Tasmota/lib/esp-knx-ip-0.5.2/esp-knx-ip.cpp

664 lines
17 KiB
C++
Raw Normal View History

/**
* esp-knx-ip library for KNX/IP communication on an ESP8266
* Author: Nico Weichbrodt <envy>
* License: MIT
*/
#include "esp-knx-ip.h"
char const *string_defaults[] =
{
"Do this",
"True",
"False",
""
};
ESPKNXIP::ESPKNXIP() : server(nullptr),
registered_callback_assignments(0),
free_callback_assignment_slots(0),
registered_callbacks(0),
free_callback_slots(0),
registered_configs(0),
registered_feedbacks(0)
{
DEBUG_PRINTLN();
DEBUG_PRINTLN("ESPKNXIP starting up");
// Default physical address is 1.1.0
physaddr.bytes.high = (/*area*/1 << 4) | /*line*/1;
physaddr.bytes.low = /*member*/0;
memset(callback_assignments, 0, MAX_CALLBACK_ASSIGNMENTS * sizeof(callback_assignment_t));
memset(callbacks, 0, MAX_CALLBACKS * sizeof(callback_fptr_t));
memset(custom_config_data, 0, MAX_CONFIG_SPACE * sizeof(uint8_t));
memset(custom_config_default_data, 0, MAX_CONFIG_SPACE * sizeof(uint8_t));
memset(custom_configs, 0, MAX_CONFIGS * sizeof(config_t));
}
void ESPKNXIP::load()
{
memcpy(custom_config_default_data, custom_config_data, MAX_CONFIG_SPACE);
EEPROM.begin(EEPROM_SIZE);
restore_from_eeprom();
}
void ESPKNXIP::start(ESP8266WebServer *srv)
{
server = srv;
__start();
}
void ESPKNXIP::start()
{
server = new ESP8266WebServer(80);
__start();
}
void ESPKNXIP::__start()
{
if (server != nullptr)
{
server->on(ROOT_PREFIX, [this](){
__handle_root();
});
server->on(__ROOT_PATH, [this](){
__handle_root();
});
server->on(__REGISTER_PATH, [this](){
__handle_register();
});
server->on(__DELETE_PATH, [this](){
__handle_delete();
});
server->on(__PHYS_PATH, [this](){
__handle_set();
});
#if !DISABLE_EEPROM_BUTTONS
server->on(__EEPROM_PATH, [this](){
__handle_eeprom();
});
#endif
server->on(__CONFIG_PATH, [this](){
__handle_config();
});
server->on(__FEEDBACK_PATH, [this](){
__handle_feedback();
});
#if !DISABLE_RESTORE_BUTTON
server->on(__RESTORE_PATH, [this](){
__handle_restore();
});
#endif
#if !DISABLE_REBOOT_BUTTON
server->on(__REBOOT_PATH, [this](){
__handle_reboot();
});
#endif
server->begin();
}
udp.beginMulticast(WiFi.localIP(), MULTICAST_IP, MULTICAST_PORT);
}
void ESPKNXIP::save_to_eeprom()
{
uint32_t address = 0;
uint64_t magic = EEPROM_MAGIC;
EEPROM.put(address, magic);
address += sizeof(uint64_t);
EEPROM.put(address++, registered_callback_assignments);
for (uint8_t i = 0; i < MAX_CALLBACK_ASSIGNMENTS; ++i)
{
EEPROM.put(address, callback_assignments[i].address);
address += sizeof(address_t);
}
for (uint8_t i = 0; i < MAX_CALLBACK_ASSIGNMENTS; ++i)
{
EEPROM.put(address, callback_assignments[i].callback_id);
address += sizeof(callback_id_t);
}
EEPROM.put(address, physaddr);
address += sizeof(address_t);
EEPROM.put(address, custom_config_data);
address += sizeof(custom_config_data);
EEPROM.commit();
DEBUG_PRINT("Wrote to EEPROM: 0x");
DEBUG_PRINTLN(address, HEX);
}
void ESPKNXIP::restore_from_eeprom()
{
uint32_t address = 0;
uint64_t magic = 0;
EEPROM.get(address, magic);
if (magic != EEPROM_MAGIC)
{
DEBUG_PRINTLN("No valid magic in EEPROM, aborting restore.");
DEBUG_PRINT("Expected 0x");
DEBUG_PRINT((unsigned long)(EEPROM_MAGIC >> 32), HEX);
DEBUG_PRINT(" 0x");
DEBUG_PRINT((unsigned long)(EEPROM_MAGIC), HEX);
DEBUG_PRINT(" got 0x");
DEBUG_PRINT((unsigned long)(magic >> 32), HEX);
DEBUG_PRINT(" 0x");
DEBUG_PRINTLN((unsigned long)magic, HEX);
return;
}
address += sizeof(uint64_t);
EEPROM.get(address++, registered_callback_assignments);
for (uint8_t i = 0; i < MAX_CALLBACK_ASSIGNMENTS; ++i)
{
EEPROM.get(address, callback_assignments[i].address);
if (callback_assignments[i].address.value != 0)
{
// if address is not 0/0/0 then mark slot as used
callback_assignments[i].slot_flags |= SLOT_FLAGS_USED;
DEBUG_PRINTLN("used slot");
}
else
{
// if address is 0/0/0, then we found a free slot, yay!
// however, only count those slots, if we have not reached registered_callback_assignments yet
if (i < registered_callback_assignments)
{
DEBUG_PRINTLN("free slot before reaching registered_callback_assignments");
free_callback_assignment_slots++;
}
else
{
DEBUG_PRINTLN("free slot");
}
}
address += sizeof(address_t);
}
for (uint8_t i = 0; i < MAX_CALLBACK_ASSIGNMENTS; ++i)
{
EEPROM.get(address, callback_assignments[i].callback_id);
address += sizeof(callback_id_t);
}
EEPROM.get(address, physaddr);
address += sizeof(address_t);
//EEPROM.get(address, custom_config_data);
//address += sizeof(custom_config_data);
uint32_t conf_offset = address;
for (uint8_t i = 0; i < registered_configs; ++i)
{
// First byte is flags.
config_flags_t flags = CONFIG_FLAGS_NO_FLAGS;
flags = (config_flags_t)EEPROM.read(address);
DEBUG_PRINT("Flag in EEPROM @ ");
DEBUG_PRINT(address - conf_offset);
DEBUG_PRINT(": ");
DEBUG_PRINTLN(flags, BIN);
custom_config_data[custom_configs[i].offset] = flags;
if (flags & CONFIG_FLAGS_VALUE_SET)
{
DEBUG_PRINTLN("Non-default value");
for (int j = 0; j < custom_configs[i].len - sizeof(uint8_t); ++j)
{
custom_config_data[custom_configs[i].offset + sizeof(uint8_t) + j] = EEPROM.read(address + sizeof(uint8_t) + j);
}
}
address += custom_configs[i].len;
}
DEBUG_PRINT("Restored from EEPROM: 0x");
DEBUG_PRINTLN(address, HEX);
}
uint16_t ESPKNXIP::__ntohs(uint16_t n)
{
return (uint16_t)((((uint8_t*)&n)[0] << 8) | (((uint8_t*)&n)[1]));
}
callback_assignment_id_t ESPKNXIP::__callback_register_assignment(address_t address, callback_id_t id)
{
if (registered_callback_assignments >= MAX_CALLBACK_ASSIGNMENTS)
return -1;
if (free_callback_assignment_slots == 0)
{
callback_assignment_id_t aid = registered_callback_assignments;
callback_assignments[aid].slot_flags |= SLOT_FLAGS_USED;
callback_assignments[aid].address = address;
callback_assignments[aid].callback_id = id;
registered_callback_assignments++;
return aid;
}
else
{
// find the free slot
for (callback_assignment_id_t aid = 0; aid < registered_callback_assignments; ++aid)
{
if (callback_assignments[aid].slot_flags & SLOT_FLAGS_USED)
{
// found a used slot
continue;
}
// and now an empty one
callback_assignments[aid].slot_flags |= SLOT_FLAGS_USED;
callback_assignments[aid].address = address;
callback_assignments[aid].callback_id = id;
free_callback_assignment_slots--;
return id;
}
}
}
void ESPKNXIP::__callback_delete_assignment(callback_assignment_id_t id)
{
// TODO this can be optimized if we are deleting the last element
// as then we can decrement registered_callback_assignments
// clear slot and mark it as empty
callback_assignments[id].slot_flags = SLOT_FLAGS_EMPTY;
callback_assignments[id].address.value = 0;
callback_assignments[id].callback_id = 0;
if (id == registered_callback_assignments - 1)
{
DEBUG_PRINTLN("last cba deleted");
// If this is the last callback, we can delete it by decrementing registered_callbacks.
registered_callback_assignments--;
// However, if the assignment before this slot are also empty, we can decrement even further
// First check if this was also the first element
if (id == 0)
{
DEBUG_PRINTLN("really last cba");
// If this was the last, then we are done.
return;
}
id--;
while(true)
{
DEBUG_PRINT("checking ");
DEBUG_PRINTLN((int32_t)id);
if ((callback_assignments[id].slot_flags & SLOT_FLAGS_USED) == 0)
{
DEBUG_PRINTLN("merged free slot");
// Slot before is empty
free_callback_assignment_slots--;
registered_callback_assignments--;
}
else
{
DEBUG_PRINTLN("aborted on used slot");
// Slot is used, abort
return;
}
id--;
if (id == CALLBACK_ASSIGNMENT_ID_MAX)
{
DEBUG_PRINTLN("abort on wrap");
// Wrap around, abort
return;
}
}
}
else
{
DEBUG_PRINTLN("free slot created");
// there is now one more free slot
free_callback_assignment_slots++;
}
}
bool ESPKNXIP::__callback_is_id_valid(callback_id_t id)
{
if (id < registered_callbacks)
return true;
if (callbacks[id].slot_flags & SLOT_FLAGS_USED)
return true;
return false;
}
callback_id_t ESPKNXIP::callback_register(String name, callback_fptr_t cb, void *arg, enable_condition_t cond)
{
if (registered_callbacks >= MAX_CALLBACKS)
return -1;
if (free_callback_slots == 0)
{
callback_id_t id = registered_callbacks;
callbacks[id].slot_flags |= SLOT_FLAGS_USED;
callbacks[id].name = name;
callbacks[id].fkt = cb;
callbacks[id].cond = cond;
callbacks[id].arg = arg;
registered_callbacks++;
return id;
}
else
{
// find the free slot
for (callback_id_t id = 0; id < registered_callbacks; ++id)
{
if (callbacks[id].slot_flags & SLOT_FLAGS_USED)
{
// found a used slot
continue;
}
// and now an empty one
callbacks[id].slot_flags |= SLOT_FLAGS_USED;
callbacks[id].name = name;
callbacks[id].fkt = cb;
callbacks[id].cond = cond;
callbacks[id].arg = arg;
free_callback_slots--;
return id;
}
}
}
void ESPKNXIP::callback_deregister(callback_id_t id)
{
if (!__callback_is_id_valid(id))
return;
// clear slot and mark it as empty
callbacks[id].slot_flags = SLOT_FLAGS_EMPTY;
callbacks[id].fkt = nullptr;
callbacks[id].cond = nullptr;
callbacks[id].arg = nullptr;
if (id == registered_callbacks - 1)
{
// If this is the last callback, we can delete it by decrementing registered_callbacks.
registered_callbacks--;
// However, if the callbacks before this slot are also empty, we can decrement even further
// First check if this was also the first element
if (id == 0)
{
// If this was the last, then we are done.
return;
}
id--;
while(true)
{
if ((callbacks[id].slot_flags & SLOT_FLAGS_USED) == 0)
{
// Slot is empty
free_callback_slots--;
registered_callbacks--;
}
else
{
// Slot is used, abort
return;
}
id--;
if (id == CALLBACK_ASSIGNMENT_ID_MAX)
{
// Wrap around, abort
return;
}
}
}
else
{
// there is now one more free slot
free_callback_slots++;
}
}
callback_assignment_id_t ESPKNXIP::callback_assign(callback_id_t id, address_t val)
{
if (!__callback_is_id_valid(id))
return -1;
return __callback_register_assignment(val, id);
}
void ESPKNXIP::callback_unassign(callback_assignment_id_t id)
{
if (!__callback_is_id_valid(id))
return;
__callback_delete_assignment(id);
}
/**
* Feedback functions start here
*/
feedback_id_t ESPKNXIP::feedback_register_int(String name, int32_t *value, enable_condition_t cond)
{
if (registered_feedbacks >= MAX_FEEDBACKS)
return -1;
feedback_id_t id = registered_feedbacks;
feedbacks[id].type = FEEDBACK_TYPE_INT;
feedbacks[id].name = name;
feedbacks[id].cond = cond;
feedbacks[id].data = (void *)value;
registered_feedbacks++;
return id;
}
feedback_id_t ESPKNXIP::feedback_register_float(String name, float *value, uint8_t precision, char const *prefix, char const *suffix, enable_condition_t cond)
{
if (registered_feedbacks >= MAX_FEEDBACKS)
return -1;
feedback_id_t id = registered_feedbacks;
feedbacks[id].type = FEEDBACK_TYPE_FLOAT;
feedbacks[id].name = name;
feedbacks[id].cond = cond;
feedbacks[id].data = (void *)value;
feedbacks[id].options.float_options.precision = precision;
feedbacks[id].options.float_options.prefix = prefix ? strdup(prefix) : STRING_DEFAULT_EMPTY;
feedbacks[id].options.float_options.suffix = suffix ? strdup(suffix) : STRING_DEFAULT_EMPTY;
registered_feedbacks++;
return id;
}
feedback_id_t ESPKNXIP::feedback_register_bool(String name, bool *value, char const *true_text, char const *false_text, enable_condition_t cond)
{
if (registered_feedbacks >= MAX_FEEDBACKS)
return -1;
feedback_id_t id = registered_feedbacks;
feedbacks[id].type = FEEDBACK_TYPE_BOOL;
feedbacks[id].name = name;
feedbacks[id].cond = cond;
feedbacks[id].data = (void *)value;
feedbacks[id].options.bool_options.true_text = true_text ? strdup(true_text) : STRING_DEFAULT_TRUE;
feedbacks[id].options.bool_options.false_text = false_text ? strdup(false_text) : STRING_DEFAULT_FALSE;
registered_feedbacks++;
return id;
}
feedback_id_t ESPKNXIP::feedback_register_action(String name, feedback_action_fptr_t value, const char *btn_text, void *arg, enable_condition_t cond)
{
if (registered_feedbacks >= MAX_FEEDBACKS)
return -1;
feedback_id_t id = registered_feedbacks;
feedbacks[id].type = FEEDBACK_TYPE_ACTION;
feedbacks[id].name = name;
feedbacks[id].cond = cond;
feedbacks[id].data = (void *)value;
feedbacks[id].options.action_options.arg = arg;
feedbacks[id].options.action_options.btn_text = btn_text ? strdup(btn_text) : STRING_DEFAULT_DO_THIS;
registered_feedbacks++;
return id;
}
void ESPKNXIP::loop()
{
__loop_knx();
if (server != nullptr)
{
__loop_webserver();
}
}
void ESPKNXIP::__loop_webserver()
{
server->handleClient();
}
void ESPKNXIP::__loop_knx()
{
int read = udp.parsePacket();
if (!read)
{
return;
}
DEBUG_PRINTLN(F(""));
DEBUG_PRINT(F("LEN: "));
DEBUG_PRINTLN(read);
uint8_t buf[read];
udp.read(buf, read);
udp.flush();
DEBUG_PRINT(F("Got packet:"));
#ifdef ESP_KNX_DEBUG
for (int i = 0; i < read; ++i)
{
DEBUG_PRINT(F(" 0x"));
DEBUG_PRINT(buf[i], 16);
}
#endif
DEBUG_PRINTLN(F(""));
knx_ip_pkt_t *knx_pkt = (knx_ip_pkt_t *)buf;
DEBUG_PRINT(F("ST: 0x"));
DEBUG_PRINTLN(__ntohs(knx_pkt->service_type), 16);
if (knx_pkt->header_len != 0x06 && knx_pkt->protocol_version != 0x10 && knx_pkt->service_type != KNX_ST_ROUTING_INDICATION)
return;
cemi_msg_t *cemi_msg = (cemi_msg_t *)knx_pkt->pkt_data;
DEBUG_PRINT(F("MT: 0x"));
DEBUG_PRINTLN(cemi_msg->message_code, 16);
if (cemi_msg->message_code != KNX_MT_L_DATA_IND)
return;
DEBUG_PRINT(F("ADDI: 0x"));
DEBUG_PRINTLN(cemi_msg->additional_info_len, 16);
cemi_service_t *cemi_data = &cemi_msg->data.service_information;
if (cemi_msg->additional_info_len > 0)
cemi_data = (cemi_service_t *)(((uint8_t *)cemi_data) + cemi_msg->additional_info_len);
DEBUG_PRINT(F("C1: 0x"));
DEBUG_PRINTLN(cemi_data->control_1.byte, 16);
DEBUG_PRINT(F("C2: 0x"));
DEBUG_PRINTLN(cemi_data->control_2.byte, 16);
DEBUG_PRINT(F("DT: 0x"));
DEBUG_PRINTLN(cemi_data->control_2.bits.dest_addr_type, 16);
if (cemi_data->control_2.bits.dest_addr_type != 0x01)
return;
DEBUG_PRINT(F("HC: 0x"));
DEBUG_PRINTLN(cemi_data->control_2.bits.hop_count, 16);
DEBUG_PRINT(F("EFF: 0x"));
DEBUG_PRINTLN(cemi_data->control_2.bits.extended_frame_format, 16);
DEBUG_PRINT(F("Source: 0x"));
DEBUG_PRINT(cemi_data->source.bytes.high, 16);
DEBUG_PRINT(F(" 0x"));
DEBUG_PRINTLN(cemi_data->source.bytes.low, 16);
DEBUG_PRINT(F("Dest: 0x"));
DEBUG_PRINT(cemi_data->destination.bytes.high, 16);
DEBUG_PRINT(F(" 0x"));
DEBUG_PRINTLN(cemi_data->destination.bytes.low, 16);
knx_command_type_t ct = (knx_command_type_t)(((cemi_data->data[0] & 0xC0) >> 6) | ((cemi_data->pci.apci & 0x03) << 2));
DEBUG_PRINT(F("CT: 0x"));
DEBUG_PRINTLN(ct, 16);
#ifdef ESP_KNX_DEBUG
for (int i = 0; i < cemi_data->data_len; ++i)
{
DEBUG_PRINT(F(" 0x"));
DEBUG_PRINT(cemi_data->data[i], 16);
}
#endif
DEBUG_PRINTLN(F("=="));
// Call callbacks
for (int i = 0; i < registered_callback_assignments; ++i)
{
DEBUG_PRINT(F("Testing: 0x"));
DEBUG_PRINT(callback_assignments[i].address.bytes.high, 16);
DEBUG_PRINT(F(" 0x"));
DEBUG_PRINTLN(callback_assignments[i].address.bytes.low, 16);
if (cemi_data->destination.value == callback_assignments[i].address.value)
{
DEBUG_PRINTLN(F("Found match"));
if (callbacks[callback_assignments[i].callback_id].cond && !callbacks[callback_assignments[i].callback_id].cond())
{
DEBUG_PRINTLN(F("But it's disabled"));
#if ALLOW_MULTIPLE_CALLBACKS_PER_ADDRESS
continue;
#else
return;
#endif
}
uint8_t data[cemi_data->data_len];
memcpy(data, cemi_data->data, cemi_data->data_len);
data[0] = data[0] & 0x3F;
message_t msg = {};
msg.ct = ct;
msg.received_on = cemi_data->destination;
msg.data_len = cemi_data->data_len;
msg.data = data;
callbacks[callback_assignments[i].callback_id].fkt(msg, callbacks[callback_assignments[i].callback_id].arg);
#if ALLOW_MULTIPLE_CALLBACKS_PER_ADDRESS
continue;
#else
return;
#endif
}
}
return;
}
// Global "singleton" object
ESPKNXIP knx;