Tasmota/tasmota/xnrg_14_bl0940.ino

297 lines
10 KiB
Arduino
Raw Normal View History

/*
xnrg_14_bl0940.ino - BL0940 energy sensor support for Tasmota
Copyright (C) 2020 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ENERGY_SENSOR
#ifdef USE_BL0940
/*********************************************************************************************\
* BL0940 - Energy (Blitzwolf SHP10)
*
* Template {"NAME":"BW-SHP10","GPIO":[0,148,0,207,158,21,0,0,0,17,0,0,0],"FLAG":0,"BASE":18}
*
* Based on datasheet from http://www.belling.com.cn/media/file_object/bel_product/BL0940/datasheet/BL0940_V1.1_en.pdf
\*********************************************************************************************/
#define XNRG_14 14
2020-06-08 09:55:12 +01:00
#define BL0940_PREF 1430
#define BL0940_UREF 33000
#define BL0940_IREF 2750
#define BL0940_BUFFER_SIZE 36
#define BL0940_WRITE_COMMAND 0xA0 // 0xA8 according to documentation
#define BL0940_REG_I_FAST_RMS_CTRL 0x10
#define BL0940_REG_MODE 0x18
#define BL0940_REG_SOFT_RESET 0x19
#define BL0940_REG_USR_WRPROT 0x1A
#define BL0940_REG_TPS_CTRL 0x1B
#define BL0940_READ_COMMAND 0x50 // 0x58 according to documentation
#define BL0940_FULL_PACKET 0xAA
2020-06-08 09:55:12 +01:00
#define BL0940_PACKET_HEADER 0x55 // 0x58 according to documentation
#include <TasmotaSerial.h>
TasmotaSerial *Bl0940Serial = nullptr;
struct BL0940 {
long voltage = 0;
long current = 0;
long power = 0;
2020-06-08 10:04:45 +01:00
// long power_cycle_first = 0;
2020-06-08 09:55:12 +01:00
// long cf_pulses = 0;
float temperature;
int byte_counter = 0;
uint16_t tps1 = 0;
uint8_t *rx_buffer = nullptr;
bool received = false;
} Bl0940;
const uint8_t bl0940_init[5][6] = {
{ BL0940_WRITE_COMMAND, BL0940_REG_SOFT_RESET, 0x5A, 0x5A, 0x5A, 0x38 }, // Reset to default
{ BL0940_WRITE_COMMAND, BL0940_REG_USR_WRPROT, 0x55, 0x00, 0x00, 0xF0 }, // Enable User Operation Write
{ BL0940_WRITE_COMMAND, BL0940_REG_MODE, 0x00, 0x10, 0x00, 0x37 }, // 0x0100 = CF_UNABLE energy pulse, AC_FREQ_SEL 50Hz, RMS_UPDATE_SEL 800mS
{ BL0940_WRITE_COMMAND, BL0940_REG_TPS_CTRL, 0xFF, 0x47, 0x00, 0xFE }, // 0x47FF = Over-current and leakage alarm on, Automatic temperature measurement, Interval 100mS
{ BL0940_WRITE_COMMAND, BL0940_REG_I_FAST_RMS_CTRL, 0x1C, 0x18, 0x00, 0x1B }}; // 0x181C = Half cycle, Fast RMS threshold 6172
void Bl0940Received(void) {
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
// 55 F2 03 00 00 00 00 7E 02 00 D4 B0 72 AC 01 00 00 00 00 02 01 00 00 00 00 00 00 00 BA 01 00 FE 03 00 83
// 55 88 02 00 49 00 00 FE 02 00 AF EF 71 D2 01 00 EB FF FF 49 01 00 00 00 00 02 00 00 CF 01 00 FE 03 00 9F
// 55 B9 33 00 DE 45 00 94 02 00 CF E4 70 63 02 00 6C 4C 00 13 01 00 09 00 00 00 00 00 E4 01 00 FE 03 00 72
// Hd IFRms--- Current- Reserved Voltage- Reserved Power--- Reserved CF------ Reserved TPS1---- TPS2---- Ck
uint16_t tps1 = Bl0940.rx_buffer[29] << 8 | Bl0940.rx_buffer[28]; // TPS1 unsigned
if ((Bl0940.rx_buffer[0] != BL0940_PACKET_HEADER) || // Bad header
(Bl0940.tps1 && ((tps1 < (Bl0940.tps1 -10)) || (tps1 > (Bl0940.tps1 +10)))) // Invalid temperature change
) {
AddLog_P(LOG_LEVEL_DEBUG, PSTR("BL9: Invalid data"));
return;
}
Bl0940.tps1 = tps1;
float t = ((170.0f/448.0f)*(((float)Bl0940.tps1/2.0f)-32.0f))-45.0f;
Bl0940.temperature = ConvertTemp(t);
Bl0940.voltage = Bl0940.rx_buffer[12] << 16 | Bl0940.rx_buffer[11] << 8 | Bl0940.rx_buffer[10]; // V_RMS unsigned
Bl0940.current = Bl0940.rx_buffer[6] << 16 | Bl0940.rx_buffer[5] << 8 | Bl0940.rx_buffer[4]; // I_RMS unsigned
int32_t power = Bl0940.rx_buffer[18] << 24 | Bl0940.rx_buffer[17] << 16 | Bl0940.rx_buffer[16] << 8; // WATT signed
Bl0940.power = abs(power) >> 8; // WATT unsigned
// Bl0940.cf_pulses = Bl0940.rx_buffer[24] << 16 | Bl0940.rx_buffer[23] << 8 | Bl0940.rx_buffer[22]; // CF_CNT unsigned
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("BL9: U %d, I %d, P %d, T %d"), Bl0940.voltage, Bl0940.current, Bl0940.power, Bl0940.tps1);
if (Energy.power_on) { // Powered on
Energy.voltage[0] = (float)Bl0940.voltage / Settings.energy_voltage_calibration;
if (power && (Bl0940.power > Settings.energy_power_calibration)) { // We need at least 1W
Energy.active_power[0] = (float)Bl0940.power / Settings.energy_power_calibration;
Energy.current[0] = (float)Bl0940.current / (Settings.energy_current_calibration * 100);
} else {
Energy.active_power[0] = 0;
Energy.current[0] = 0;
}
} else { // Powered off
2020-06-08 10:04:45 +01:00
// Bl0940.power_cycle_first = 0;
Energy.voltage[0] = 0;
Energy.active_power[0] = 0;
Energy.current[0] = 0;
}
}
bool Bl0940SerialInput(void) {
while (Bl0940Serial->available()) {
yield();
uint8_t serial_in_byte = Bl0940Serial->read();
2020-06-08 10:04:45 +01:00
if (!Bl0940.received && (BL0940_PACKET_HEADER == serial_in_byte)) {
Bl0940.received = true;
Bl0940.byte_counter = 0;
}
if (Bl0940.received) {
Bl0940.rx_buffer[Bl0940.byte_counter++] = serial_in_byte;
if (BL0940_BUFFER_SIZE == Bl0940.byte_counter) {
AddLogBuffer(LOG_LEVEL_DEBUG_MORE, Bl0940.rx_buffer, BL0940_BUFFER_SIZE -1);
uint8_t checksum = BL0940_READ_COMMAND;
for (uint32_t i = 0; i < BL0940_BUFFER_SIZE -2; i++) { checksum += Bl0940.rx_buffer[i]; }
checksum ^= 0xFF;
if (checksum == Bl0940.rx_buffer[34]) {
Energy.data_valid[0] = 0;
Bl0940Received();
Bl0940.received = false;
return true;
} else {
2020-06-08 10:13:57 +01:00
// AddLog_P(LOG_LEVEL_DEBUG, PSTR("BL9: " D_CHECKSUM_FAILURE));
do { // Sync buffer with data (issue #1907 and #3425)
memmove(Bl0940.rx_buffer, Bl0940.rx_buffer +1, BL0940_BUFFER_SIZE -1);
Bl0940.byte_counter--;
} while ((Bl0940.byte_counter > 1) && (BL0940_PACKET_HEADER != Bl0940.rx_buffer[0]));
if (BL0940_PACKET_HEADER != Bl0940.rx_buffer[0]) {
2020-06-08 10:13:57 +01:00
AddLog_P(LOG_LEVEL_DEBUG, PSTR("BL9: " D_CHECKSUM_FAILURE));
Bl0940.received = false;
Bl0940.byte_counter = 0;
}
}
}
}
}
}
/********************************************************************************************/
void Bl0940EverySecond(void) {
if (Energy.data_valid[0] > ENERGY_WATCHDOG) {
Bl0940.voltage = 0;
Bl0940.current = 0;
Bl0940.power = 0;
} else {
if (Energy.active_power[0]) {
Energy.kWhtoday_delta += (Energy.active_power[0] * 1000) / 36;
EnergyUpdateToday();
}
}
Bl0940Serial->flush();
Bl0940Serial->write(BL0940_READ_COMMAND);
Bl0940Serial->write(BL0940_FULL_PACKET);
}
void Bl0940SnsInit(void) {
// Software serial init needs to be done here as earlier (serial) interrupts may lead to Exceptions
Bl0940Serial = new TasmotaSerial(Pin(GPIO_BL0940_RX), Pin(GPIO_TXD), 1);
if (Bl0940Serial->begin(4800, 2)) {
if (Bl0940Serial->hardwareSerial()) {
ClaimSerial();
}
if (HLW_UREF_PULSE == Settings.energy_voltage_calibration) {
2020-06-08 09:55:12 +01:00
Settings.energy_voltage_calibration = BL0940_UREF;
Settings.energy_current_calibration = BL0940_IREF;
Settings.energy_power_calibration = BL0940_PREF;
}
for (uint32_t i = 0; i < 5; i++) {
for (uint32_t j = 0; j < 6; j++) {
Bl0940Serial->write(bl0940_init[i][j]);
// Bl0940Serial->write(pgm_read_byte(bl0940_init + (6 * i) + j)); // Wrong byte order!
}
delay(1);
}
} else {
energy_flg = ENERGY_NONE;
}
}
void Bl0940DrvInit(void) {
if (PinUsed(GPIO_BL0940_RX) && PinUsed(GPIO_TXD)) {
Bl0940.rx_buffer = (uint8_t*)(malloc(BL0940_BUFFER_SIZE));
if (Bl0940.rx_buffer != nullptr) {
energy_flg = XNRG_14;
}
}
}
bool Bl0940Command(void) {
bool serviced = true;
uint32_t value = (uint32_t)(CharToFloat(XdrvMailbox.data) * 100); // 1.23 = 123
if (CMND_POWERSET == Energy.command_code) {
if (XdrvMailbox.data_len && Bl0940.power) {
Settings.energy_power_calibration = (Bl0940.power * 100) / value;
}
}
else if (CMND_VOLTAGESET == Energy.command_code) {
if (XdrvMailbox.data_len && Bl0940.voltage) {
Settings.energy_voltage_calibration = (Bl0940.voltage * 100) / value;
}
}
else if (CMND_CURRENTSET == Energy.command_code) {
if (XdrvMailbox.data_len && Bl0940.current) {
Settings.energy_current_calibration = Bl0940.current / value;
}
}
else serviced = false; // Unknown command
return serviced;
}
void Bl0940Show(bool json)
{
char temperature[33];
dtostrfd(Bl0940.temperature, Settings.flag2.temperature_resolution, temperature);
if (json) {
ResponseAppend_P(JSON_SNS_TEMP, "BL0940", temperature);
if (0 == tele_period) {
#ifdef USE_DOMOTICZ
DomoticzSensor(DZ_TEMP, temperature);
#endif // USE_DOMOTICZ
#ifdef USE_KNX
KnxSensor(KNX_TEMPERATURE, Bl0940.temperature);
#endif // USE_KNX
}
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_TEMP, "", temperature, TempUnit());
#endif // USE_WEBSERVER
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xnrg14(uint8_t function)
{
bool result = false;
switch (function) {
case FUNC_LOOP:
if (Bl0940Serial) { Bl0940SerialInput(); }
break;
case FUNC_ENERGY_EVERY_SECOND:
Bl0940EverySecond();
break;
case FUNC_JSON_APPEND:
Bl0940Show(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
Bl0940Show(0);
break;
#endif // USE_WEBSERVER
case FUNC_COMMAND:
result = Bl0940Command();
break;
case FUNC_INIT:
Bl0940SnsInit();
break;
case FUNC_PRE_INIT:
Bl0940DrvInit();
break;
}
return result;
}
#endif // USE_BL0940
#endif // USE_ENERGY_SENSOR