Tasmota/lib/lib_basic/IRremoteESP8266/src/ir_Sanyo.cpp

659 lines
25 KiB
C++
Raw Normal View History

// Copyright 2009 Ken Shirriff
// Copyright 2016 marcosamarinho
// Copyright 2017-2020 David Conran
/// @file
/// @brief Support for Sanyo protocols.
/// Sanyo LC7461 support originally by marcosamarinho
/// Sanyo SA 8650B originally added from
/// https://github.com/shirriff/Arduino-IRremote/
/// @see https://github.com/z3t0/Arduino-IRremote/blob/master/ir_Sanyo.cpp
/// @see http://pdf.datasheetcatalog.com/datasheet/sanyo/LC7461.pdf
/// @see https://github.com/marcosamarinho/IRremoteESP8266/blob/master/ir_Sanyo.cpp
/// @see http://slydiman.narod.ru/scr/kb/sanyo.htm
/// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/1211
/// @see https://docs.google.com/spreadsheets/d/1dYfLsnYvpjV-SgO8pdinpfuBIpSzm8Q1R5SabrLeskw/edit?usp=sharing
#include "ir_Sanyo.h"
#include <algorithm>
#include <cstring>
#include "IRrecv.h"
#include "IRsend.h"
#include "IRtext.h"
#include "IRutils.h"
using irutils::addBoolToString;
using irutils::addFanToString;
using irutils::addIntToString;
using irutils::addLabeledString;
using irutils::addModeToString;
using irutils::addSwingVToString;
using irutils::addTempToString;
using irutils::minsToString;
using irutils::sumNibbles;
// Constants
// Sanyo SA 8650B
const uint16_t kSanyoSa8650bHdrMark = 3500; // seen range 3500
const uint16_t kSanyoSa8650bHdrSpace = 950; // seen 950
const uint16_t kSanyoSa8650bOneMark = 2400; // seen 2400
const uint16_t kSanyoSa8650bZeroMark = 700; // seen 700
// usually see 713 - not using ticks as get number wrapround
const uint16_t kSanyoSa8650bDoubleSpaceUsecs = 800;
const uint16_t kSanyoSa8650bRptLength = 45000;
// Sanyo LC7461
const uint16_t kSanyoLc7461AddressMask = (1 << kSanyoLC7461AddressBits) - 1;
const uint16_t kSanyoLc7461CommandMask = (1 << kSanyoLC7461CommandBits) - 1;
const uint16_t kSanyoLc7461HdrMark = 9000;
const uint16_t kSanyoLc7461HdrSpace = 4500;
const uint16_t kSanyoLc7461BitMark = 560; // 1T
const uint16_t kSanyoLc7461OneSpace = 1690; // 3T
const uint16_t kSanyoLc7461ZeroSpace = 560; // 1T
const uint32_t kSanyoLc7461MinCommandLength = 108000;
const uint16_t kSanyoLc7461MinGap =
kSanyoLc7461MinCommandLength -
(kSanyoLc7461HdrMark + kSanyoLc7461HdrSpace +
kSanyoLC7461Bits * (kSanyoLc7461BitMark +
(kSanyoLc7461OneSpace + kSanyoLc7461ZeroSpace) / 2) +
kSanyoLc7461BitMark);
const uint16_t kSanyoAcHdrMark = 8500; ///< uSeconds
const uint16_t kSanyoAcHdrSpace = 4200; ///< uSeconds
const uint16_t kSanyoAcBitMark = 500; ///< uSeconds
const uint16_t kSanyoAcOneSpace = 1600; ///< uSeconds
const uint16_t kSanyoAcZeroSpace = 550; ///< uSeconds
const uint32_t kSanyoAcGap = kDefaultMessageGap; ///< uSeconds (Guess only)
const uint16_t kSanyoAcFreq = 38000; ///< Hz. (Guess only)
#if SEND_SANYO
/// Construct a Sanyo LC7461 message.
/// @param[in] address The 13 bit value of the address(Custom) portion of the
/// protocol.
/// @param[in] command The 8 bit value of the command(Key) portion of the
/// protocol.
/// @return An uint64_t with the encoded raw 42 bit Sanyo LC7461 data value.
/// @note This protocol uses the NEC protocol timings. However, data is
/// formatted as : address(13 bits), !address, command(8 bits), !command.
/// According with LIRC, this protocol is used on Sanyo, Aiwa and Chinon
uint64_t IRsend::encodeSanyoLC7461(uint16_t address, uint8_t command) {
// Mask our input values to ensure the correct bit sizes.
address &= kSanyoLc7461AddressMask;
command &= kSanyoLc7461CommandMask;
uint64_t data = address;
address ^= kSanyoLc7461AddressMask; // Invert the 13 LSBs.
// Append the now inverted address.
data = (data << kSanyoLC7461AddressBits) | address;
// Append the command.
data = (data << kSanyoLC7461CommandBits) | command;
command ^= kSanyoLc7461CommandMask; // Invert the command.
// Append the now inverted command.
data = (data << kSanyoLC7461CommandBits) | command;
return data;
}
/// Send a Sanyo LC7461 message.
/// Status: BETA / Probably works.
/// @param[in] data The message to be sent.
/// @param[in] nbits The number of bits of message to be sent.
/// @param[in] repeat The number of times the command is to be repeated.
/// @note Based on \@marcosamarinho's work.
/// This protocol uses the NEC protocol timings. However, data is
/// formatted as : address(13 bits), !address, command (8 bits), !command.
/// According with LIRC, this protocol is used on Sanyo, Aiwa and Chinon
/// Information for this protocol is available at the Sanyo LC7461 datasheet.
/// Repeats are performed similar to the NEC method of sending a special
/// repeat message, rather than duplicating the entire message.
/// @see https://github.com/marcosamarinho/IRremoteESP8266/blob/master/ir_Sanyo.cpp
/// @see http://pdf.datasheetcatalog.com/datasheet/sanyo/LC7461.pdf
void IRsend::sendSanyoLC7461(const uint64_t data, const uint16_t nbits,
const uint16_t repeat) {
// This protocol appears to be another 42-bit variant of the NEC protocol.
sendNEC(data, nbits, repeat);
}
#endif // SEND_SANYO
#if DECODE_SANYO
/// Decode the supplied SANYO LC7461 message.
/// Status: BETA / Probably works.
/// @param[in,out] results Ptr to the data to decode & where to store the result
/// @param[in] offset The starting index to use when attempting to decode the
/// raw data. Typically/Defaults to kStartOffset.
/// @param[in] nbits The number of data bits to expect.
/// @param[in] strict Flag indicating if we should perform strict matching.
/// @return True if it can decode it, false if it can't.
/// @note Based on \@marcosamarinho's work.
/// This protocol uses the NEC protocol. However, data is
/// formatted as : address(13 bits), !address, command (8 bits), !command.
/// According with LIRC, this protocol is used on Sanyo, Aiwa and Chinon
/// Information for this protocol is available at the Sanyo LC7461 datasheet.
/// @see http://slydiman.narod.ru/scr/kb/sanyo.htm
/// @see https://github.com/marcosamarinho/IRremoteESP8266/blob/master/ir_Sanyo.cpp
/// @see http://pdf.datasheetcatalog.com/datasheet/sanyo/LC7461.pdf
bool IRrecv::decodeSanyoLC7461(decode_results *results, uint16_t offset,
const uint16_t nbits, const bool strict) {
if (strict && nbits != kSanyoLC7461Bits)
return false; // Not strictly in spec.
// This protocol is basically a 42-bit variant of the NEC protocol.
if (!decodeNEC(results, offset, nbits, false))
return false; // Didn't match a NEC format (without strict)
// Bits 30 to 42+.
uint16_t address =
results->value >> (kSanyoLC7461Bits - kSanyoLC7461AddressBits);
// Bits 9 to 16.
uint8_t command =
(results->value >> kSanyoLC7461CommandBits) & kSanyoLc7461CommandMask;
// Compliance
if (strict) {
if (results->bits != nbits) return false;
// Bits 17 to 29.
uint16_t inverted_address =
(results->value >> (kSanyoLC7461CommandBits * 2)) &
kSanyoLc7461AddressMask;
// Bits 1-8.
uint8_t inverted_command = results->value & kSanyoLc7461CommandMask;
if ((address ^ kSanyoLc7461AddressMask) != inverted_address)
return false; // Address integrity check failed.
if ((command ^ kSanyoLc7461CommandMask) != inverted_command)
return false; // Command integrity check failed.
}
// Success
results->decode_type = SANYO_LC7461;
results->address = address;
results->command = command;
return true;
}
/* NOTE: Disabled due to poor quality.
/// Decode the supplied Sanyo SA 8650B message.
/// Status: Depricated.
/// @depricated Disabled due to poor quality.
/// @param[in,out] results Ptr to the data to decode & where to store the result
/// @param[in] offset The starting index to use when attempting to decode the
/// raw data. Typically/Defaults to kStartOffset.
/// @param[in] nbits The number of data bits to expect.
/// @param[in] strict Flag indicating if we should perform strict matching.
/// @return True if it can decode it, false if it can't.
/// @warning This decoder looks like rubbish. Only keeping it for compatibility
/// with the Arduino IRremote library. Seriously, don't trust it.
/// If someone has a device that this is supposed to be for, please log an
/// Issue on github with a rawData dump please. We should probably remove it.
/// We think this is a Sanyo decoder - serial = SA 8650B
/// @see https://github.com/z3t0/Arduino-IRremote/blob/master/ir_Sanyo.cpp
bool IRrecv::decodeSanyo(decode_results *results, uint16_t nbits, bool strict) {
if (results->rawlen < 2 * nbits + kHeader - 1)
return false; // Shorter than shortest possible.
if (strict && nbits != kSanyoSA8650BBits)
return false; // Doesn't match the spec.
uint16_t offset = 0;
// TODO(crankyoldgit): This repeat code looks like garbage, it should never
// match or if it does, it won't be reliable. We should probably just
// remove it.
if (results->rawbuf[offset++] < kSanyoSa8650bDoubleSpaceUsecs) {
results->bits = 0;
results->value = kRepeat;
results->decode_type = SANYO;
results->address = 0;
results->command = 0;
results->repeat = true;
return true;
}
// Header
if (!matchMark(results->rawbuf[offset++], kSanyoSa8650bHdrMark))
return false;
// NOTE: These next two lines look very wrong. Treat as suspect.
if (!matchMark(results->rawbuf[offset++], kSanyoSa8650bHdrMark))
return false;
// Data
uint64_t data = 0;
while (offset + 1 < results->rawlen) {
if (!matchSpace(results->rawbuf[offset], kSanyoSa8650bHdrSpace))
break;
offset++;
if (matchMark(results->rawbuf[offset], kSanyoSa8650bOneMark))
data = (data << 1) | 1; // 1
else if (matchMark(results->rawbuf[offset], kSanyoSa8650bZeroMark))
data <<= 1; // 0
else
return false;
offset++;
}
if (strict && kSanyoSA8650BBits > (offset - 1U) / 2U)
return false;
// Success
results->bits = (offset - 1) / 2;
results->decode_type = SANYO;
results->value = data;
results->address = 0;
results->command = 0;
return true;
}
*/
#endif // DECODE_SANYO
#if SEND_SANYO_AC
/// Send a SanyoAc formatted message.
/// Status: STABLE / Reported as working.
/// @param[in] data An array of bytes containing the IR command.
/// @param[in] nbytes Nr. of bytes of data in the array.
/// @param[in] repeat Nr. of times the message is to be repeated.
/// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/1211
void IRsend::sendSanyoAc(const uint8_t data[], const uint16_t nbytes,
const uint16_t repeat) {
// Header + Data + Footer
sendGeneric(kSanyoAcHdrMark, kSanyoAcHdrSpace,
kSanyoAcBitMark, kSanyoAcOneSpace,
kSanyoAcBitMark, kSanyoAcZeroSpace,
kSanyoAcBitMark, kSanyoAcGap,
data, nbytes, kSanyoAcFreq, false, repeat, kDutyDefault);
}
#endif // SEND_SANYO_AC
#if DECODE_SANYO_AC
/// Decode the supplied SanyoAc message.
/// Status: STABLE / Reported as working.
/// @param[in,out] results Ptr to the data to decode & where to store the decode
/// @param[in] offset The starting index to use when attempting to decode the
/// raw data. Typically/Defaults to kStartOffset.
/// @param[in] nbits The number of data bits to expect.
/// @param[in] strict Flag indicating if we should perform strict matching.
/// @return A boolean. True if it can decode it, false if it can't.
/// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/1211
bool IRrecv::decodeSanyoAc(decode_results *results, uint16_t offset,
const uint16_t nbits, const bool strict) {
if (strict && nbits != kSanyoAcBits)
return false;
// Header + Data + Footer
if (!matchGeneric(results->rawbuf + offset, results->state,
results->rawlen - offset, nbits,
kSanyoAcHdrMark, kSanyoAcHdrSpace,
kSanyoAcBitMark, kSanyoAcOneSpace,
kSanyoAcBitMark, kSanyoAcZeroSpace,
kSanyoAcBitMark, kSanyoAcGap,
true, kUseDefTol, kMarkExcess, false)) return false;
// Compliance
if (strict)
if (!IRSanyoAc::validChecksum(results->state, nbits / 8)) return false;
// Success
results->decode_type = decode_type_t::SANYO_AC;
results->bits = nbits;
// No need to record the state as we stored it as we decoded it.
// As we use result->state, we don't record value, address, or command as it
// is a union data type.
return true;
}
#endif // DECODE_SANYO_AC
/// Class constructor
/// @param[in] pin GPIO to be used when sending.
/// @param[in] inverted Is the output signal to be inverted?
/// @param[in] use_modulation Is frequency modulation to be used?
IRSanyoAc::IRSanyoAc(const uint16_t pin, const bool inverted,
const bool use_modulation)
: _irsend(pin, inverted, use_modulation) { stateReset(); }
/// Reset the state of the remote to a known good state/sequence.
/// @see https://docs.google.com/spreadsheets/d/1dYfLsnYvpjV-SgO8pdinpfuBIpSzm8Q1R5SabrLeskw/edit?ts=5f0190a5#gid=1050142776&range=A2:B2
void IRSanyoAc::stateReset(void) {
static const uint8_t kReset[kSanyoAcStateLength] = {
0x6A, 0x6D, 0x51, 0x00, 0x10, 0x45, 0x00, 0x00, 0x33};
std::memcpy(_.raw, kReset, kSanyoAcStateLength);
}
/// Set up hardware to be able to send a message.
void IRSanyoAc::begin(void) { _irsend.begin(); }
#if SEND_SANYO_AC
/// Send the current internal state as IR messages.
/// @param[in] repeat Nr. of times the message will be repeated.
void IRSanyoAc::send(const uint16_t repeat) {
_irsend.sendSanyoAc(getRaw(), kSanyoAcStateLength, repeat);
}
#endif // SEND_SANYO_AC
/// Get a PTR to the internal state/code for this protocol with all integrity
/// checks passing.
/// @return PTR to a code for this protocol based on the current internal state.
uint8_t* IRSanyoAc::getRaw(void) {
checksum();
return _.raw;
}
/// Set the internal state from a valid code for this protocol.
/// @param[in] newState A valid code for this protocol.
void IRSanyoAc::setRaw(const uint8_t newState[]) {
std::memcpy(_.raw, newState, kSanyoAcStateLength);
}
/// Calculate the checksum for a given state.
/// @param[in] state The array to calc the checksum of.
/// @param[in] length The length/size of the array.
/// @return The calculated checksum value.
uint8_t IRSanyoAc::calcChecksum(const uint8_t state[],
const uint16_t length) {
return length ? sumNibbles(state, length - 1) : 0;
}
/// Verify the checksum is valid for a given state.
/// @param[in] state The array to verify the checksum of.
/// @param[in] length The length/size of the array.
/// @return true, if the state has a valid checksum. Otherwise, false.
bool IRSanyoAc::validChecksum(const uint8_t state[], const uint16_t length) {
return length && state[length - 1] == IRSanyoAc::calcChecksum(state, length);
}
/// Calculate & set the checksum for the current internal state of the remote.
void IRSanyoAc::checksum(void) {
// Stored the checksum value in the last byte.
_.Sum = calcChecksum(_.raw);
}
/// Set the requested power state of the A/C to on.
void IRSanyoAc::on(void) { setPower(true); }
/// Set the requested power state of the A/C to off.
void IRSanyoAc::off(void) { setPower(false); }
/// Change the power setting.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRSanyoAc::setPower(const bool on) {
_.Power = (on ? kSanyoAcPowerOn : kSanyoAcPowerOff);
}
/// Get the value of the current power setting.
/// @return true, the setting is on. false, the setting is off.
bool IRSanyoAc::getPower(void) const {
return _.Power == kSanyoAcPowerOn;
}
/// Get the operating mode setting of the A/C.
/// @return The current operating mode setting.
uint8_t IRSanyoAc::getMode(void) const {
return _.Mode;
}
/// Set the operating mode of the A/C.
/// @param[in] mode The desired operating mode.
/// @note If we get an unexpected mode, default to AUTO.
void IRSanyoAc::setMode(const uint8_t mode) {
switch (mode) {
case kSanyoAcAuto:
case kSanyoAcCool:
case kSanyoAcDry:
case kSanyoAcHeat:
_.Mode = mode;
break;
default: _.Mode = kSanyoAcAuto;
}
}
/// Convert a stdAc::opmode_t enum into its native mode.
/// @param[in] mode The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRSanyoAc::convertMode(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kCool: return kSanyoAcCool;
case stdAc::opmode_t::kHeat: return kSanyoAcHeat;
case stdAc::opmode_t::kDry: return kSanyoAcDry;
default: return kSanyoAcAuto;
}
}
/// Convert a native mode into its stdAc equivalent.
/// @param[in] mode The native setting to be converted.
/// @return The stdAc equivalent of the native setting.
stdAc::opmode_t IRSanyoAc::toCommonMode(const uint8_t mode) {
switch (mode) {
case kSanyoAcCool: return stdAc::opmode_t::kCool;
case kSanyoAcHeat: return stdAc::opmode_t::kHeat;
case kSanyoAcDry: return stdAc::opmode_t::kDry;
default: return stdAc::opmode_t::kAuto;
}
}
/// Set the desired temperature.
/// @param[in] degrees The temperature in degrees celsius.
void IRSanyoAc::setTemp(const uint8_t degrees) {
uint8_t temp = std::max((uint8_t)kSanyoAcTempMin, degrees);
temp = std::min((uint8_t)kSanyoAcTempMax, temp);
_.Temp = temp - kSanyoAcTempDelta;
}
/// Get the current desired temperature setting.
/// @return The current setting for temp. in degrees celsius.
uint8_t IRSanyoAc::getTemp(void) const {
return _.Temp + kSanyoAcTempDelta;
}
/// Set the sensor temperature.
/// @param[in] degrees The temperature in degrees celsius.
void IRSanyoAc::setSensorTemp(const uint8_t degrees) {
uint8_t temp = std::max((uint8_t)kSanyoAcTempMin, degrees);
temp = std::min((uint8_t)kSanyoAcTempMax, temp);
_.SensorTemp = temp - kSanyoAcTempDelta;
}
/// Get the current sensor temperature setting.
/// @return The current setting for temp. in degrees celsius.
uint8_t IRSanyoAc::getSensorTemp(void) const {
return _.SensorTemp + kSanyoAcTempDelta;
}
/// Set the speed of the fan.
/// @param[in] speed The desired setting.
void IRSanyoAc::setFan(const uint8_t speed) {
_.Fan = speed;
}
/// Get the current fan speed setting.
/// @return The current fan speed/mode.
uint8_t IRSanyoAc::getFan(void) const {
return _.Fan;
}
/// Convert a stdAc::fanspeed_t enum into it's native speed.
/// @param[in] speed The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRSanyoAc::convertFan(const stdAc::fanspeed_t speed) {
switch (speed) {
case stdAc::fanspeed_t::kMin:
case stdAc::fanspeed_t::kLow: return kSanyoAcFanLow;
case stdAc::fanspeed_t::kMedium: return kSanyoAcFanMedium;
case stdAc::fanspeed_t::kHigh:
case stdAc::fanspeed_t::kMax: return kSanyoAcFanHigh;
default: return kSanyoAcFanAuto;
}
}
/// Convert a native fan speed into its stdAc equivalent.
/// @param[in] spd The native setting to be converted.
/// @return The stdAc equivalent of the native setting.
stdAc::fanspeed_t IRSanyoAc::toCommonFanSpeed(const uint8_t spd) {
switch (spd) {
case kSanyoAcFanHigh: return stdAc::fanspeed_t::kHigh;
case kSanyoAcFanMedium: return stdAc::fanspeed_t::kMedium;
case kSanyoAcFanLow: return stdAc::fanspeed_t::kLow;
default: return stdAc::fanspeed_t::kAuto;
}
}
/// Get the vertical swing setting of the A/C.
/// @return The current swing mode setting.
uint8_t IRSanyoAc::getSwingV(void) const {
return _.SwingV;
}
/// Set the vertical swing setting of the A/C.
/// @param[in] setting The value of the desired setting.
void IRSanyoAc::setSwingV(const uint8_t setting) {
if (setting == kSanyoAcSwingVAuto ||
(setting >= kSanyoAcSwingVLowest && setting <= kSanyoAcSwingVHighest))
_.SwingV = setting;
else
_.SwingV = kSanyoAcSwingVAuto;
}
/// Convert a stdAc::swingv_t enum into it's native setting.
/// @param[in] position The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRSanyoAc::convertSwingV(const stdAc::swingv_t position) {
switch (position) {
case stdAc::swingv_t::kHighest: return kSanyoAcSwingVHighest;
case stdAc::swingv_t::kHigh: return kSanyoAcSwingVHigh;
case stdAc::swingv_t::kMiddle: return kSanyoAcSwingVUpperMiddle;
case stdAc::swingv_t::kLow: return kSanyoAcSwingVLow;
case stdAc::swingv_t::kLowest: return kSanyoAcSwingVLowest;
default: return kSanyoAcSwingVAuto;
}
}
/// Convert a native vertical swing postion to it's common equivalent.
/// @param[in] setting A native position to convert.
/// @return The common vertical swing position.
stdAc::swingv_t IRSanyoAc::toCommonSwingV(const uint8_t setting) {
switch (setting) {
case kSanyoAcSwingVHighest: return stdAc::swingv_t::kHighest;
case kSanyoAcSwingVHigh: return stdAc::swingv_t::kHigh;
case kSanyoAcSwingVUpperMiddle:
case kSanyoAcSwingVLowerMiddle: return stdAc::swingv_t::kMiddle;
case kSanyoAcSwingVLow: return stdAc::swingv_t::kLow;
case kSanyoAcSwingVLowest: return stdAc::swingv_t::kLowest;
default: return stdAc::swingv_t::kAuto;
}
}
/// Set the Sleep (Night Setback) setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRSanyoAc::setSleep(const bool on) {
_.Sleep = on;
}
/// Get the Sleep (Night Setback) setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRSanyoAc::getSleep(void) const {
return _.Sleep;
}
/// Set the Sensor Location setting of the A/C.
/// i.e. Where the ambient temperature is measured.
/// @param[in] location true is Unit/Wall, false is Remote/Room.
void IRSanyoAc::setSensor(const bool location) {
_.Sensor = location;
}
/// Get the Sensor Location setting of the A/C.
/// i.e. Where the ambient temperature is measured.
/// @return true is Unit/Wall, false is Remote/Room.
bool IRSanyoAc::getSensor(void) const {
return _.Sensor;
}
/// Set the Beep setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRSanyoAc::setBeep(const bool on) {
_.Beep = on;
}
/// Get the Beep setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRSanyoAc::getBeep(void) const {
return _.Beep;
}
/// Get the nr of minutes the Off Timer is set to.
/// @return The timer time expressed as the number of minutes.
/// A value of 0 means the Off Timer is off/disabled.
/// @note The internal precission has a resolution of 1 hour.
uint16_t IRSanyoAc::getOffTimer(void) const {
if (_.OffTimer)
return _.OffHour * 60;
else
return 0;
}
/// Set the nr of minutes for the Off Timer.
/// @param[in] mins The timer time expressed as nr. of minutes.
/// A value of 0 means the Off Timer is off/disabled.
/// @note The internal precission has a resolution of 1 hour.
void IRSanyoAc::setOffTimer(const uint16_t mins) {
const uint8_t hours = std::min((uint8_t)(mins / 60), kSanyoAcHourMax);
_.OffTimer = (hours > 0);
_.OffHour = hours;
}
/// Convert the current internal state into its stdAc::state_t equivalent.
/// @return The stdAc equivalent of the native settings.
stdAc::state_t IRSanyoAc::toCommon(void) const {
stdAc::state_t result;
result.protocol = decode_type_t::SANYO_AC;
result.model = -1; // Not supported.
result.power = getPower();
result.mode = toCommonMode(_.Mode);
result.celsius = true;
result.degrees = getTemp();
result.fanspeed = toCommonFanSpeed(_.Fan);
result.sleep = _.Sleep ? 0 : -1;
result.swingv = toCommonSwingV(_.SwingV);
result.beep = _.Beep;
// Not supported.
result.swingh = stdAc::swingh_t::kOff;
result.turbo = false;
result.econo = false;
result.light = false;
result.filter = false;
result.quiet = false;
result.clean = false;
result.clock = -1;
return result;
}
/// Convert the current internal state into a human readable string.
/// @return A human readable string.
String IRSanyoAc::toString(void) const {
String result = "";
result.reserve(140);
result += addBoolToString(getPower(), kPowerStr, false);
result += addModeToString(_.Mode, kSanyoAcAuto, kSanyoAcCool,
kSanyoAcHeat, kSanyoAcDry, kSanyoAcAuto);
result += addTempToString(getTemp());
result += addFanToString(_.Fan, kSanyoAcFanHigh, kSanyoAcFanLow,
kSanyoAcFanAuto, kSanyoAcFanAuto,
kSanyoAcFanMedium);
result += addSwingVToString(_.SwingV, kSanyoAcSwingVAuto,
kSanyoAcSwingVHighest, kSanyoAcSwingVHigh,
kSanyoAcSwingVUpperMiddle,
kSanyoAcSwingVAuto, // Middle is unused
kSanyoAcSwingVLowerMiddle,
kSanyoAcSwingVLow, kSanyoAcSwingVLowest,
// Below are unused.
kSanyoAcSwingVAuto,
kSanyoAcSwingVAuto,
kSanyoAcSwingVAuto,
kSanyoAcSwingVAuto);
result += addBoolToString(_.Sleep, kSleepStr);
result += addBoolToString(_.Beep, kBeepStr);
result += addLabeledString(_.Sensor ? kRoomStr : kWallStr, kSensorStr);
result += kCommaSpaceStr;
result += kSensorStr;
result += ' ';
result += addTempToString(getSensorTemp(), true, false);
const uint16_t offtime = getOffTimer();
result += addLabeledString(offtime ? minsToString(offtime) : kOffStr,
kOffTimerStr);
return result;
}