Labrador/Desktop_Interface/asyncdft.cpp

154 lines
4.0 KiB
C++

#include "asyncdft.h"
#include <iostream>
#include <math.h>
#include "isobuffer.h"
#define DBG 0
AsyncDFT::AsyncDFT()
{
/*Creating the main thread, which will manage everything*/
stopping = false;
/*Data is not valid until we get n_samples into the window*/
data_valid = false;
/*Samples counter*/
samples_count=0;
/*Initializing time domain window to 0s*/
/*FFTW3 inits*/
fftw_init_threads();
fftw_plan_with_nthreads(omp_get_max_threads() * 2);
#if DBG
std::cout << "Starting with " << omp_get_max_threads() << "threads" << std::endl;
#endif
out_buffer = fftw_alloc_complex(n_samples);
plan = fftw_plan_dft_r2c_1d(n_samples,in_buffer, out_buffer,0);
}
AsyncDFT::~AsyncDFT()
{
#if DBG
stopping = true;
mtx_samples.unlock(); //Unlock thread manager if blocked and waiting for more samples
while (!manager.joinable());
manager.join();
std::cout << "Joined manager thread [DESTRUCTOR]" << std::endl;
#endif
}
void AsyncDFT::threadManager()
{
while(stopping == false) {
/*Calculating DFT if there are new samples, otherwise DFT would be the same*/
if (samples_count >= n_samples) {
mtx_samples.lock();
if (!window.empty()) {
window.pop_front();
}
short tmp = pending_samples.front();
pending_samples.pop();
window.push_back(tmp);
/*Data is now valid*/
data_valid = true;
mtx_samples.unlock();
}
}
}
void AsyncDFT::addSample(short sample)
{
/*Adding to the waiting jobs the sample*/
if (samples_count >= n_samples) {
/*Shifting window by 1 by removing first element and adding an element to the end*/
window.pop_front();
window.push_back(sample);
samples_count = n_samples;
data_valid = true;
} else {
/*Fill the window*/
window.push_back(sample);
}
/*Updating the number of samples*/
samples_count++;
}
QVector<double> AsyncDFT::getPowerSpectrum(QVector<double> input)
{
/*Before doing anything, check if sliding DFT is computable*/
if (data_valid == false) {
throw std::exception();
}
for(int i = 0; i < n_samples; i++) {
in_buffer[i] = input[i];
}
/*Zero-padding for better resolution of DFT*/
QVector<double> amplitude(n_samples/2+1,0);
maximum = -1;
/*Executing FFTW plan*/
fftw_execute(plan);
amplitude[0] = sqrt(out_buffer[0][0]*out_buffer[0][0] + out_buffer[0][1]*out_buffer[0][1]); /* DC component */
maximum = (amplitude[0] > maximum ) ? amplitude[0] : maximum;
for (int k = 1; k < (n_samples+1)/2; ++k) { /* (k < N/2 rounded up) */
amplitude[k] = sqrt(out_buffer[k][0]*out_buffer[k][0] + out_buffer[k][1]*out_buffer[k][1]);
maximum = (amplitude[k] > maximum ) ? amplitude[k] : maximum;
}
if (n_samples % 2 == 0) { /* N is even */
amplitude[n_samples/2] = sqrt(out_buffer[n_samples/2][0]*out_buffer[n_samples/2][0]); /* Nyquist freq. */
maximum = (amplitude[n_samples/2] > maximum ) ? amplitude[n_samples/2] : maximum;
}
return amplitude;
}
QVector<double> AsyncDFT::getFrequenciyWindow(int samplesPerSeconds)
{
double delta_freq = ((double) samplesPerSeconds)/ ((double) n_samples);
QVector<double> f(n_samples/2 + 1);
for (int i = 0; i < n_samples/2 + 1; i++) {
f[i] = i*delta_freq;
}
return f;
}
std::unique_ptr<short[]> AsyncDFT::getWindow()
{
std::unique_ptr<short[]> readData = std::make_unique<short[]>(n_samples);
int i = 0;
for (auto& item : window) {
readData[i] = item;
i++;
}
return readData;
}
QVector<double> AsyncDFT::normalizeDFT(double e_maximum, QVector<double> dft)
{
double u_maximum;
/*Normalize with the greater maximum*/
if (this->maximum > e_maximum) {
u_maximum = this->maximum;
} else {
u_maximum = e_maximum;
}
for(int i=0; i < dft.size(); i++) {
dft[i] /= u_maximum;
dft[i] *= 100;
}
return dft;
}