Tasmota/lib/IRremoteESP8266-2.6.4/src/IRutils.cpp

953 lines
28 KiB
C++
Raw Normal View History

// Copyright 2017 David Conran
#include "IRutils.h"
#ifndef UNIT_TEST
#include <Arduino.h>
#endif
#define __STDC_LIMIT_MACROS
#include <stdint.h>
#include <string.h>
#include <algorithm>
#ifndef ARDUINO
#include <string>
#endif
#include "IRrecv.h"
#include "IRremoteESP8266.h"
// Reverse the order of the requested least significant nr. of bits.
// Args:
// input: Bit pattern/integer to reverse.
// nbits: Nr. of bits to reverse.
// Returns:
// The reversed bit pattern.
uint64_t reverseBits(uint64_t input, uint16_t nbits) {
if (nbits <= 1) return input; // Reversing <= 1 bits makes no change at all.
// Cap the nr. of bits to rotate to the max nr. of bits in the input.
nbits = std::min(nbits, (uint16_t)(sizeof(input) * 8));
uint64_t output = 0;
for (uint16_t i = 0; i < nbits; i++) {
output <<= 1;
output |= (input & 1);
input >>= 1;
}
// Merge any remaining unreversed bits back to the top of the reversed bits.
return (input << nbits) | output;
}
// Convert a uint64_t (unsigned long long) to a string.
// Arduino String/toInt/Serial.print() can't handle printing 64 bit values.
//
// Args:
// input: The value to print
// base: The output base.
// Returns:
// A string representation of the integer.
// Note: Based on Arduino's Print::printNumber()
String uint64ToString(uint64_t input, uint8_t base) {
String result = "";
// prevent issues if called with base <= 1
if (base < 2) base = 10;
// Check we have a base that we can actually print.
// i.e. [0-9A-Z] == 36
if (base > 36) base = 10;
// Reserve some string space to reduce fragmentation.
// 16 bytes should store a uint64 in hex text which is the likely worst case.
// 64 bytes would be the worst case (base 2).
result.reserve(16);
do {
char c = input % base;
input /= base;
if (c < 10)
c += '0';
else
c += 'A' - 10;
result = c + result;
} while (input);
return result;
}
#ifdef ARDUINO
// Print a uint64_t/unsigned long long to the Serial port
// Serial.print() can't handle printing long longs. (uint64_t)
//
// Args:
// input: The value to print
// base: The output base.
void serialPrintUint64(uint64_t input, uint8_t base) {
Serial.print(uint64ToString(input, base));
}
#endif
// Convert a C-style str to a decode_type_t
//
// Args:
// str: A C-style string containing a protocol name or number.
// Returns:
// A decode_type_t enum.
decode_type_t strToDecodeType(const char * const str) {
if (!strcasecmp(str, "UNKNOWN"))
return decode_type_t::UNKNOWN;
else if (!strcasecmp(str, "UNUSED"))
return decode_type_t::UNUSED;
else if (!strcasecmp(str, "AIWA_RC_T501"))
return decode_type_t::AIWA_RC_T501;
else if (!strcasecmp(str, "ARGO"))
return decode_type_t::ARGO;
else if (!strcasecmp(str, "CARRIER_AC"))
return decode_type_t::CARRIER_AC;
else if (!strcasecmp(str, "COOLIX"))
return decode_type_t::COOLIX;
else if (!strcasecmp(str, "DAIKIN"))
return decode_type_t::DAIKIN;
else if (!strcasecmp(str, "DAIKIN128"))
return decode_type_t::DAIKIN128;
else if (!strcasecmp(str, "DAIKIN160"))
return decode_type_t::DAIKIN160;
else if (!strcasecmp(str, "DAIKIN176"))
return decode_type_t::DAIKIN176;
else if (!strcasecmp(str, "DAIKIN2"))
return decode_type_t::DAIKIN2;
else if (!strcasecmp(str, "DAIKIN216"))
return decode_type_t::DAIKIN216;
else if (!strcasecmp(str, "DENON"))
return decode_type_t::DENON;
else if (!strcasecmp(str, "DISH"))
return decode_type_t::DISH;
else if (!strcasecmp(str, "ELECTRA_AC"))
return decode_type_t::ELECTRA_AC;
else if (!strcasecmp(str, "FUJITSU_AC"))
return decode_type_t::FUJITSU_AC;
else if (!strcasecmp(str, "GICABLE"))
return decode_type_t::GICABLE;
else if (!strcasecmp(str, "GLOBALCACHE"))
return decode_type_t::GLOBALCACHE;
else if (!strcasecmp(str, "GOODWEATHER"))
return decode_type_t::GOODWEATHER;
else if (!strcasecmp(str, "GREE"))
return decode_type_t::GREE;
else if (!strcasecmp(str, "HAIER_AC"))
return decode_type_t::HAIER_AC;
else if (!strcasecmp(str, "HAIER_AC_YRW02"))
return decode_type_t::HAIER_AC_YRW02;
else if (!strcasecmp(str, "HITACHI_AC"))
return decode_type_t::HITACHI_AC;
else if (!strcasecmp(str, "HITACHI_AC1"))
return decode_type_t::HITACHI_AC1;
else if (!strcasecmp(str, "HITACHI_AC2"))
return decode_type_t::HITACHI_AC2;
else if (!strcasecmp(str, "INAX"))
return decode_type_t::INAX;
else if (!strcasecmp(str, "JVC"))
return decode_type_t::JVC;
else if (!strcasecmp(str, "KELVINATOR"))
return decode_type_t::KELVINATOR;
else if (!strcasecmp(str, "LEGOPF"))
return decode_type_t::LEGOPF;
else if (!strcasecmp(str, "LG"))
return decode_type_t::LG;
else if (!strcasecmp(str, "LG2"))
return decode_type_t::LG2;
else if (!strcasecmp(str, "LASERTAG"))
return decode_type_t::LASERTAG;
else if (!strcasecmp(str, "LUTRON"))
return decode_type_t::LUTRON;
else if (!strcasecmp(str, "MAGIQUEST"))
return decode_type_t::MAGIQUEST;
else if (!strcasecmp(str, "MIDEA"))
return decode_type_t::MIDEA;
else if (!strcasecmp(str, "MITSUBISHI"))
return decode_type_t::MITSUBISHI;
else if (!strcasecmp(str, "MITSUBISHI2"))
return decode_type_t::MITSUBISHI2;
else if (!strcasecmp(str, "MITSUBISHI_AC"))
return decode_type_t::MITSUBISHI_AC;
else if (!strcasecmp(str, "MITSUBISHI_HEAVY_88"))
return decode_type_t::MITSUBISHI_HEAVY_88;
else if (!strcasecmp(str, "MITSUBISHI_HEAVY_152"))
return decode_type_t::MITSUBISHI_HEAVY_152;
else if (!strcasecmp(str, "MWM"))
return decode_type_t::MWM;
else if (!strcasecmp(str, "NEOCLIMA"))
return decode_type_t::NEOCLIMA;
else if (!strcasecmp(str, "NEC"))
return decode_type_t::NEC;
else if (!strcasecmp(str, "NEC_LIKE") ||
!strcasecmp(str, "NEC (NON-STRICT)"))
return decode_type_t::NEC_LIKE;
else if (!strcasecmp(str, "NIKAI"))
return decode_type_t::NIKAI;
else if (!strcasecmp(str, "PANASONIC"))
return decode_type_t::PANASONIC;
else if (!strcasecmp(str, "PANASONIC_AC"))
return decode_type_t::PANASONIC_AC;
else if (!strcasecmp(str, "PIONEER"))
return decode_type_t::PIONEER;
else if (!strcasecmp(str, "PRONTO"))
return decode_type_t::PRONTO;
else if (!strcasecmp(str, "RAW"))
return decode_type_t::RAW;
else if (!strcasecmp(str, "RC5"))
return decode_type_t::RC5;
else if (!strcasecmp(str, "RC5X"))
return decode_type_t::RC5X;
else if (!strcasecmp(str, "RC6"))
return decode_type_t::RC6;
else if (!strcasecmp(str, "RCMM"))
return decode_type_t::RCMM;
else if (!strcasecmp(str, "SAMSUNG"))
return decode_type_t::SAMSUNG;
else if (!strcasecmp(str, "SAMSUNG36"))
return decode_type_t::SAMSUNG36;
else if (!strcasecmp(str, "SAMSUNG_AC"))
return decode_type_t::SAMSUNG_AC;
else if (!strcasecmp(str, "SANYO"))
return decode_type_t::SANYO;
else if (!strcasecmp(str, "SANYO_LC7461"))
return decode_type_t::SANYO_LC7461;
else if (!strcasecmp(str, "SHARP"))
return decode_type_t::SHARP;
else if (!strcasecmp(str, "SHARP_AC"))
return decode_type_t::SHARP_AC;
else if (!strcasecmp(str, "SHERWOOD"))
return decode_type_t::SHERWOOD;
else if (!strcasecmp(str, "SONY"))
return decode_type_t::SONY;
else if (!strcasecmp(str, "TCL112AC"))
return decode_type_t::TCL112AC;
else if (!strcasecmp(str, "TECO"))
return decode_type_t::TECO;
else if (!strcasecmp(str, "TOSHIBA_AC"))
return decode_type_t::TOSHIBA_AC;
else if (!strcasecmp(str, "TROTEC"))
return decode_type_t::TROTEC;
else if (!strcasecmp(str, "VESTEL_AC"))
return decode_type_t::VESTEL_AC;
else if (!strcasecmp(str, "WHIRLPOOL_AC"))
return decode_type_t::WHIRLPOOL_AC;
else if (!strcasecmp(str, "WHYNTER"))
return decode_type_t::WHYNTER;
// Handle integer values of the type by converting to a string and back again.
decode_type_t result = strToDecodeType(
typeToString((decode_type_t)atoi(str)).c_str());
if (result > 0)
return result;
else
return decode_type_t::UNKNOWN;
}
// Convert a protocol type (enum etc) to a human readable string.
// Args:
// protocol: Nr. (enum) of the protocol.
// isRepeat: A flag indicating if it is a repeat message of the protocol.
// Returns:
// A string containing the protocol name.
String typeToString(const decode_type_t protocol, const bool isRepeat) {
String result = "";
switch (protocol) {
case UNUSED:
result = F("UNUSED");
break;
case AIWA_RC_T501:
result = F("AIWA_RC_T501");
break;
case ARGO:
result = F("ARGO");
break;
case CARRIER_AC:
result = F("CARRIER_AC");
break;
case COOLIX:
result = F("COOLIX");
break;
case DAIKIN:
result = F("DAIKIN");
break;
case DAIKIN128:
result = F("DAIKIN128");
break;
case DAIKIN160:
result = F("DAIKIN160");
break;
case DAIKIN176:
result = F("DAIKIN176");
break;
case DAIKIN2:
result = F("DAIKIN2");
break;
case DAIKIN216:
result = F("DAIKIN216");
break;
case DENON:
result = F("DENON");
break;
case DISH:
result = F("DISH");
break;
case ELECTRA_AC:
result = F("ELECTRA_AC");
break;
case FUJITSU_AC:
result = F("FUJITSU_AC");
break;
case GICABLE:
result = F("GICABLE");
break;
case GLOBALCACHE:
result = F("GLOBALCACHE");
break;
case GOODWEATHER:
result = F("GOODWEATHER");
break;
case GREE:
result = F("GREE");
break;
case HAIER_AC:
result = F("HAIER_AC");
break;
case HAIER_AC_YRW02:
result = F("HAIER_AC_YRW02");
break;
case HITACHI_AC:
result = F("HITACHI_AC");
break;
case HITACHI_AC1:
result = F("HITACHI_AC1");
break;
case HITACHI_AC2:
result = F("HITACHI_AC2");
break;
case INAX:
result = F("INAX");
break;
case JVC:
result = F("JVC");
break;
case KELVINATOR:
result = F("KELVINATOR");
break;
case LEGOPF:
result = F("LEGOPF");
break;
case LG:
result = F("LG");
break;
case LG2:
result = F("LG2");
break;
case LASERTAG:
result = F("LASERTAG");
break;
case LUTRON:
result = F("LUTRON");
break;
case MAGIQUEST:
result = F("MAGIQUEST");
break;
case MIDEA:
result = F("MIDEA");
break;
case MITSUBISHI:
result = F("MITSUBISHI");
break;
case MITSUBISHI2:
result = F("MITSUBISHI2");
break;
case MITSUBISHI_AC:
result = F("MITSUBISHI_AC");
break;
case MITSUBISHI_HEAVY_88:
result = F("MITSUBISHI_HEAVY_88");
break;
case MITSUBISHI_HEAVY_152:
result = F("MITSUBISHI_HEAVY_152");
break;
case MWM:
result = F("MWM");
break;
case NEOCLIMA:
result = F("NEOCLIMA");
break;
case NEC:
result = F("NEC");
break;
case NEC_LIKE:
result = F("NEC (non-strict)");
break;
case NIKAI:
result = F("NIKAI");
break;
case PANASONIC:
result = F("PANASONIC");
break;
case PANASONIC_AC:
result = F("PANASONIC_AC");
break;
case PIONEER:
result = F("PIONEER");
break;
case PRONTO:
result = F("PRONTO");
break;
case RAW:
result = F("RAW");
break;
case RC5:
result = F("RC5");
break;
case RC5X:
result = F("RC5X");
break;
case RC6:
result = F("RC6");
break;
case RCMM:
result = F("RCMM");
break;
case SAMSUNG:
result = F("SAMSUNG");
break;
case SAMSUNG36:
result = F("SAMSUNG36");
break;
case SAMSUNG_AC:
result = F("SAMSUNG_AC");
break;
case SANYO:
result = F("SANYO");
break;
case SANYO_LC7461:
result = F("SANYO_LC7461");
break;
case SHARP:
result = F("SHARP");
break;
case SHARP_AC:
result = F("SHARP_AC");
break;
case SHERWOOD:
result = F("SHERWOOD");
break;
case SONY:
result = F("SONY");
break;
case TCL112AC:
result = F("TCL112AC");
break;
case TECO:
result = F("TECO");
break;
case TOSHIBA_AC:
result = F("TOSHIBA_AC");
break;
case TROTEC:
result = F("TROTEC");
break;
case VESTEL_AC:
result = F("VESTEL_AC");
break;
case WHIRLPOOL_AC:
result = F("WHIRLPOOL_AC");
break;
case WHYNTER:
result = F("WHYNTER");
break;
case UNKNOWN:
default:
result = F("UNKNOWN");
break;
}
if (isRepeat) result += F(" (Repeat)");
return result;
}
// Does the given protocol use a complex state as part of the decode?
bool hasACState(const decode_type_t protocol) {
switch (protocol) {
case ARGO:
case DAIKIN:
case DAIKIN128:
case DAIKIN160:
case DAIKIN176:
case DAIKIN2:
case DAIKIN216:
case ELECTRA_AC:
case FUJITSU_AC:
case GREE:
case HAIER_AC:
case HAIER_AC_YRW02:
case HITACHI_AC:
case HITACHI_AC1:
case HITACHI_AC2:
case KELVINATOR:
case MITSUBISHI_AC:
case MITSUBISHI_HEAVY_88:
case MITSUBISHI_HEAVY_152:
case MWM:
case NEOCLIMA:
case PANASONIC_AC:
case SAMSUNG_AC:
case SHARP_AC:
case TCL112AC:
case TOSHIBA_AC:
case TROTEC:
case WHIRLPOOL_AC:
return true;
default:
return false;
}
}
// Return the corrected length of a 'raw' format array structure
// after over-large values are converted into multiple entries.
// Args:
// results: A ptr to a decode result.
// Returns:
// A uint16_t containing the length.
uint16_t getCorrectedRawLength(const decode_results * const results) {
uint16_t extended_length = results->rawlen - 1;
for (uint16_t i = 0; i < results->rawlen - 1; i++) {
uint32_t usecs = results->rawbuf[i] * kRawTick;
// Add two extra entries for multiple larger than UINT16_MAX it is.
extended_length += (usecs / (UINT16_MAX + 1)) * 2;
}
return extended_length;
}
// Return a string containing the key values of a decode_results structure
// in a C/C++ code style format.
String resultToSourceCode(const decode_results * const results) {
String output = "";
// Reserve some space for the string to reduce heap fragmentation.
output.reserve(1536); // 1.5KB should cover most cases.
// Start declaration
output += F("uint16_t "); // variable type
output += F("rawData["); // array name
output += uint64ToString(getCorrectedRawLength(results), 10);
// array size
output += F("] = {"); // Start declaration
// Dump data
for (uint16_t i = 1; i < results->rawlen; i++) {
uint32_t usecs;
for (usecs = results->rawbuf[i] * kRawTick; usecs > UINT16_MAX;
usecs -= UINT16_MAX) {
output += uint64ToString(UINT16_MAX);
if (i % 2)
output += F(", 0, ");
else
output += F(", 0, ");
}
output += uint64ToString(usecs, 10);
if (i < results->rawlen - 1)
output += F(", "); // ',' not needed on the last one
if (i % 2 == 0) output += ' '; // Extra if it was even.
}
// End declaration
output += F("};");
// Comment
output += F(" // ");
output += typeToString(results->decode_type, results->repeat);
// Only display the value if the decode type doesn't have an A/C state.
if (!hasACState(results->decode_type))
output += ' ' + uint64ToString(results->value, 16);
output += F("\n");
// Now dump "known" codes
if (results->decode_type != UNKNOWN) {
if (hasACState(results->decode_type)) {
#if DECODE_AC
uint16_t nbytes = results->bits / 8;
output += F("uint8_t state[");
output += uint64ToString(nbytes);
output += F("] = {");
for (uint16_t i = 0; i < nbytes; i++) {
output += F("0x");
if (results->state[i] < 0x10) output += '0';
output += uint64ToString(results->state[i], 16);
if (i < nbytes - 1) output += F(", ");
}
output += F("};\n");
#endif // DECODE_AC
} else {
// Simple protocols
// Some protocols have an address &/or command.
// NOTE: It will ignore the atypical case when a message has been
// decoded but the address & the command are both 0.
if (results->address > 0 || results->command > 0) {
output += F("uint32_t address = 0x");
output += uint64ToString(results->address, 16);
output += F(";\n");
output += F("uint32_t command = 0x");
output += uint64ToString(results->command, 16);
output += F(";\n");
}
// Most protocols have data
output += F("uint64_t data = 0x");
output += uint64ToString(results->value, 16);
output += F(";\n");
}
}
return output;
}
// Dump out the decode_results structure.
//
String resultToTimingInfo(const decode_results * const results) {
String output = "";
String value = "";
// Reserve some space for the string to reduce heap fragmentation.
output.reserve(2048); // 2KB should cover most cases.
value.reserve(6); // Max value should be 2^17 = 131072
output += F("Raw Timing[");
output += uint64ToString(results->rawlen - 1, 10);
output += F("]:\n");
for (uint16_t i = 1; i < results->rawlen; i++) {
if (i % 2 == 0)
output += '-'; // even
else
output += F(" +"); // odd
value = uint64ToString(results->rawbuf[i] * kRawTick);
// Space pad the value till it is at least 6 chars long.
while (value.length() < 6) value = ' ' + value;
output += value;
if (i < results->rawlen - 1)
output += F(", "); // ',' not needed for last one
if (!(i % 8)) output += '\n'; // Newline every 8 entries.
}
output += '\n';
return output;
}
// Convert the decode_results structure's value/state to simple hexadecimal.
//
String resultToHexidecimal(const decode_results * const result) {
String output = "";
// Reserve some space for the string to reduce heap fragmentation.
output.reserve(2 * kStateSizeMax); // Should cover worst cases.
if (hasACState(result->decode_type)) {
#if DECODE_AC
for (uint16_t i = 0; result->bits > i * 8; i++) {
if (result->state[i] < 0x10) output += '0'; // Zero pad
output += uint64ToString(result->state[i], 16);
}
#endif // DECODE_AC
} else {
output += uint64ToString(result->value, 16);
}
return output;
}
// Dump out the decode_results structure.
//
String resultToHumanReadableBasic(const decode_results * const results) {
String output = "";
// Reserve some space for the string to reduce heap fragmentation.
output.reserve(2 * kStateSizeMax + 50); // Should cover most cases.
// Show Encoding standard
output += F("Encoding : ");
output += typeToString(results->decode_type, results->repeat);
output += '\n';
// Show Code & length
output += F("Code : ");
output += resultToHexidecimal(results);
output += F(" (");
output += uint64ToString(results->bits);
output += F(" bits)\n");
return output;
}
// Convert a decode_results into an array suitable for `sendRaw()`.
// Args:
// decode: A pointer to an IR decode_results structure that contains a mesg.
// Returns:
// A pointer to a dynamically allocated uint16_t sendRaw compatible array.
// Note:
// Result needs to be delete[]'ed/free()'ed (deallocated) after use by caller.
uint16_t* resultToRawArray(const decode_results * const decode) {
uint16_t *result = new uint16_t[getCorrectedRawLength(decode)];
if (result != NULL) { // The memory was allocated successfully.
// Convert the decode data.
uint16_t pos = 0;
for (uint16_t i = 1; i < decode->rawlen; i++) {
uint32_t usecs = decode->rawbuf[i] * kRawTick;
while (usecs > UINT16_MAX) { // Keep truncating till it fits.
result[pos++] = UINT16_MAX;
result[pos++] = 0; // A 0 in a sendRaw() array basically means skip.
usecs -= UINT16_MAX;
}
result[pos++] = usecs;
}
}
return result;
}
uint8_t sumBytes(const uint8_t * const start, const uint16_t length,
const uint8_t init) {
uint8_t checksum = init;
const uint8_t *ptr;
for (ptr = start; ptr - start < length; ptr++) checksum += *ptr;
return checksum;
}
uint8_t xorBytes(const uint8_t * const start, const uint16_t length,
const uint8_t init) {
uint8_t checksum = init;
const uint8_t *ptr;
for (ptr = start; ptr - start < length; ptr++) checksum ^= *ptr;
return checksum;
}
// Count the number of bits of a certain type.
// Args:
// start: Ptr to the start of data to count bits in.
// length: How many bytes to count.
// ones: Count the binary 1 bits. False for counting the 0 bits.
// init: Start the counting from this value.
// Returns:
// Nr. of bits found.
uint16_t countBits(const uint8_t * const start, const uint16_t length,
const bool ones, const uint16_t init) {
uint16_t count = init;
for (uint16_t offset = 0; offset < length; offset++)
for (uint8_t currentbyte = *(start + offset);
currentbyte;
currentbyte >>= 1)
if (currentbyte & 1) count++;
if (ones || length == 0)
return count;
else
return (length * 8) - count;
}
// Count the number of bits of a certain type.
// Args:
// data: The value you want bits counted for, starting from the LSB.
// length: How many bits to count.
// ones: Count the binary 1 bits. False for counting the 0 bits.
// init: Start the counting from this value.
// Returns:
// Nr. of bits found.
uint16_t countBits(const uint64_t data, const uint8_t length, const bool ones,
const uint16_t init) {
uint16_t count = init;
uint8_t bitsSoFar = length;
for (uint64_t remainder = data; remainder && bitsSoFar;
remainder >>= 1, bitsSoFar--)
if (remainder & 1) count++;
if (ones || length == 0)
return count;
else
return length - count;
}
uint64_t invertBits(const uint64_t data, const uint16_t nbits) {
// No change if we are asked to invert no bits.
if (nbits == 0) return data;
uint64_t result = ~data;
// If we are asked to invert all the bits or more than we have, it's simple.
if (nbits >= sizeof(data) * 8) return result;
// Mask off any unwanted bits and return the result.
return (result & ((1ULL << nbits) - 1));
}
float celsiusToFahrenheit(const float deg) { return (deg * 9.0) / 5.0 + 32.0; }
float fahrenheitToCelsius(const float deg) { return (deg - 32.0) * 5.0 / 9.0; }
namespace irutils {
String addLabeledString(const String value, const String label,
const bool precomma) {
String result = "";
if (precomma) result += F(", ");
result += label;
result += F(": ");
return result + value;
}
String addBoolToString(const bool value, const String label,
const bool precomma) {
return addLabeledString((value ? F("On") : F("Off")), label, precomma);
}
String addIntToString(const uint16_t value, const String label,
const bool precomma) {
return addLabeledString(uint64ToString(value), label, precomma);
}
String addTempToString(const uint16_t degrees, const bool celsius,
const bool precomma) {
String result = addIntToString(degrees, F("Temp"), precomma);
result += celsius ? 'C' : 'F';
return result;
}
String addModeToString(const uint8_t mode, const uint8_t automatic,
const uint8_t cool, const uint8_t heat,
const uint8_t dry, const uint8_t fan) {
String result = addIntToString(mode, F("Mode"));
result += F(" (");
if (mode == automatic) result += F("AUTO");
else if (mode == cool) result += F("COOL");
else if (mode == heat) result += F("HEAT");
else if (mode == dry) result += F("DRY");
else if (mode == fan) result += F("FAN");
else
result += F("UNKNOWN");
return result + ')';
}
String addFanToString(const uint8_t speed, const uint8_t high,
const uint8_t low, const uint8_t automatic,
const uint8_t quiet, const uint8_t medium) {
String result = addIntToString(speed, F("Fan"));
result += F(" (");
if (speed == high) result += F("High");
else if (speed == low) result += F("Low");
else if (speed == automatic) result += F("Auto");
else if (speed == quiet) result += F("Quiet");
else if (speed == medium) result += F("Medium");
else
result += F("UNKNOWN");
return result + ')';
}
// Escape any special HTML (unsafe) characters in a string. e.g. anti-XSS.
// Args:
// unescaped: A string containing text to make HTML safe.
// Returns:
// A string that is HTML safe.
String htmlEscape(const String unescaped) {
String result = "";
uint16_t ulen = unescaped.length();
result.reserve(ulen); // The result will be at least the size of input.
for (size_t i = 0; i < ulen; i++) {
char c = unescaped[i];
switch (c) {
// ';!-"<>=&#{}() are all unsafe.
case '\'':
result += F("&apos;");
break;
case ';':
result += F("&semi;");
break;
case '!':
result += F("&excl;");
break;
case '-':
result += F("&dash;");
break;
case '\"':
result += F("&quot;");
break;
case '<':
result += F("&lt;");
break;
case '>':
result += F("&gt;");
break;
case '=':
result += F("&#equals;");
break;
case '&':
result += F("&amp;");
break;
case '#':
result += F("&num;");
break;
case '{':
result += F("&lcub;");
break;
case '}':
result += F("&rcub;");
break;
case '(':
result += F("&lpar;");
break;
case ')':
result += F("&rpar;");
break;
default:
result += c;
}
}
return result;
}
String msToString(uint32_t const msecs) {
uint32_t totalseconds = msecs / 1000;
if (totalseconds == 0) return F("Now");
// Note: uint32_t can only hold up to 45 days, so uint8_t is safe.
uint8_t days = totalseconds / (60 * 60 * 24);
uint8_t hours = (totalseconds / (60 * 60)) % 24;
uint8_t minutes = (totalseconds / 60) % 60;
uint8_t seconds = totalseconds % 60;
String result = "";
if (days) {
result += uint64ToString(days) + F(" day");
if (days > 1) result += 's';
}
if (hours) {
if (result.length()) result += ' ';
result += uint64ToString(hours) + F(" hour");
if (hours > 1) result += 's';
}
if (minutes) {
if (result.length()) result += ' ';
result += uint64ToString(minutes) + F(" minute");
if (minutes > 1) result += 's';
}
if (seconds) {
if (result.length()) result += ' ';
result += uint64ToString(seconds) + F(" second");
if (seconds > 1) result += 's';
}
return result;
}
String minsToString(const uint16_t mins) {
String result = "";
result.reserve(5); // 23:59 is the typical worst case.
if (mins / 60 < 10) result += '0'; // Zero pad the hours
result += uint64ToString(mins / 60) + ':';
if (mins % 60 < 10) result += '0'; // Zero pad the minutes.
result += uint64ToString(mins % 60);
return result;
}
// Sum all the nibbles together in a series of bytes.
// Args:
// start: PTR to the start of the bytes.
// length: Nr of bytes to sum the nibbles of.
// init: Starting value of the sum.
// Returns:
// A uint8_t sum of all the nibbles inc the init.
uint8_t sumNibbles(const uint8_t * const start, const uint16_t length,
const uint8_t init) {
uint8_t sum = init;
const uint8_t *ptr;
for (ptr = start; ptr - start < length; ptr++)
sum += (*ptr >> 4) + (*ptr & 0xF);
return sum;
}
uint8_t bcdToUint8(const uint8_t bcd) {
if (bcd > 0x99) return 255; // Too big.
return (bcd >> 4) * 10 + (bcd & 0xF);
}
uint8_t uint8ToBcd(const uint8_t integer) {
if (integer > 99) return 255; // Too big.
return ((integer / 10) << 4) + (integer % 10);
}
} // namespace irutils