Tasmota/lib/lib_i2c/mlx90640-library/MLX90640_API.cpp

1643 lines
43 KiB
C++
Raw Normal View History

2020-10-25 12:59:04 +00:00
/**
* @copyright (C) 2017 Melexis N.V.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include <MLX90640_API.h>
#include <math.h>
#include <Wire.h>
void ExtractVDDParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
void ExtractPTATParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
void ExtractGainParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
void ExtractTgcParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
void ExtractResolutionParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
void ExtractKsTaParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
void ExtractKsToParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
void ExtractAlphaParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
void ExtractOffsetParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
void ExtractKtaPixelParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
void ExtractKvPixelParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
void ExtractCPParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
void ExtractCILCParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
int ExtractDeviatingPixels(uint16_t *eeData, paramsMLX90640 *mlx90640);
int CheckAdjacentPixels(uint16_t pix1, uint16_t pix2);
float GetMedian(float *values, int n);
int IsPixelBad(uint16_t pixel,paramsMLX90640 *params);
int ValidateFrameData(uint16_t *frameData);
int ValidateAuxData(uint16_t *auxData);
int MLX90640_I2CRead(uint8_t addr, uint32_t reg, uint16_t len, uint16_t *reg_data);
int MLX90640_I2CWrite(uint8_t _deviceAddress, unsigned int writeAddress, uint16_t data);
// I2C
#ifndef I2C_BUFFER_LENGTH
#define I2C_BUFFER_LENGTH 128
#endif
2020-10-25 12:59:04 +00:00
int MLX90640_I2CRead(uint8_t addr, uint32_t reg, uint16_t len, uint16_t *reg_data){
int bytesRemaining = len * 2;
int dataSpot = 0; //Start at beginning of array
while (bytesRemaining > 0)
{
Wire.beginTransmission(addr);
Wire.write(reg >> 8); //MSB
Wire.write(reg & 0xFF); //LSB
if (Wire.endTransmission(false) != 0) //Do not release bus
{
return (0); //Sensor did not ACK
}
int numberOfBytesToRead = bytesRemaining;
if (numberOfBytesToRead > I2C_BUFFER_LENGTH) numberOfBytesToRead = I2C_BUFFER_LENGTH;
Wire.requestFrom((int)addr, numberOfBytesToRead);
if (Wire.available())
{
for (uint32_t x = 0 ; x < numberOfBytesToRead / 2; x++)
{
reg_data[dataSpot] = Wire.read() << 8; //MSB
reg_data[dataSpot] |= Wire.read(); //LSB
dataSpot++;
}
}
bytesRemaining -= numberOfBytesToRead;
reg += numberOfBytesToRead / 2;
}
return (0); //Success
}
int MLX90640_I2CWrite(uint8_t _deviceAddress, unsigned int writeAddress, uint16_t data)
{
Wire.beginTransmission((uint8_t)_deviceAddress);
Wire.write(writeAddress >> 8); //MSB
Wire.write(writeAddress & 0xFF); //LSB
Wire.write(data >> 8); //MSB
Wire.write(data & 0xFF); //LSB
if (Wire.endTransmission() != 0)
{
//Sensor did not ACK
return (-1);
}
uint16_t dataCheck;
MLX90640_I2CRead(_deviceAddress, writeAddress, 1, &dataCheck);
if (dataCheck != data)
{
return -2;
}
return (0); //Success
}
int MLX90640_DumpEE(uint8_t slaveAddr, uint16_t *eeData)
{
return MLX90640_I2CRead(slaveAddr, 0x2400, 832, eeData);
}
int MLX90640_SynchFrame(uint8_t slaveAddr)
{
uint16_t dataReady = 0;
uint16_t statusRegister;
int error = 1;
error = MLX90640_I2CWrite(slaveAddr, 0x8000, 0x0030);
if(error == -1)
{
return error;
}
while(dataReady == 0)
{
error = MLX90640_I2CRead(slaveAddr, 0x8000, 1, &statusRegister);
if(error != 0)
{
return error;
}
dataReady = statusRegister & 0x0008;
}
return 0;
}
// int MLX90640_TriggerMeasurement(uint8_t slaveAddr) // ATM not used in Tasmota
// {
// int error = 1;
// uint16_t ctrlReg;
// error = MLX90640_I2CRead(slaveAddr, 0x800D, 1, &ctrlReg);
// if ( error != 0)
// {
// return error;
// }
// ctrlReg |= 0x8000;
// error = MLX90640_I2CWrite(slaveAddr, 0x800D, ctrlReg);
// if ( error != 0)
// {
// return error;
// }
// // error = MLX90640_I2CGeneralReset();
// // if ( error != 0)
// // {
// // return error;
// // }
// error = MLX90640_I2CRead(slaveAddr, 0x800D, 1, &ctrlReg);
// if ( error != 0)
// {
// return error;
// }
// if ((ctrlReg & 0x8000) != 0)
// {
// return -9;
// }
// return 0;
// }
int MLX90640_GetFrameData(uint8_t slaveAddr, uint16_t *frameData)
{
uint16_t dataReady = 0;
uint16_t controlRegister1;
uint16_t statusRegister;
int error = 1;
uint16_t data[64];
uint8_t cnt = 0;
while(dataReady == 0)
{
error = MLX90640_I2CRead(slaveAddr, 0x8000, 1, &statusRegister);
if(error != 0)
{
return error;
}
dataReady = statusRegister & 0x0008;
}
error = MLX90640_I2CWrite(slaveAddr, 0x8000, 0x0030);
if(error == -1)
{
return error;
}
error = MLX90640_I2CRead(slaveAddr, 0x0400, 768, frameData);
if(error != 0)
{
return error;
}
error = MLX90640_I2CRead(slaveAddr, 0x0700, 64, data);
if(error != 0)
{
return error;
}
error = MLX90640_I2CRead(slaveAddr, 0x800D, 1, &controlRegister1);
frameData[832] = controlRegister1;
frameData[833] = statusRegister & 0x0001;
if(error != 0)
{
return error;
}
error = ValidateAuxData(data);
if(error == 0)
{
for(cnt=0; cnt<64; cnt++)
{
frameData[cnt+768] = data[cnt];
}
}
error = ValidateFrameData(frameData);
if (error != 0)
{
return error;
}
return frameData[833];
}
int ValidateFrameData(uint16_t *frameData)
{
uint8_t line = 0;
for(int i=0; i<768; i+=32)
{
if((frameData[i] == 0x7FFF) && (line%2 == frameData[833])) return -8;
line = line + 1;
}
return 0;
}
int ValidateAuxData(uint16_t *auxData)
{
if(auxData[0] == 0x7FFF) return -8;
for(int i=8; i<19; i++)
{
if(auxData[i] == 0x7FFF) return -8;
}
for(int i=20; i<23; i++)
{
if(auxData[i] == 0x7FFF) return -8;
}
for(int i=24; i<33; i++)
{
if(auxData[i] == 0x7FFF) return -8;
}
for(int i=40; i<51; i++)
{
if(auxData[i] == 0x7FFF) return -8;
}
for(int i=52; i<55; i++)
{
if(auxData[i] == 0x7FFF) return -8;
}
for(int i=56; i<64; i++)
{
if(auxData[i] == 0x7FFF) return -8;
}
return 0;
}
int MLX90640_ExtractParameters(uint16_t *eeData, paramsMLX90640 *mlx90640, int _chunk) // Tasmota
{
int error = 0;
switch(_chunk){
case 0:
ExtractVDDParameters(eeData, mlx90640);
ExtractPTATParameters(eeData, mlx90640);
ExtractGainParameters(eeData, mlx90640);
ExtractTgcParameters(eeData, mlx90640);
ExtractResolutionParameters(eeData, mlx90640);
ExtractKsTaParameters(eeData, mlx90640);
ExtractKsToParameters(eeData, mlx90640);
break;
case 1:
ExtractCPParameters(eeData, mlx90640);
ExtractAlphaParameters(eeData, mlx90640);
break;
case 2:
ExtractOffsetParameters(eeData, mlx90640);
break;
case 3:
ExtractKtaPixelParameters(eeData, mlx90640);
break;
case 4:
ExtractKvPixelParameters(eeData, mlx90640);
break;
case 5:
ExtractCILCParameters(eeData, mlx90640);
error = ExtractDeviatingPixels(eeData, mlx90640);
break;
}
return error;
}
//------------------------------------------------------------------------------
int MLX90640_SetResolution(uint8_t slaveAddr, uint8_t resolution)
{
uint16_t controlRegister1;
int value;
int error;
value = (resolution & 0x03) << 10;
error = MLX90640_I2CRead(slaveAddr, 0x800D, 1, &controlRegister1);
if(error == 0)
{
value = (controlRegister1 & 0xF3FF) | value;
error = MLX90640_I2CWrite(slaveAddr, 0x800D, value);
}
return error;
}
//------------------------------------------------------------------------------
int MLX90640_GetCurResolution(uint8_t slaveAddr)
{
uint16_t controlRegister1;
int resolutionRAM;
int error;
error = MLX90640_I2CRead(slaveAddr, 0x800D, 1, &controlRegister1);
if(error != 0)
{
return error;
}
resolutionRAM = (controlRegister1 & 0x0C00) >> 10;
return resolutionRAM;
}
//------------------------------------------------------------------------------
int MLX90640_SetRefreshRate(uint8_t slaveAddr, uint8_t refreshRate)
{
uint16_t controlRegister1;
int value;
int error;
value = (refreshRate & 0x07)<<7;
error = MLX90640_I2CRead(slaveAddr, 0x800D, 1, &controlRegister1);
if(error == 0)
{
value = (controlRegister1 & 0xFC7F) | value;
error = MLX90640_I2CWrite(slaveAddr, 0x800D, value);
}
return error;
}
//------------------------------------------------------------------------------
int MLX90640_GetRefreshRate(uint8_t slaveAddr)
{
uint16_t controlRegister1;
int refreshRate;
int error;
error = MLX90640_I2CRead(slaveAddr, 0x800D, 1, &controlRegister1);
if(error != 0)
{
return error;
}
refreshRate = (controlRegister1 & 0x0380) >> 7;
return refreshRate;
}
//------------------------------------------------------------------------------
int MLX90640_SetInterleavedMode(uint8_t slaveAddr)
{
uint16_t controlRegister1;
int value;
int error;
error = MLX90640_I2CRead(slaveAddr, 0x800D, 1, &controlRegister1);
if(error == 0)
{
value = (controlRegister1 & 0xEFFF);
error = MLX90640_I2CWrite(slaveAddr, 0x800D, value);
}
return error;
}
//------------------------------------------------------------------------------
int MLX90640_SetChessMode(uint8_t slaveAddr)
{
uint16_t controlRegister1;
int value;
int error;
error = MLX90640_I2CRead(slaveAddr, 0x800D, 1, &controlRegister1);
if(error == 0)
{
value = (controlRegister1 | 0x1000);
error = MLX90640_I2CWrite(slaveAddr, 0x800D, value);
}
return error;
}
//------------------------------------------------------------------------------
int MLX90640_GetCurMode(uint8_t slaveAddr)
{
uint16_t controlRegister1;
int modeRAM;
int error;
error = MLX90640_I2CRead(slaveAddr, 0x800D, 1, &controlRegister1);
if(error != 0)
{
return error;
}
modeRAM = (controlRegister1 & 0x1000) >> 12;
return modeRAM;
}
//------------------------------------------------------------------------------
void MLX90640_CalculateTo(uint16_t *frameData, const paramsMLX90640 *params, float emissivity, float tr, float *result, uint8_t _part)
{
float vdd;
float ta;
float ta4;
float tr4;
float taTr;
float gain;
float irDataCP[2];
float irData;
float alphaCompensated;
uint8_t mode;
int8_t ilPattern;
int8_t chessPattern;
int8_t pattern;
int8_t conversionPattern;
float Sx;
float To;
float alphaCorrR[4];
int8_t range;
uint16_t subPage;
float ktaScale;
float kvScale;
float alphaScale;
float kta;
float kv;
subPage = frameData[833];
vdd = MLX90640_GetVdd(frameData, params);
ta = MLX90640_GetTa(frameData, params);
ta4 = (ta + 273.15);
ta4 = ta4 * ta4;
ta4 = ta4 * ta4;
tr4 = (tr + 273.15);
tr4 = tr4 * tr4;
tr4 = tr4 * tr4;
taTr = tr4 - (tr4-ta4)/emissivity;
ktaScale = pow(2,(double)params->ktaScale);
kvScale = pow(2,(double)params->kvScale);
alphaScale = pow(2,(double)params->alphaScale);
alphaCorrR[0] = 1 / (1 + params->ksTo[0] * 40);
alphaCorrR[1] = 1 ;
alphaCorrR[2] = (1 + params->ksTo[1] * params->ct[2]);
alphaCorrR[3] = alphaCorrR[2] * (1 + params->ksTo[2] * (params->ct[3] - params->ct[2]));
//------------------------- Gain calculation -----------------------------------
gain = frameData[778];
if(gain > 32767)
{
gain = gain - 65536;
}
gain = params->gainEE / gain;
//------------------------- To calculation -------------------------------------
mode = (frameData[832] & 0x1000) >> 5;
irDataCP[0] = frameData[776];
irDataCP[1] = frameData[808];
for( int i = 0; i < 2; i++)
{
if(irDataCP[i] > 32767)
{
irDataCP[i] = irDataCP[i] - 65536;
}
irDataCP[i] = irDataCP[i] * gain;
}
irDataCP[0] = irDataCP[0] - params->cpOffset[0] * (1 + params->cpKta * (ta - 25)) * (1 + params->cpKv * (vdd - 3.3));
if( mode == params->calibrationModeEE)
{
irDataCP[1] = irDataCP[1] - params->cpOffset[1] * (1 + params->cpKta * (ta - 25)) * (1 + params->cpKv * (vdd - 3.3));
}
else
{
irDataCP[1] = irDataCP[1] - (params->cpOffset[1] + params->ilChessC[0]) * (1 + params->cpKta * (ta - 25)) * (1 + params->cpKv * (vdd - 3.3));
}
uint32_t _offset = _part*(768/2);
for( int pixelNumber = _offset; pixelNumber < (_offset+(768/2)); pixelNumber++)
{
ilPattern = pixelNumber / 32 - (pixelNumber / 64) * 2;
chessPattern = ilPattern ^ (pixelNumber - (pixelNumber/2)*2);
conversionPattern = ((pixelNumber + 2) / 4 - (pixelNumber + 3) / 4 + (pixelNumber + 1) / 4 - pixelNumber / 4) * (1 - 2 * ilPattern);
if(mode == 0)
{
pattern = ilPattern;
}
else
{
pattern = chessPattern;
}
if(pattern == frameData[833])
{
irData = frameData[pixelNumber];
if(irData > 32767)
{
irData = irData - 65536;
}
irData = irData * gain;
kta = params->kta[pixelNumber]/ktaScale;
kv = params->kv[pixelNumber]/kvScale;
irData = irData - params->offset[pixelNumber]*(1 + kta*(ta - 25))*(1 + kv*(vdd - 3.3));
if(mode != params->calibrationModeEE)
{
irData = irData + params->ilChessC[2] * (2 * ilPattern - 1) - params->ilChessC[1] * conversionPattern;
}
irData = irData - params->tgc * irDataCP[subPage];
irData = irData / emissivity;
alphaCompensated = SCALEALPHA*alphaScale/params->alpha[pixelNumber];
alphaCompensated = alphaCompensated*(1 + params->KsTa * (ta - 25));
Sx = alphaCompensated * alphaCompensated * alphaCompensated * (irData + alphaCompensated * taTr);
Sx = sqrt(sqrt(Sx)) * params->ksTo[1];
To = sqrt(sqrt(irData/(alphaCompensated * (1 - params->ksTo[1] * 273.15) + Sx) + taTr)) - 273.15;
if(To < params->ct[1])
{
range = 0;
}
else if(To < params->ct[2])
{
range = 1;
}
else if(To < params->ct[3])
{
range = 2;
}
else
{
range = 3;
}
To = sqrt(sqrt(irData / (alphaCompensated * alphaCorrR[range] * (1 + params->ksTo[range] * (To - params->ct[range]))) + taTr)) - 273.15;
result[pixelNumber] = To;
}
}
}
//------------------------------------------------------------------------------
// void MLX90640_GetImage(uint16_t *frameData, const paramsMLX90640 *params, float *result)
// {
// float vdd;
// float ta;
// float gain;
// float irDataCP[2];
// float irData;
// float alphaCompensated;
// uint8_t mode;
// int8_t ilPattern;
// int8_t chessPattern;
// int8_t pattern;
// int8_t conversionPattern;
// float image;
// uint16_t subPage;
// float ktaScale;
// float kvScale;
// float kta;
// float kv;
// subPage = frameData[833];
// vdd = MLX90640_GetVdd(frameData, params);
// ta = MLX90640_GetTa(frameData, params);
// ktaScale = pow(2,(double)params->ktaScale);
// kvScale = pow(2,(double)params->kvScale);
// //------------------------- Gain calculation -----------------------------------
// gain = frameData[778];
// if(gain > 32767)
// {
// gain = gain - 65536;
// }
// gain = params->gainEE / gain;
// //------------------------- Image calculation -------------------------------------
// mode = (frameData[832] & 0x1000) >> 5;
// irDataCP[0] = frameData[776];
// irDataCP[1] = frameData[808];
// for( int i = 0; i < 2; i++)
// {
// if(irDataCP[i] > 32767)
// {
// irDataCP[i] = irDataCP[i] - 65536;
// }
// irDataCP[i] = irDataCP[i] * gain;
// }
// irDataCP[0] = irDataCP[0] - params->cpOffset[0] * (1 + params->cpKta * (ta - 25)) * (1 + params->cpKv * (vdd - 3.3));
// if( mode == params->calibrationModeEE)
// {
// irDataCP[1] = irDataCP[1] - params->cpOffset[1] * (1 + params->cpKta * (ta - 25)) * (1 + params->cpKv * (vdd - 3.3));
// }
// else
// {
// irDataCP[1] = irDataCP[1] - (params->cpOffset[1] + params->ilChessC[0]) * (1 + params->cpKta * (ta - 25)) * (1 + params->cpKv * (vdd - 3.3));
// }
// for( int pixelNumber = 0; pixelNumber < 768; pixelNumber++)
// {
// ilPattern = pixelNumber / 32 - (pixelNumber / 64) * 2;
// chessPattern = ilPattern ^ (pixelNumber - (pixelNumber/2)*2);
// conversionPattern = ((pixelNumber + 2) / 4 - (pixelNumber + 3) / 4 + (pixelNumber + 1) / 4 - pixelNumber / 4) * (1 - 2 * ilPattern);
// if(mode == 0)
// {
// pattern = ilPattern;
// }
// else
// {
// pattern = chessPattern;
// }
// if(pattern == frameData[833])
// {
// irData = frameData[pixelNumber];
// if(irData > 32767)
// {
// irData = irData - 65536;
// }
// irData = irData * gain;
// kta = params->kta[pixelNumber]/ktaScale;
// kv = params->kv[pixelNumber]/kvScale;
// irData = irData - params->offset[pixelNumber]*(1 + kta*(ta - 25))*(1 + kv*(vdd - 3.3));
// if(mode != params->calibrationModeEE)
// {
// irData = irData + params->ilChessC[2] * (2 * ilPattern - 1) - params->ilChessC[1] * conversionPattern;
// }
// irData = irData - params->tgc * irDataCP[subPage];
// alphaCompensated = params->alpha[pixelNumber];
// image = irData*alphaCompensated;
// result[pixelNumber] = image;
// }
// }
// }
//------------------------------------------------------------------------------
float MLX90640_GetVdd(uint16_t *frameData, const paramsMLX90640 *params)
{
float vdd;
float resolutionCorrection;
int resolutionRAM;
vdd = frameData[810];
if(vdd > 32767)
{
vdd = vdd - 65536;
}
resolutionRAM = (frameData[832] & 0x0C00) >> 10;
resolutionCorrection = pow(2, (double)params->resolutionEE) / pow(2, (double)resolutionRAM);
vdd = (resolutionCorrection * vdd - params->vdd25) / params->kVdd + 3.3;
return vdd;
}
//------------------------------------------------------------------------------
float MLX90640_GetTa(uint16_t *frameData, const paramsMLX90640 *params)
{
float ptat;
float ptatArt;
float vdd;
float ta;
vdd = MLX90640_GetVdd(frameData, params);
ptat = frameData[800];
if(ptat > 32767)
{
ptat = ptat - 65536;
}
ptatArt = frameData[768];
if(ptatArt > 32767)
{
ptatArt = ptatArt - 65536;
}
ptatArt = (ptat / (ptat * params->alphaPTAT + ptatArt)) * pow(2, (double)18);
ta = (ptatArt / (1 + params->KvPTAT * (vdd - 3.3)) - params->vPTAT25);
ta = ta / params->KtPTAT + 25;
return ta;
}
//------------------------------------------------------------------------------
int MLX90640_GetSubPageNumber(uint16_t *frameData)
{
return frameData[833];
}
//------------------------------------------------------------------------------
void MLX90640_BadPixelsCorrection(uint16_t *pixels, float *to, int mode, paramsMLX90640 *params)
{
float ap[4];
uint8_t pix;
uint8_t line;
uint8_t column;
pix = 0;
while(pixels[pix] != 0xFFFF)
{
line = pixels[pix]>>5;
column = pixels[pix] - (line<<5);
if(mode == 1)
{
if(line == 0)
{
if(column == 0)
{
to[pixels[pix]] = to[33];
}
else if(column == 31)
{
to[pixels[pix]] = to[62];
}
else
{
to[pixels[pix]] = (to[pixels[pix]+31] + to[pixels[pix]+33])/2.0;
}
}
else if(line == 23)
{
if(column == 0)
{
to[pixels[pix]] = to[705];
}
else if(column == 31)
{
to[pixels[pix]] = to[734];
}
else
{
to[pixels[pix]] = (to[pixels[pix]-33] + to[pixels[pix]-31])/2.0;
}
}
else if(column == 0)
{
to[pixels[pix]] = (to[pixels[pix]-31] + to[pixels[pix]+33])/2.0;
}
else if(column == 31)
{
to[pixels[pix]] = (to[pixels[pix]-33] + to[pixels[pix]+31])/2.0;
}
else
{
ap[0] = to[pixels[pix]-33];
ap[1] = to[pixels[pix]-31];
ap[2] = to[pixels[pix]+31];
ap[3] = to[pixels[pix]+33];
to[pixels[pix]] = GetMedian(ap,4);
}
}
else
{
if(column == 0)
{
to[pixels[pix]] = to[pixels[pix]+1];
}
else if(column == 1 || column == 30)
{
to[pixels[pix]] = (to[pixels[pix]-1]+to[pixels[pix]+1])/2.0;
}
else if(column == 31)
{
to[pixels[pix]] = to[pixels[pix]-1];
}
else
{
if(IsPixelBad(pixels[pix]-2,params) == 0 && IsPixelBad(pixels[pix]+2,params) == 0)
{
ap[0] = to[pixels[pix]+1] - to[pixels[pix]+2];
ap[1] = to[pixels[pix]-1] - to[pixels[pix]-2];
if(fabs(ap[0]) > fabs(ap[1]))
{
to[pixels[pix]] = to[pixels[pix]-1] + ap[1];
}
else
{
to[pixels[pix]] = to[pixels[pix]+1] + ap[0];
}
}
else
{
to[pixels[pix]] = (to[pixels[pix]-1]+to[pixels[pix]+1])/2.0;
}
}
}
pix = pix + 1;
}
}
//------------------------------------------------------------------------------
void ExtractVDDParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
int16_t kVdd;
int16_t vdd25;
kVdd = eeData[51];
kVdd = (eeData[51] & 0xFF00) >> 8;
if(kVdd > 127)
{
kVdd = kVdd - 256;
}
kVdd = 32 * kVdd;
vdd25 = eeData[51] & 0x00FF;
vdd25 = ((vdd25 - 256) << 5) - 8192;
mlx90640->kVdd = kVdd;
mlx90640->vdd25 = vdd25;
}
//------------------------------------------------------------------------------
void ExtractPTATParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
float KvPTAT;
float KtPTAT;
int16_t vPTAT25;
float alphaPTAT;
KvPTAT = (eeData[50] & 0xFC00) >> 10;
if(KvPTAT > 31)
{
KvPTAT = KvPTAT - 64;
}
KvPTAT = KvPTAT/4096;
KtPTAT = eeData[50] & 0x03FF;
if(KtPTAT > 511)
{
KtPTAT = KtPTAT - 1024;
}
KtPTAT = KtPTAT/8;
vPTAT25 = eeData[49];
alphaPTAT = (eeData[16] & 0xF000) / pow(2, (double)14) + 8.0f;
mlx90640->KvPTAT = KvPTAT;
mlx90640->KtPTAT = KtPTAT;
mlx90640->vPTAT25 = vPTAT25;
mlx90640->alphaPTAT = alphaPTAT;
}
//------------------------------------------------------------------------------
void ExtractGainParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
int16_t gainEE;
gainEE = eeData[48];
if(gainEE > 32767)
{
gainEE = gainEE -65536;
}
mlx90640->gainEE = gainEE;
}
//------------------------------------------------------------------------------
void ExtractTgcParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
float tgc;
tgc = eeData[60] & 0x00FF;
if(tgc > 127)
{
tgc = tgc - 256;
}
tgc = tgc / 32.0f;
mlx90640->tgc = tgc;
}
//------------------------------------------------------------------------------
void ExtractResolutionParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
uint8_t resolutionEE;
resolutionEE = (eeData[56] & 0x3000) >> 12;
mlx90640->resolutionEE = resolutionEE;
}
//------------------------------------------------------------------------------
void ExtractKsTaParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
float KsTa;
KsTa = (eeData[60] & 0xFF00) >> 8;
if(KsTa > 127)
{
KsTa = KsTa -256;
}
KsTa = KsTa / 8192.0f;
mlx90640->KsTa = KsTa;
}
//------------------------------------------------------------------------------
void ExtractKsToParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
int KsToScale;
int8_t step;
step = ((eeData[63] & 0x3000) >> 12) * 10;
mlx90640->ct[0] = -40;
mlx90640->ct[1] = 0;
mlx90640->ct[2] = (eeData[63] & 0x00F0) >> 4;
mlx90640->ct[3] = (eeData[63] & 0x0F00) >> 8;
mlx90640->ct[2] = mlx90640->ct[2]*step;
mlx90640->ct[3] = mlx90640->ct[2] + mlx90640->ct[3]*step;
mlx90640->ct[4] = 400;
KsToScale = (eeData[63] & 0x000F) + 8;
KsToScale = 1 << KsToScale;
mlx90640->ksTo[0] = eeData[61] & 0x00FF;
mlx90640->ksTo[1] = (eeData[61] & 0xFF00) >> 8;
mlx90640->ksTo[2] = eeData[62] & 0x00FF;
mlx90640->ksTo[3] = (eeData[62] & 0xFF00) >> 8;
for(int i = 0; i < 4; i++)
{
if(mlx90640->ksTo[i] > 127)
{
mlx90640->ksTo[i] = mlx90640->ksTo[i] - 256;
}
mlx90640->ksTo[i] = mlx90640->ksTo[i] / KsToScale;
}
mlx90640->ksTo[4] = -0.0002;
}
//------------------------------------------------------------------------------
void ExtractAlphaParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
int accRow[24];
int accColumn[32];
int p = 0;
int alphaRef;
uint8_t alphaScale;
uint8_t accRowScale;
uint8_t accColumnScale;
uint8_t accRemScale;
float alphaTemp[768];
float temp;
accRemScale = eeData[32] & 0x000F;
accColumnScale = (eeData[32] & 0x00F0) >> 4;
accRowScale = (eeData[32] & 0x0F00) >> 8;
alphaScale = ((eeData[32] & 0xF000) >> 12) + 30;
alphaRef = eeData[33];
for(int i = 0; i < 6; i++)
{
p = i * 4;
accRow[p + 0] = (eeData[34 + i] & 0x000F);
accRow[p + 1] = (eeData[34 + i] & 0x00F0) >> 4;
accRow[p + 2] = (eeData[34 + i] & 0x0F00) >> 8;
accRow[p + 3] = (eeData[34 + i] & 0xF000) >> 12;
}
for(int i = 0; i < 24; i++)
{
if (accRow[i] > 7)
{
accRow[i] = accRow[i] - 16;
}
}
for(int i = 0; i < 8; i++)
{
p = i * 4;
accColumn[p + 0] = (eeData[40 + i] & 0x000F);
accColumn[p + 1] = (eeData[40 + i] & 0x00F0) >> 4;
accColumn[p + 2] = (eeData[40 + i] & 0x0F00) >> 8;
accColumn[p + 3] = (eeData[40 + i] & 0xF000) >> 12;
}
for(int i = 0; i < 32; i ++)
{
if (accColumn[i] > 7)
{
accColumn[i] = accColumn[i] - 16;
}
}
for(int i = 0; i < 24; i++)
{
for(int j = 0; j < 32; j ++)
{
p = 32 * i +j;
alphaTemp[p] = (eeData[64 + p] & 0x03F0) >> 4;
if (alphaTemp[p] > 31)
{
alphaTemp[p] = alphaTemp[p] - 64;
}
alphaTemp[p] = alphaTemp[p]*(1 << accRemScale);
alphaTemp[p] = (alphaRef + (accRow[i] << accRowScale) + (accColumn[j] << accColumnScale) + alphaTemp[p]);
alphaTemp[p] = alphaTemp[p] / pow(2,(double)alphaScale);
alphaTemp[p] = alphaTemp[p] - mlx90640->tgc * (mlx90640->cpAlpha[0] + mlx90640->cpAlpha[1])/2;
alphaTemp[p] = SCALEALPHA/alphaTemp[p];
}
}
temp = alphaTemp[0];
for(int i = 1; i < 768; i++)
{
if (alphaTemp[i] > temp)
{
temp = alphaTemp[i];
}
}
alphaScale = 0;
while(temp < 32767.4)
{
temp = temp*2;
alphaScale = alphaScale + 1;
}
for(int i = 0; i < 768; i++)
{
temp = alphaTemp[i] * pow(2,(double)alphaScale);
mlx90640->alpha[i] = (temp + 0.5);
}
mlx90640->alphaScale = alphaScale;
}
//------------------------------------------------------------------------------
void ExtractOffsetParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
int occRow[24];
int occColumn[32];
int p = 0;
int16_t offsetRef;
uint8_t occRowScale;
uint8_t occColumnScale;
uint8_t occRemScale;
occRemScale = (eeData[16] & 0x000F);
occColumnScale = (eeData[16] & 0x00F0) >> 4;
occRowScale = (eeData[16] & 0x0F00) >> 8;
offsetRef = eeData[17];
if (offsetRef > 32767)
{
offsetRef = offsetRef - 65536;
}
for(int i = 0; i < 6; i++)
{
p = i * 4;
occRow[p + 0] = (eeData[18 + i] & 0x000F);
occRow[p + 1] = (eeData[18 + i] & 0x00F0) >> 4;
occRow[p + 2] = (eeData[18 + i] & 0x0F00) >> 8;
occRow[p + 3] = (eeData[18 + i] & 0xF000) >> 12;
}
for(int i = 0; i < 24; i++)
{
if (occRow[i] > 7)
{
occRow[i] = occRow[i] - 16;
}
}
for(int i = 0; i < 8; i++)
{
p = i * 4;
occColumn[p + 0] = (eeData[24 + i] & 0x000F);
occColumn[p + 1] = (eeData[24 + i] & 0x00F0) >> 4;
occColumn[p + 2] = (eeData[24 + i] & 0x0F00) >> 8;
occColumn[p + 3] = (eeData[24 + i] & 0xF000) >> 12;
}
for(int i = 0; i < 32; i ++)
{
if (occColumn[i] > 7)
{
occColumn[i] = occColumn[i] - 16;
}
}
for(int i = 0; i < 24; i++)
{
for(int j = 0; j < 32; j ++)
{
p = 32 * i +j;
mlx90640->offset[p] = (eeData[64 + p] & 0xFC00) >> 10;
if (mlx90640->offset[p] > 31)
{
mlx90640->offset[p] = mlx90640->offset[p] - 64;
}
mlx90640->offset[p] = mlx90640->offset[p]*(1 << occRemScale);
mlx90640->offset[p] = (offsetRef + (occRow[i] << occRowScale) + (occColumn[j] << occColumnScale) + mlx90640->offset[p]);
}
}
}
//------------------------------------------------------------------------------
void ExtractKtaPixelParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
int p = 0;
int8_t KtaRC[4];
int8_t KtaRoCo;
int8_t KtaRoCe;
int8_t KtaReCo;
int8_t KtaReCe;
uint8_t ktaScale1;
uint8_t ktaScale2;
uint8_t split;
float ktaTemp[768];
float temp;
KtaRoCo = (eeData[54] & 0xFF00) >> 8;
if (KtaRoCo > 127)
{
KtaRoCo = KtaRoCo - 256;
}
KtaRC[0] = KtaRoCo;
KtaReCo = (eeData[54] & 0x00FF);
if (KtaReCo > 127)
{
KtaReCo = KtaReCo - 256;
}
KtaRC[2] = KtaReCo;
KtaRoCe = (eeData[55] & 0xFF00) >> 8;
if (KtaRoCe > 127)
{
KtaRoCe = KtaRoCe - 256;
}
KtaRC[1] = KtaRoCe;
KtaReCe = (eeData[55] & 0x00FF);
if (KtaReCe > 127)
{
KtaReCe = KtaReCe - 256;
}
KtaRC[3] = KtaReCe;
ktaScale1 = ((eeData[56] & 0x00F0) >> 4) + 8;
ktaScale2 = (eeData[56] & 0x000F);
for(int i = 0; i < 24; i++)
{
for(int j = 0; j < 32; j ++)
{
p = 32 * i +j;
split = 2*(p/32 - (p/64)*2) + p%2;
ktaTemp[p] = (eeData[64 + p] & 0x000E) >> 1;
if (ktaTemp[p] > 3)
{
ktaTemp[p] = ktaTemp[p] - 8;
}
ktaTemp[p] = ktaTemp[p] * (1 << ktaScale2);
ktaTemp[p] = KtaRC[split] + ktaTemp[p];
ktaTemp[p] = ktaTemp[p] / pow(2,(double)ktaScale1);
//ktaTemp[p] = ktaTemp[p] * mlx90640->offset[p];
}
}
temp = fabs(ktaTemp[0]);
for(int i = 1; i < 768; i++)
{
if (fabs(ktaTemp[i]) > temp)
{
temp = fabs(ktaTemp[i]);
}
}
ktaScale1 = 0;
while(temp < 63.4)
{
temp = temp*2;
ktaScale1 = ktaScale1 + 1;
}
for(int i = 0; i < 768; i++)
{
temp = ktaTemp[i] * pow(2,(double)ktaScale1);
if (temp < 0)
{
mlx90640->kta[i] = (temp - 0.5);
}
else
{
mlx90640->kta[i] = (temp + 0.5);
}
}
mlx90640->ktaScale = ktaScale1;
}
//------------------------------------------------------------------------------
void ExtractKvPixelParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
int p = 0;
int8_t KvT[4];
int8_t KvRoCo;
int8_t KvRoCe;
int8_t KvReCo;
int8_t KvReCe;
uint8_t kvScale;
uint8_t split;
float kvTemp[768];
float temp;
KvRoCo = (eeData[52] & 0xF000) >> 12;
if (KvRoCo > 7)
{
KvRoCo = KvRoCo - 16;
}
KvT[0] = KvRoCo;
KvReCo = (eeData[52] & 0x0F00) >> 8;
if (KvReCo > 7)
{
KvReCo = KvReCo - 16;
}
KvT[2] = KvReCo;
KvRoCe = (eeData[52] & 0x00F0) >> 4;
if (KvRoCe > 7)
{
KvRoCe = KvRoCe - 16;
}
KvT[1] = KvRoCe;
KvReCe = (eeData[52] & 0x000F);
if (KvReCe > 7)
{
KvReCe = KvReCe - 16;
}
KvT[3] = KvReCe;
kvScale = (eeData[56] & 0x0F00) >> 8;
for(int i = 0; i < 24; i++)
{
for(int j = 0; j < 32; j ++)
{
p = 32 * i +j;
split = 2*(p/32 - (p/64)*2) + p%2;
kvTemp[p] = KvT[split];
kvTemp[p] = kvTemp[p] / pow(2,(double)kvScale);
//kvTemp[p] = kvTemp[p] * mlx90640->offset[p];
}
}
temp = fabs(kvTemp[0]);
for(int i = 1; i < 768; i++)
{
if (fabs(kvTemp[i]) > temp)
{
temp = fabs(kvTemp[i]);
}
}
kvScale = 0;
while(temp < 63.4)
{
temp = temp*2;
kvScale = kvScale + 1;
}
for(int i = 0; i < 768; i++)
{
temp = kvTemp[i] * pow(2,(double)kvScale);
if (temp < 0)
{
mlx90640->kv[i] = (temp - 0.5);
}
else
{
mlx90640->kv[i] = (temp + 0.5);
}
}
mlx90640->kvScale = kvScale;
}
//------------------------------------------------------------------------------
void ExtractCPParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
float alphaSP[2];
int16_t offsetSP[2];
float cpKv;
float cpKta;
uint8_t alphaScale;
uint8_t ktaScale1;
uint8_t kvScale;
alphaScale = ((eeData[32] & 0xF000) >> 12) + 27;
offsetSP[0] = (eeData[58] & 0x03FF);
if (offsetSP[0] > 511)
{
offsetSP[0] = offsetSP[0] - 1024;
}
offsetSP[1] = (eeData[58] & 0xFC00) >> 10;
if (offsetSP[1] > 31)
{
offsetSP[1] = offsetSP[1] - 64;
}
offsetSP[1] = offsetSP[1] + offsetSP[0];
alphaSP[0] = (eeData[57] & 0x03FF);
if (alphaSP[0] > 511)
{
alphaSP[0] = alphaSP[0] - 1024;
}
alphaSP[0] = alphaSP[0] / pow(2,(double)alphaScale);
alphaSP[1] = (eeData[57] & 0xFC00) >> 10;
if (alphaSP[1] > 31)
{
alphaSP[1] = alphaSP[1] - 64;
}
alphaSP[1] = (1 + alphaSP[1]/128) * alphaSP[0];
cpKta = (eeData[59] & 0x00FF);
if (cpKta > 127)
{
cpKta = cpKta - 256;
}
ktaScale1 = ((eeData[56] & 0x00F0) >> 4) + 8;
mlx90640->cpKta = cpKta / pow(2,(double)ktaScale1);
cpKv = (eeData[59] & 0xFF00) >> 8;
if (cpKv > 127)
{
cpKv = cpKv - 256;
}
kvScale = (eeData[56] & 0x0F00) >> 8;
mlx90640->cpKv = cpKv / pow(2,(double)kvScale);
mlx90640->cpAlpha[0] = alphaSP[0];
mlx90640->cpAlpha[1] = alphaSP[1];
mlx90640->cpOffset[0] = offsetSP[0];
mlx90640->cpOffset[1] = offsetSP[1];
}
//------------------------------------------------------------------------------
void ExtractCILCParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
float ilChessC[3];
uint8_t calibrationModeEE;
calibrationModeEE = (eeData[10] & 0x0800) >> 4;
calibrationModeEE = calibrationModeEE ^ 0x80;
ilChessC[0] = (eeData[53] & 0x003F);
if (ilChessC[0] > 31)
{
ilChessC[0] = ilChessC[0] - 64;
}
ilChessC[0] = ilChessC[0] / 16.0f;
ilChessC[1] = (eeData[53] & 0x07C0) >> 6;
if (ilChessC[1] > 15)
{
ilChessC[1] = ilChessC[1] - 32;
}
ilChessC[1] = ilChessC[1] / 2.0f;
ilChessC[2] = (eeData[53] & 0xF800) >> 11;
if (ilChessC[2] > 15)
{
ilChessC[2] = ilChessC[2] - 32;
}
ilChessC[2] = ilChessC[2] / 8.0f;
mlx90640->calibrationModeEE = calibrationModeEE;
mlx90640->ilChessC[0] = ilChessC[0];
mlx90640->ilChessC[1] = ilChessC[1];
mlx90640->ilChessC[2] = ilChessC[2];
}
//------------------------------------------------------------------------------
int ExtractDeviatingPixels(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
uint16_t pixCnt = 0;
uint16_t brokenPixCnt = 0;
uint16_t outlierPixCnt = 0;
int warn = 0;
int i;
for(pixCnt = 0; pixCnt<5; pixCnt++)
{
mlx90640->brokenPixels[pixCnt] = 0xFFFF;
mlx90640->outlierPixels[pixCnt] = 0xFFFF;
}
pixCnt = 0;
while (pixCnt < 768 && brokenPixCnt < 5 && outlierPixCnt < 5)
{
if(eeData[pixCnt+64] == 0)
{
mlx90640->brokenPixels[brokenPixCnt] = pixCnt;
brokenPixCnt = brokenPixCnt + 1;
}
else if((eeData[pixCnt+64] & 0x0001) != 0)
{
mlx90640->outlierPixels[outlierPixCnt] = pixCnt;
outlierPixCnt = outlierPixCnt + 1;
}
pixCnt = pixCnt + 1;
}
if(brokenPixCnt > 4)
{
warn = -3;
}
else if(outlierPixCnt > 4)
{
warn = -4;
}
else if((brokenPixCnt + outlierPixCnt) > 4)
{
warn = -5;
}
else
{
for(pixCnt=0; pixCnt<brokenPixCnt; pixCnt++)
{
for(i=pixCnt+1; i<brokenPixCnt; i++)
{
warn = CheckAdjacentPixels(mlx90640->brokenPixels[pixCnt],mlx90640->brokenPixels[i]);
if(warn != 0)
{
return warn;
}
}
}
for(pixCnt=0; pixCnt<outlierPixCnt; pixCnt++)
{
for(i=pixCnt+1; i<outlierPixCnt; i++)
{
warn = CheckAdjacentPixels(mlx90640->outlierPixels[pixCnt],mlx90640->outlierPixels[i]);
if(warn != 0)
{
return warn;
}
}
}
for(pixCnt=0; pixCnt<brokenPixCnt; pixCnt++)
{
for(i=0; i<outlierPixCnt; i++)
{
warn = CheckAdjacentPixels(mlx90640->brokenPixels[pixCnt],mlx90640->outlierPixels[i]);
if(warn != 0)
{
return warn;
}
}
}
}
return warn;
}
//------------------------------------------------------------------------------
int CheckAdjacentPixels(uint16_t pix1, uint16_t pix2)
{
int pixPosDif;
pixPosDif = pix1 - pix2;
if(pixPosDif > -34 && pixPosDif < -30)
{
return -6;
}
if(pixPosDif > -2 && pixPosDif < 2)
{
return -6;
}
if(pixPosDif > 30 && pixPosDif < 34)
{
return -6;
}
return 0;
}
//------------------------------------------------------------------------------
float GetMedian(float *values, int n)
{
float temp;
for(int i=0; i<n-1; i++)
{
for(int j=i+1; j<n; j++)
{
if(values[j] < values[i])
{
temp = values[i];
values[i] = values[j];
values[j] = temp;
}
}
}
if(n%2==0)
{
return ((values[n/2] + values[n/2 - 1]) / 2.0);
}
else
{
return values[n/2];
}
}
//------------------------------------------------------------------------------
int IsPixelBad(uint16_t pixel,paramsMLX90640 *params)
{
for(int i=0; i<5; i++)
{
if(pixel == params->outlierPixels[i] || pixel == params->brokenPixels[i])
{
return 1;
}
}
return 0;
}
//------------------------------------------------------------------------------