Labrador/Desktop_Interface/build_win/fftw/x64/NEWS

593 lines
22 KiB
Plaintext

FFTW 3.3.5:
* New SIMD support:
- Power8 VSX instructions in single and double precision.
To use, add --enable-vsx to configure.
- Support for AVX2 (256-bit FMA instructions).
To use, add --enable-avx2 to configure.
- Experimental support for AVX512 and KCVI. (--enable-avx512, --enable-kcvi)
This code is expected to work but the FFTW maintainers do not have
hardware to test it.
- Support for AVX128/FMA (for some AMD machines) (--enable-avx128-fma)
- Double precision Neon SIMD for aarch64.
This code is expected to work but the FFTW maintainers do not have
hardware to test it.
- generic SIMD support using gcc vector intrinsics
* Add fftw_make_planner_thread_safe() API
* fix #18 (disable float128 for CUDACC)
* fix #19: missing Fortran interface for fftwq_alloc_real
* fix #21 (don't use float128 on Portland compilers, which pretend to be gcc)
* fix: Avoid segfaults due to double free in MPI transpose
* Special note for distribution maintainers: Although FFTW supports a
zillion SIMD instruction sets, enabling them all at the same time is
a bad idea, because it increases the planning time for minimal gain.
We recommend that general-purpose x86 distributions only enable SSE2
and perhaps AVX. Users who care about the last ounce of performance
should recompile FFTW themselves.
FFTW 3.3.4
* New functions fftw_alignment_of (to check whether two arrays are
equally aligned for the purposes of applying a plan) and fftw_sprint_plan
(to output a description of plan to a string).
* Bugfix in fftw-wisdom-to-conf; thanks to Florian Oppermann for the
bug report.
* Fixed manual to work with texinfo-5.
* Increased timing interval on x86_64 to reduce timing errors.
* Default to Win32 threads, not pthreads, if both are present.
* Various build-script fixes.
FFTW 3.3.3
* Fix deadlock bug in MPI transforms (thanks to Michael Pippig for the
bug report and patch, and to Graham Dennis for the bug report).
* Use 128-bit ARM NEON instructions instead of 64-bits. This change
appears to speed up even ARM processors with a 64-bit NEON pipe.
* Speed improvements for single-precision AVX.
* Speed up planner on machines without "official" cycle counters, such as ARM.
FFTW 3.3.2
* Removed an archaic stack-alignment hack that was failing with
gcc-4.7/i386.
* Added stack-alignment hack necessary for gcc on Windows/i386. We
will regret this in ten years (see previous change).
* Fix incompatibility with Intel icc which pretends to be gcc
but does not support quad precision.
* make libfftw{threads,mpi} depend upon libfftw when using libtool;
this is consistent with most other libraries and simplifies the life
of various distributors of GNU/Linux.
FFTW 3.3.1
* Changes since 3.3.1-beta1:
- Reduced planning time in estimate mode for sizes with large
prime factors.
- Added AVX autodetection under Visual Studio. Thanks Carsten
Steger for submitting the necessary code.
- Modern Fortran interface now uses a separate fftw3l.f03 interface
file for the long double interface, which is not supported by
some Fortran compilers. Provided new fftw3q.f03 interface file
to access the quadruple-precision FFTW routines with recent
versions of gcc/gfortran.
* Added support for the NEON extensions to the ARM ISA. (Note to beta
users: an ARM cycle counter is not yet implemented; please contact
fftw@fftw.org if you know how to do it right.)
* MPI code now compiles even if mpicc is a C++ compiler; thanks to
Kyle Spyksma for the bug report.
FFTW 3.3
* Changes since 3.3-beta1:
- Compiling OpenMP support (--enable-openmp) now installs a
fftw3_omp library, instead of fftw3_threads, so that OpenMP
and POSIX threads (--enable-threads) libraries can be built
and installed at the same time.
- Various minor compilation fixes, corrections of manual typos, and
improvements to the benchmark test program.
* Add support for the AVX extensions to x86 and x86-64. The AVX code
works with 16-byte alignment (as opposed to 32-byte alignment),
so there is no ABI change compared to FFTW 3.2.2.
* Added Fortran 2003 interface, which should be usable on most modern
Fortran compilers (e.g. gfortran) and provides type-checked access
to the the C FFTW interface. (The legacy Fortran-77 interface is
still included also.)
* Added MPI distributed-memory transforms. Compared to 3.3alpha,
the major changes in the MPI transforms are:
- Fixed some deadlock and crashing bugs.
- Added Fortran 2003 interface.
- Added new-array execute functions for MPI plans.
- Eliminated use of large MPI tags, since Cray MPI requires tags < 2^24;
thanks to Jonathan Bentz for the bug report.
- Expanded documentation.
- 'make check' now runs MPI tests
- Some ABI changes - not binary-compatible with 3.3alpha MPI.
* Add support for quad-precision __float128 in gcc 4.6 or later (on x86.
x86-64, and Itanium). The new routines use the fftwq_ prefix.
* Removed support for MIPS paired-single instructions due to lack of
available hardware for testing. Users who want this functionality
should continue using FFTW 3.2.x. (Note that FFTW 3.3 still works
on MIPS; this only concerns special instructions available on some
MIPS chips.)
* Removed support for the Cell Broadband Engine. Cell users should
use FFTW 3.2.x.
* New convenience functions fftw_alloc_real and fftw_alloc_complex
to use fftw_malloc for real and complex arrays without typecasts
or sizeof.
* New convenience functions fftw_export_wisdom_to_filename and
fftw_import_wisdom_from_filename that export/import wisdom
to a file, which don't require you to open/close the file yourself.
* New function fftw_cost to return FFTW's internal cost metric for
a given plan; thanks to Rhys Ulerich and Nathanael Schaeffer for the
suggestion.
* The --enable-sse2 configure flag now works in both double and single
precision (and is equivalent to --enable-sse in the latter case).
* Remove --enable-portable-binary flag: we new produce portable binaries
by default.
* Remove the automatic detection of native architecture flag for gcc
which was introduced in fftw-3.1, since new gcc supports -mtune=native.
Remove the --with-gcc-arch flag; if you want to specify a particlar
arch to configure, use ./configure CC="gcc -mtune=...".
* --with-our-malloc16 configure flag is now renamed --with-our-malloc.
* Fixed build problem failure when srand48 declaration is missing;
thanks to Ralf Wildenhues for the bug report.
* Fixed bug in fftw_set_timelimit: ensure that a negative timelimit
is equivalent to no timelimit in all cases. Thanks to William Andrew
Burnson for the bug report.
* Fixed stack-overflow problem on OpenBSD caused by using alloca with
too large a buffer.
FFTW 3.2.2
* Improve performance of some copy operations of complex arrays on
x86 machines.
* Add configure flag to disable alloca(), which is broken in mingw64.
* Planning in FFTW_ESTIMATE mode for r2r transforms became slower
between fftw-3.1.3 and 3.2. This regression has now been fixed.
FFTW 3.2.1
* Performance improvements for some multidimensional r2c/c2r transforms;
thanks to Eugene Miloslavsky for his benchmark reports.
* Compile with icc on MacOS X, use better icc compiler flags.
* Compilation fixes for systems where snprintf is defined as a macro;
thanks to Marcus Mae for the bug report.
* Fortran documentation now recommends not using dfftw_execute,
because of reports of problems with various Fortran compilers;
it is better to use dfftw_execute_dft etcetera.
* Some documentation clarifications, e.g. of fact that --enable-openmp
and --enable-threads are mutually exclusive (thanks to Long To),
and document slightly odd behavior of plan_guru_r2r in Fortran
(thanks to Alexander Pozdneev).
* FAQ was accidentally omitted from 3.2 tarball.
* Remove some extraneous (harmless) files accidentally included in
a subdirectory of the 3.2 tarball.
FFTW 3.2
* Worked around apparent glibc bug that leads to rare hangs when freeing
semaphores.
* Fixed segfault due to unaligned access in certain obscure problems
that use SSE and multiple threads.
* MPI transforms not included, as they are still in alpha; the alpha
versions of the MPI transforms have been moved to FFTW 3.3alpha1.
FFTW 3.2alpha3
* Performance improvements for sizes with factors of 5 and 10.
* Documented FFTW_WISDOM_ONLY flag, at the suggestion of Mario
Emmenlauer and Phil Dumont.
* Port Cell code to SDK2.1 (libspe2), as opposed to the old libspe1 code.
* Performance improvements in Cell code for N < 32k, thanks to Jan Wagner
for the suggestions.
* Cycle counter for Sun x86_64 compiler, and compilation fix in cycle
counter for AIX/xlc (thanks to Jeff Haferman for the bug report).
* Fixed incorrect type prefix in MPI code that prevented wisdom routines
from working in single precision (thanks to Eric A. Borisch for the report).
* Added 'make check' for MPI code (which still fails in a couple corner
cases, but should be much better than in alpha2).
* Many other small fixes.
FFTW 3.2alpha2
* Support for the Cell processor, donated by IBM Research; see README.Cell
and the Cell section of the manual.
* New 64-bit API: for every "plan_guru" function there is a new "plan_guru64"
function with the same semantics, but which takes fftw_iodim64 instead of
fftw_iodim. fftw_iodim64 is the same as fftw_iodim, except that it takes
ptrdiff_t integer types as parameters, which is a 64-bit type on
64-bit machines. This is only useful for specifying very large transforms
on 64-bit machines. (Internally, FFTW uses ptrdiff_t everywhere
regardless of what API you choose.)
* Experimental MPI support. Complex one- and multi-dimensional FFTs,
multi-dimensional r2r, multi-dimensional r2c/c2r transforms, and
distributed transpose operations, with 1d block distributions.
(This is an alpha preview: routines have not been exhaustively
tested, documentation is incomplete, and some functionality is
missing, e.g. Fortran support.) See mpi/README and also the MPI
section of the manual.
* Significantly faster r2c/c2r transforms, especially on machines with SIMD.
* Rewritten multi-threaded support for better performance by
re-using a fixed pool of threads rather than continually
respawning and joining (which nowadays is much slower).
* Support for MIPS paired-single SIMD instructions, donated by
Codesourcery.
* FFTW_WISDOM_ONLY planner flag, to create plan only if wisdom is
available and return NULL otherwise.
* Removed k7 support, which only worked in 32-bit mode and is
becoming obsolete. Use --enable-sse instead.
* Added --with-g77-wrappers configure option to force inclusion
of g77 wrappers, in addition to whatever is needed for the
detected Fortran compilers. This is mainly intended for GNU/Linux
distros switching to gfortran that wish to include both
gfortran and g77 support in FFTW.
* In manual, renamed "guru execute" functions to "new-array execute"
functions, to reduce confusion with the guru planner interface.
(The programming interface is unchanged.)
* Add missing __declspec attribute to threads API functions when compiling
for Windows; thanks to Robert O. Morris for the bug report.
* Fixed missing return value from dfftw_init_threads in Fortran;
thanks to Markus Wetzstein for the bug report.
FFTW 3.1.3
* Bug fix: FFTW computes incorrect results when the user plans both
REDFT11 and RODFT11 transforms of certain sizes. The bug is caused
by incorrect sharing of twiddle-factor tables between the two
transforms, and only occurs when both are used. Thanks to Paul
A. Valiant for the bug report.
FFTW 3.1.2
* Correct bug in configure script: --enable-portable-binary option was ignored!
Thanks to Andrew Salamon for the bug report.
* Threads compilation fix on AIX: prefer xlc_r to cc_r, and don't use
either if we are using gcc. Thanks to Guy Moebs for the bug report.
* Updated FAQ to note that Apple gcc 4.0.1 on MacOS/Intel is broken,
and suggest a workaround. configure script now detects Core/Duo arch.
* Use -maltivec when checking for altivec.h. Fixes Gentoo bug #129304,
thanks to Markus Dittrich.
FFTW 3.1.1
* Performance improvements for Intel EMT64.
* Performance improvements for large-size transforms with SIMD.
* Cycle counter support for Intel icc and Visual C++ on x86-64.
* In fftw-wisdom tool, replaced obsolete --impatient with --measure.
* Fixed compilation failure with AIX/xlc; thanks to Joseph Thomas.
* Windows DLL support for Fortran API (added missing __declspec(dllexport)).
* SSE/SSE2 code works properly (i.e. disables itself) on older 386 and 486
CPUs lacking a CPUID instruction; thanks to Eric Korpela.
FFTW 3.1
* Faster FFTW_ESTIMATE planner.
* New (faster) algorithm for REDFT00/RODFT00 (type-I DCT/DST) of odd size.
* "4-step" algorithm for faster FFTs of very large sizes (> 2^18).
* Faster in-place real-data DFTs (for R2HC and HC2R r2r formats).
* Faster in-place non-square transpositions (FFTW uses these internally
for in-place FFTs, and you can also perform them explicitly using
the guru interface).
* Faster prime-size DFTs: implemented Bluestein's algorithm, as well
as a zero-padded Rader variant to limit recursive use of Rader's algorithm.
* SIMD support for split complex arrays.
* Much faster Altivec/VMX performance.
* New fftw_set_timelimit function to specify a (rough) upper bound to the
planning time (does not affect ESTIMATE mode).
* Removed --enable-3dnow support; use --enable-k7 instead.
* FMA (fused multiply-add) version is now included in "standard" FFTW,
and is enabled with --enable-fma (the default on PowerPC and Itanium).
* Automatic detection of native architecture flag for gcc. New
configure options: --enable-portable-binary and --with-gcc-arch=<arch>,
for people distributing compiled binaries of FFTW (see manual).
* Automatic detection of Altivec under Linux with gcc 3.4 (so that
same binary should work on both Altivec and non-Altivec PowerPCs).
* Compiler-specific tweaks/flags/workarounds for gcc 3.4, xlc, HP/UX,
Solaris/Intel.
* Various documentation clarifications.
* 64-bit clean. (Fixes a bug affecting the split guru planner on
64-bit machines, reported by David Necas.)
* Fixed Debian bug #259612: inadvertent use of SSE instructions on
non-SSE machines (causing a crash) for --enable-sse binaries.
* Fixed bug that caused HC2R transforms to destroy the input in
certain cases, even if the user specified FFTW_PRESERVE_INPUT.
* Fixed bug where wisdom would be lost under rare circumstances,
causing excessive planning time.
* FAQ notes bug in gcc-3.4.[1-3] that causes FFTW to crash with SSE/SSE2.
* Fixed accidentally exported symbol that prohibited simultaneous
linking to double/single multithreaded FFTW (thanks to Alessio Massaro).
* Support Win32 threads under MinGW (thanks to Alessio Massaro).
* Fixed problem with building DLL under Cygwin; thanks to Stephane Fillod.
* Fix build failure if no Fortran compiler is found (thanks to Charles
Radley for the bug report).
* Fixed compilation failure with icc 8.0 and SSE/SSE2. Automatic
detection of icc architecture flag (e.g. -xW).
* Fixed compilation with OpenMP on AIX (thanks to Greg Bauer).
* Fixed compilation failure on x86-64 with gcc (thanks to Orion Poplawski).
* Incorporated patch from FreeBSD ports (FreeBSD does not have memalign,
but its malloc is 16-byte aligned).
* Cycle-counter compilation fixes for Itanium, Alpha, x86-64, Sparc,
MacOS (thanks to Matt Boman, John Bowman, and James A. Treacy for
reports/fixes). Added x86-64 cycle counter for PGI compilers,
courtesy Cristiano Calonaci.
* Fix compilation problem in test program due to C99 conflict.
* Portability fix for import_system_wisdom with djgpp (thanks to Juan
Manuel Guerrero).
* Fixed compilation failure on MacOS 10.3 due to getopt conflict.
* Work around Visual C++ (version 6/7) bug in SSE compilation;
thanks to Eddie Yee for his detailed report.
Changes from FFTW 3.1 beta 2:
* Several minor compilation fixes.
* Eliminate FFTW_TIMELIMIT flag and replace fftw_timelimit global with
fftw_set_timelimit function. Make wisdom work with time-limited plans.
Changes from FFTW 3.1 beta 1:
* Fixes for creating DLLs under Windows; thanks to John Pavel for his feedback.
* Fixed more 64-bit problems, thanks to John Pavel for the bug report.
* Further speed improvements for Altivec/VMX.
* Further speed improvements for non-square transpositions.
* Many minor tweaks.
FFTW 3.0.1
* Some speed improvements in SIMD code.
* --without-cycle-counter option is removed. If no cycle counter is found,
then the estimator is always used. A --with-slow-timer option is provided
to force the use of lower-resolution timers.
* Several fixes for compilation under Visual C++, with help from Stefane Ruel.
* Added x86 cycle counter for Visual C++, with help from Morten Nissov.
* Added S390 cycle counter, courtesy of James Treacy.
* Added missing static keyword that prevented simultaneous linkage
of different-precision versions; thanks to Rasmus Larsen for the bug report.
* Corrected accidental omission of f77_wisdom.f file; thanks to Alan Watson.
* Support -xopenmp flag for SunOS; thanks to John Lou for the bug report.
* Compilation with HP/UX cc requires -Wp,-H128000 flag to increase
preprocessor limits; thanks to Peter Vouras for the bug report.
* Removed non-portable use of 'tempfile' in fftw-wisdom-to-conf script;
thanks to Nicolas Decoster for the patch.
* Added 'make smallcheck' target in tests/ directory, at the request of
James Treacy.
FFTW 3.0
Major goals of this release:
* Speed: often 20% or more faster than FFTW 2.x, even without SIMD (see below).
* Complete rewrite, to make it easier to add new algorithms and transforms.
* New API, to support more general semantics.
Other enhancements:
* SIMD acceleration on supporting CPUs (SSE, SSE2, 3DNow!, and AltiVec).
(With special thanks to Franz Franchetti for many experimental prototypes
and to Stefan Kral for the vectorizing generator from fftwgel.)
* True in-place 1d transforms of large sizes (as well as compressed
twiddle tables for additional memory/cache savings).
* More arbitrary placement of real & imaginary data, e.g. including
interleaved (as in FFTW 2.x) as well as separate real/imag arrays.
* Efficient prime-size transforms of real data.
* Multidimensional transforms can operate on a subset of a larger matrix,
and/or transform selected dimensions of a multidimensional array.
* By popular demand, simultaneous linking to double precision (fftw),
single precision (fftwf), and long-double precision (fftwl) versions
of FFTW is now supported.
* Cycle counters (on all modern CPUs) are exploited to speed planning.
* Efficient transforms of real even/odd arrays, a.k.a. discrete
cosine/sine transforms (types I-IV). (Currently work via pre/post
processing of real transforms, ala FFTPACK, so are not optimal.)
* DHTs (Discrete Hartley Transforms), again via post-processing
of real transforms (and thus suboptimal, for now).
* Support for linking to just those parts of FFTW that you need,
greatly reducing the size of statically linked programs when
only a limited set of transform sizes/types are required.
* Canonical global wisdom file (/etc/fftw/wisdom) on Unix, along
with a command-line tool (fftw-wisdom) to generate/update it.
* Fortran API can be used with both g77 and non-g77 compilers
simultaneously.
* Multi-threaded version has optional OpenMP support.
* Authors' good looks have greatly improved with age.
Changes from 3.0beta3:
* Separate FMA distribution to better exploit fused multiply-add instructions
on PowerPC (and possibly other) architectures.
* Performance improvements via some inlining tweaks.
* fftw_flops now returns double arguments, not int, to avoid overflows
for large sizes.
* Workarounds for automake bugs.
Changes from 3.0beta2:
* The standard REDFT00/RODFT00 (DCT-I/DST-I) algorithm (used in
FFTPACK, NR, etcetera) turns out to have poor numerical accuracy, so
we replaced it with a slower routine that is more accurate.
* The guru planner and execute functions now have two variants, one that
takes complex arguments and one that takes separate real/imag pointers.
* Execute and planner routines now automatically align the stack on x86,
in case the calling program is misaligned.
* README file for test program.
* Fixed bugs in the combination of SIMD with multi-threaded transforms.
* Eliminated internal fftw_threads_init function, which some people were
calling accidentally instead of the fftw_init_threads API function.
* Check for -openmp flag (Intel C compiler) when --enable-openmp is used.
* Support AMD x86-64 SIMD and cycle counter.
* Support SSE2 intrinsics in forthcoming gcc 3.3.
Changes from 3.0beta1:
* Faster in-place 1d transforms of non-power-of-two sizes.
* SIMD improvements for in-place, multi-dimensional, and/or non-FFTW_PATIENT
transforms.
* Added support for hard-coded DCT/DST/DHT codelets of small sizes; the
default distribution only includes hard-coded size-8 DCT-II/III, however.
* Many minor improvements to the manual. Added section on using the
codelet generator to customize and enhance FFTW.
* The default 'make check' should now only take a few minutes; for more
strenuous tests (which may take a day or so), do 'cd tests; make bigcheck'.
* fftw_print_plan is split into fftw_fprint_plan and fftw_print_plan, where
the latter uses stdout.
* Fixed ability to compile with a C++ compiler.
* Fixed support for C99 complex type under glibc.
* Fixed problems with alloca under MinGW, AIX.
* Workaround for gcc/SPARC bug.
* Fixed multi-threaded initialization failure on IRIX due to lack of
user-accessible PTHREAD_SCOPE_SYSTEM there.