrefixToAddressWithPrefix(ipp netaddr.IPPrefix) tcpip.AddressWithPrefix { return tcpip.AddressWithPrefix{ Address: tcpip.Address(ipp.IP().IPAddr().IP), PrefixLen: int(ipp.Bits()), } } var v4broadcast = netaddr.IPv4(255, 255, 255, 255) func (ns *Impl) updateIPs(nm *netmap.NetworkMap) { ns.atomicIsLocalIPFunc.Store(tsaddr.NewContainsIPFunc(nm.Addresses)) oldIPs := make(map[tcpip.AddressWithPrefix]bool) for _, protocolAddr := range ns.ipstack.AllAddresses()[nicID] { ap := protocolAddr.AddressWithPrefix ip := netaddrIPFromNetstackIP(ap.Address) if ip == v4broadcast && ap.PrefixLen == 32 { // Don't delete this one later. It seems to be important. // Related to Issue 2642? Likely. continue } oldIPs[ap] = true } newIPs := make(map[tcpip.AddressWithPrefix]bool) isAddr := map[netaddr.IPPrefix]bool{} if nm.SelfNode != nil { for _, ipp := range nm.SelfNode.Addresses { isAddr[ipp] = true } for _, ipp := range nm.SelfNode.AllowedIPs { local := isAddr[ipp] if local && ns.ProcessLocalIPs || !local && ns.ProcessSubnets { newIPs[ipPrefixToAddressWithPrefix(ipp)] = true } } } ipsToBeAdded := make(map[tcpip.AddressWithPrefix]bool) for ipp := range newIPs { if !oldIPs[ipp] { ipsToBeAdded[ipp] = true } } ipsToBeRemoved := make(map[tcpip.AddressWithPrefix]bool) for ip := range oldIPs { if !newIPs[ip] { ipsToBeRemoved[ip] = true } } ns.mu.Lock() for ip := range ns.connsOpenBySubnetIP { ipp := tcpip.Address(ip.IPAddr().IP).WithPrefix() delete(ipsToBeRemoved, ipp) } ns.mu.Unlock() for ipp := range ipsToBeRemoved { err := ns.ipstack.RemoveAddress(nicID, ipp.Address) if err != nil { ns.logf("netstack: could not deregister IP %s: %v", ipp, err) } else { ns.logf("[v2] netstack: deregistered IP %s", ipp) } } for ipp := range ipsToBeAdded { pa := tcpip.ProtocolAddress{ AddressWithPrefix: ipp, } if ipp.Address.To4() == "" { pa.Protocol = ipv6.ProtocolNumber } else { pa.Protocol = ipv4.ProtocolNumber } var err tcpip.Error err = ns.ipstack.AddProtocolAddress(nicID, pa, stack.AddressProperties{ PEB: stack.CanBePrimaryEndpoint, // zero value default ConfigType: stack.AddressConfigStatic, // zero value default }) if err != nil { ns.logf("netstack: could not register IP %s: %v", ipp, err) } else { ns.logf("[v2] netstack: registered IP %s", ipp) } } } func (ns *Impl) DialContextTCP(ctx context.Context, ipp netaddr.IPPort) (*gonet.TCPConn, error) { remoteAddress := tcpip.FullAddress{ NIC: nicID, Addr: tcpip.Address(ipp.IP().IPAddr().IP), Port: ipp.Port(), } var ipType tcpip.NetworkProtocolNumber if ipp.IP().Is4() { ipType = ipv4.ProtocolNumber } else { ipType = ipv6.ProtocolNumber } return gonet.DialContextTCP(ctx, ns.ipstack, remoteAddress, ipType) } func (ns *Impl) DialContextUDP(ctx context.Context, ipp netaddr.IPPort) (*gonet.UDPConn, error) { remoteAddress := &tcpip.FullAddress{ NIC: nicID, Addr: tcpip.Address(ipp.IP().IPAddr().IP), Port: ipp.Port(), } var ipType tcpip.NetworkProtocolNumber if ipp.IP().Is4() { ipType = ipv4.ProtocolNumber } else { ipType = ipv6.ProtocolNumber } return gonet.DialUDP(ns.ipstack, nil, remoteAddress, ipType) } func (ns *Impl) injectOutbound() { for { packetInfo, ok := ns.linkEP.ReadContext(context.Background()) if !ok { ns.logf("[v2] ReadContext-for-write = ok=false") continue } pkt := packetInfo.Pkt hdrNetwork := pkt.NetworkHeader() hdrTransport := pkt.TransportHeader() full := make([]byte, 0, pkt.Size()) full = append(full, hdrNetwork.View()...) full = append(full, hdrTransport.View()...) full = append(full, pkt.Data().AsRange().AsView()...) if debugNetstack { ns.logf("[v2] packet Write out: % x", full) } if err := ns.tundev.InjectOutbound(full); err != nil { log.Printf("netstack inject outbound: %v", err) return } } } // isLocalIP reports whether ip is a Tailscale IP assigned to this // node directly (but not a subnet-routed IP). func (ns *Impl) isLocalIP(ip netaddr.IP) bool { return ns.atomicIsLocalIPFunc.Load().(func(netaddr.IP) bool)(ip) } // shouldProcessInbound reports whether an inbound packet should be // handled by netstack. func (ns *Impl) shouldProcessInbound(p *packet.Parsed, t *tstun.Wrapper) bool { if !ns.ProcessLocalIPs && !ns.ProcessSubnets { // Fast path for common case (e.g. Linux server in TUN mode) where // netstack isn't used at all; don't even do an isLocalIP lookup. return false } isLocal := ns.isLocalIP(p.Dst.IP()) if ns.ProcessLocalIPs && isLocal { return true } if ns.ProcessSubnets && !isLocal { return true } return false } var userPingSem = syncs.NewSemaphore(20) // 20 child ping processes at once // userPing tried to ping dstIP and if it succeeds, injects pingResPkt // into the tundev. // // It's used in userspace/netstack mode when we don't have kernel // support or raw socket access. As such, this does the dumbest thing // that can work: runs the ping command. It's not super efficient, so // it bounds the number of pings going on at once. The idea is that // people only use ping occasionally to see if their internet's working // so this doesn't need to be great. // // TODO(bradfitz): when we're running on Windows as the system user, use // raw socket APIs instead of ping child processes. func (ns *Impl) userPing(dstIP netaddr.IP, pingResPkt []byte) { if !userPingSem.TryAcquire() { return } defer userPingSem.Release() t0 := time.Now() var err error switch runtime.GOOS { case "windows": err = exec.Command("ping", "-n", "1", "-w", "3000", dstIP.String()).Run() default: err = exec.Command("ping", "-c", "1", "-W", "3", dstIP.String()).Run() } d := time.Since(t0) if err != nil { ns.logf("exec ping of %v failed in %v", dstIP, d) return } if debugNetstack { ns.logf("exec pinged %v in %v", dstIP, time.Since(t0)) } if err := ns.tundev.InjectOutbound(pingResPkt); err != nil { ns.logf("InjectOutbound ping response: %v", err) } } func (ns *Impl) injectInbound(p *packet.Parsed, t *tstun.Wrapper) filter.Response { if !ns.shouldProcessInbound(p, t) { // Let the host network stack (if any) deal with it. return filter.Accept } destIP := p.Dst.IP() if p.IsEchoRequest() && ns.ProcessSubnets && !tsaddr.IsTailscaleIP(destIP) { var pong []byte // the reply to the ping, if our relayed ping works if destIP.Is4() { h := p.ICMP4Header() h.ToResponse() pong = packet.Generate(&h, p.Payload()) } else if destIP.Is6() { h := p.ICMP6Header() h.ToResponse() pong = packet.Generate(&h, p.Payload()) } go ns.userPing(destIP, pong) return filter.DropSilently } var pn tcpip.NetworkProtocolNumber switch p.IPVersion { case 4: pn = header.IPv4ProtocolNumber case 6: pn = header.IPv6ProtocolNumber } if debugNetstack { ns.logf("[v2] packet in (from %v): % x", p.Src, p.Buffer()) } vv := buffer.View(append([]byte(nil), p.Buffer()...)).ToVectorisedView() packetBuf := stack.NewPacketBuffer(stack.PacketBufferOptions{ Data: vv, }) ns.linkEP.InjectInbound(pn, packetBuf) // We've now delivered this to netstack, so we're done. // Instead of returning a filter.Accept here (which would also // potentially deliver it to the host OS), and instead of // filter.Drop (which would log about rejected traffic), // instead return filter.DropSilently which just quietly stops // processing it in the tstun TUN wrapper. return filter.DropSilently } func netaddrIPFromNetstackIP(s tcpip.Address) netaddr.IP { switch len(s) { case 4: return netaddr.IPv4(s[0], s[1], s[2], s[3]) case 16: var a [16]byte copy(a[:], s) return netaddr.IPFrom16(a) } return netaddr.IP{} } func (ns *Impl) acceptTCP(r *tcp.ForwarderRequest) { reqDetails := r.ID() if debugNetstack { ns.logf("[v2] TCP ForwarderRequest: %s", stringifyTEI(reqDetails)) } clientRemoteIP := netaddrIPFromNetstackIP(reqDetails.RemoteAddress) if !clientRemoteIP.IsValid() { ns.logf("invalid RemoteAddress in TCP ForwarderRequest: %s", stringifyTEI(reqDetails)) r.Complete(true) return } dialIP := netaddrIPFromNetstackIP(reqDetails.LocalAddress) isTailscaleIP := tsaddr.IsTailscaleIP(dialIP) defer func() { if !isTailscaleIP { // if this is a subnet IP, we added this in before the TCP handshake // so netstack is happy TCP-handshaking as a subnet IP ns.removeSubnetAddress(dialIP) } }() var wq waiter.Queue ep, err := r.CreateEndpoint(&wq) if err != nil { r.Complete(true) return } r.Complete(false) // The ForwarderRequest.CreateEndpoint above asynchronously // starts the TCP handshake. Note that the gonet.TCPConn // methods c.RemoteAddr() and c.LocalAddr() will return nil // until the handshake actually completes. But we have the // remote address in reqDetails instead, so we don't use // gonet.TCPConn.RemoteAddr. The byte copies in both // directions to/from the gonet.TCPConn in forwardTCP will // block until the TCP handshake is complete. c := gonet.NewTCPConn(&wq, ep) if ns.ForwardTCPIn != nil { ns.ForwardTCPIn(c, reqDetails.LocalPort) return } if isTailscaleIP { dialIP = netaddr.IPv4(127, 0, 0, 1) } dialAddr := netaddr.IPPortFrom(dialIP, uint16(reqDetails.LocalPort)) ns.forwardTCP(c, clientRemoteIP, &wq, dialAddr) } func (ns *Impl) forwardTCP(client *gonet.TCPConn, clientRemoteIP netaddr.IP, wq *waiter.Queue, dialAddr netaddr.IPPort) { defer client.Close() dialAddrStr := dialAddr.String() if debugNetstack { ns.logf("[v2] netstack: forwarding incoming connection to %s", dialAddrStr) } ctx, cancel := context.WithCancel(context.Background()) defer cancel() waitEntry, notifyCh := waiter.NewChannelEntry(waiter.EventHUp) // TODO(bradfitz): right EventMask? wq.EventRegister(&waitEntry) defer wq.EventUnregister(&waitEntry) done := make(chan bool) // netstack doesn't close the notification channel automatically if there was no // hup signal, so we close done after we're done to not leak the goroutine below. defer close(done) go func() { select { case <-notifyCh: case <-done: } cancel() }() var stdDialer net.Dialer server, err := stdDialer.DialContext(ctx, "tcp", dialAddrStr) if err != nil { ns.logf("netstack: could not connect to local server at %s: %v", dialAddrStr, err) return } defer server.Close() backendLocalAddr := server.LocalAddr().(*net.TCPAddr) backendLocalIPPort, _ := netaddr.FromStdAddr(backendLocalAddr.IP, backendLocalAddr.Port, backendLocalAddr.Zone) ns.e.RegisterIPPortIdentity(backendLocalIPPort, clientRemoteIP) defer ns.e.UnregisterIPPortIdentity(backendLocalIPPort) connClosed := make(chan error, 2) go func() { _, err := io.Copy(server, client) connClosed <- err }() go func() { _, err := io.Copy(client, server) connClosed <- err }() err = <-connClosed if err != nil { ns.logf("proxy connection closed with error: %v", err) } ns.logf("[v2] netstack: forwarder connection to %s closed", dialAddrStr) } func (ns *Impl) acceptUDP(r *udp.ForwarderRequest) { sess := r.ID() if debugNetstack { ns.logf("[v2] UDP ForwarderRequest: %v", stringifyTEI(sess)) } var wq waiter.Queue ep, err := r.CreateEndpoint(&wq) if err != nil { ns.logf("acceptUDP: could not create endpoint: %v", err) return } dstAddr, ok := ipPortOfNetstackAddr(sess.LocalAddress, sess.LocalPort) if !ok { return } srcAddr, ok := ipPortOfNetstackAddr(sess.RemoteAddress, sess.RemotePort) if !ok { return } c := gonet.NewUDPConn(ns.ipstack, &wq, ep) go ns.forwardUDP(c, &wq, srcAddr, dstAddr) } // forwardUDP proxies between client (with addr clientAddr) and dstAddr. // // dstAddr may be either a local Tailscale IP, in which we case we proxy to // 127.0.0.1, or any other IP (from an advertised subnet), in which case we // proxy to it directly. func (ns *Impl) forwardUDP(client *gonet.UDPConn, wq *waiter.Queue, clientAddr, dstAddr netaddr.IPPort) { port, srcPort := dstAddr.Port(), clientAddr.Port() if debugNetstack { ns.logf("[v2] netstack: forwarding incoming UDP connection on port %v", port) } var backendListenAddr *net.UDPAddr var backendRemoteAddr *net.UDPAddr isLocal := ns.isLocalIP(dstAddr.IP()) if isLocal { backendRemoteAddr = &net.UDPAddr{IP: net.ParseIP("127.0.0.1"), Port: int(port)} backendListenAddr = &net.UDPAddr{IP: net.ParseIP("127.0.0.1"), Port: int(srcPort)} } else { backendRemoteAddr = dstAddr.UDPAddr() if dstAddr.IP().Is4() { backendListenAddr = &net.UDPAddr{IP: net.ParseIP("0.0.0.0"), Port: int(srcPort)} } else { backendListenAddr = &net.UDPAddr{IP: net.ParseIP("::"), Port: int(srcPort)} } } backendConn, err := net.ListenUDP("udp", backendListenAddr) if err != nil { ns.logf("netstack: could not bind local port %v: %v, trying again with random port", backendListenAddr.Port, err) backendListenAddr.Port = 0 backendConn, err = net.ListenUDP("udp", backendListenAddr) if err != nil { ns.logf("netstack: could not create UDP socket, preventing forwarding to %v: %v", dstAddr, err) return } } backendLocalAddr := backendConn.LocalAddr().(*net.UDPAddr) backendLocalIPPort, ok := netaddr.FromStdAddr(backendListenAddr.IP, backendLocalAddr.Port, backendLocalAddr.Zone) if !ok { ns.logf("could not get backend local IP:port from %v:%v", backendLocalAddr.IP, backendLocalAddr.Port) } if isLocal { ns.e.RegisterIPPortIdentity(backendLocalIPPort, dstAddr.IP()) } ctx, cancel := context.WithCancel(context.Background()) idleTimeout := 2 * time.Minute if port == 53 { // Make DNS packet copies time out much sooner. // // TODO(bradfitz): make DNS queries over UDP forwarding even // cheaper by adding an additional idleTimeout post-DNS-reply. // For instance, after the DNS response goes back out, then only // wait a few seconds (or zero, really) idleTimeout = 30 * time.Second } timer := time.AfterFunc(idleTimeout, func() { if isLocal { ns.e.UnregisterIPPortIdentity(backendLocalIPPort) } ns.logf("netstack: UDP session between %s and %s timed out", backendListenAddr, backendRemoteAddr) cancel() client.Close() backendConn.Close() }) extend := func() { timer.Reset(idleTimeout) } startPacketCopy(ctx, cancel, client, clientAddr.UDPAddr(), backendConn, ns.logf, extend) startPacketCopy(ctx, cancel, backendConn, backendRemoteAddr, client, ns.logf, extend) if isLocal { // Wait for the copies to be done before decrementing the // subnet address count to potentially remove the route. <-ctx.Done() ns.removeSubnetAddress(dstAddr.IP()) } } func startPacketCopy(ctx context.Context, cancel context.CancelFunc, dst net.PacketConn, dstAddr net.Addr, src net.PacketConn, logf logger.Logf, extend func()) { if debugNetstack { logf("[v2] netstack: startPacketCopy to %v (%T) from %T", dstAddr, dst, src) } go func() { defer cancel() // tear down the other direction's copy pkt := make([]byte, mtu) for { select { case <-ctx.Done(): return default: n, srcAddr, err := src.ReadFrom(pkt) if err != nil { if ctx.Err() == nil { logf("read packet from %s failed: %v", srcAddr, err) } return } _, err = dst.WriteTo(pkt[:n], dstAddr) if err != nil { if ctx.Err() == nil { logf("write packet to %s failed: %v", dstAddr, err) } return } if debugNetstack { logf("[v2] wrote UDP packet %s -> %s", srcAddr, dstAddr) } extend() } } }() } func stringifyTEI(tei stack.TransportEndpointID) string { localHostPort := net.JoinHostPort(tei.LocalAddress.String(), strconv.Itoa(int(tei.LocalPort))) remoteHostPort := net.JoinHostPort(tei.RemoteAddress.String(), strconv.Itoa(int(tei.RemotePort))) return fmt.Sprintf("%s -> %s", remoteHostPort, localHostPort) } func ipPortOfNetstackAddr(a tcpip.Address, port uint16) (ipp netaddr.IPPort, ok bool) { return netaddr.FromStdAddr(net.IP(a), int(port), "") // TODO(bradfitz): can do without allocs }